

Seam in Action

Seam in Action

DAN ALLEN

M A N N I N G
Greenwich

(74° w. long.)

 To my wife Sarah, without whom this book would not have been possible.
 Thanks for giving up everything.

 I love you forever.

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Cynthia Kane
Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

Proofreader: Katie Tennant

ISBN 1933988401
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08

www.manning.com

brief contents
PART 1 TEEING OFF WITH SEAM...1

1 ■ Seam unifies Java EE 3

2 ■ Putting seam-gen to work 29

PART 2 SEAM FUNDAMENTALS ..81

3 ■ The Seam life cycle 83

4 ■ Components and contexts 130

5 ■ The Seam component descriptor 179

6 ■ Absolute inversion of control 219

PART 3 SEAM’S STATE MANAGEMENT ...271

7 ■ The conversation: Seam’s unit of work 273

8 ■ Understanding Java persistence 325

9 ■ Seam-managed persistence and transactions 352

10 ■ Rapid Seam development 380
v

PART 4 SINKING THE BUSINESS REQUIREMENTS431

11 ■ Securing Seam applications 433

12 ■ Ajax and JavaScript remoting 475

13 ■ File, rich rendering, and email support 511

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiv
about the cover illustration xxxiv

PART 1 TEEING OFF WITH SEAM ..1

1 Seam unifies Java EE 3
1.1 Which framework should I use? 4

Choosing Seam 5 ■ A complete application stack 5
Why Seam was created 6 ■ Debunking the “vendor lock-in”
myth 7 ■ Making the case for Seam 8

1.2 Seam’s approach to unification 9
Seam integrates JSF, JPA, and POJO components 9
The contextual component model 11

1.3 Your first swings with Seam 14
Entity classes serving as backing beans 14 ■ An
all-in-one component 15 ■ Binding components to the
view 17 ■ Retrieving data on demand 19 ■ Clickable
lists 19 ■ Integration tests designed for JSF 20
vii

CONTENTSviii
1.4 Seam’s core competencies 22
Turns JSF into a pro 22 ■ Gets you rich quick 25 ■ Fosters
an agile environment 26

1.5 Summary 27

2 Putting seam-gen to work 29
2.1 The Open 18 prototype 30

Consider yourself tasked 30 ■ Mapping entities to the database
schema 31

2.2 Letting seam-gen do the initial work 34
seam-gen’s specialty 35 ■ Features that seam-gen provides 36

2.3 Kick off your project with seam-gen 37
A look at the seam-gen commands 38 ■ A Q&A session with seam-
gen 40 ■ Creating a basic project structure 43 ■ Generating the
CRUD 44

2.4 Deploying the project to JBoss AS 46
To deploy… 46 ■ …or to explode 48 ■ Switching between
environments 49 ■ Launching JBoss AS 50

2.5 Show and tell, change, and repeat 51
Walking the course 52 ■ Guiding the reverse-engineering
process 58 ■ Exploring the structure of the generated project 61

2.6 Rapidly developing a seam-gen project 65
Incremental hot deployment 65 ■ Accelerating development
by using an IDE 70

2.7 Summary 79

PART 2 SEAM FUNDAMENTALS..81

3 The Seam life cycle 83
3.1 Exploring how Seam participates in a request 84

Flipping Seam’s switch 85 ■ The JSF servlet, the workhorse of
Seam 85 ■ Serving collateral resources via the Seam resource
servlet 91 ■ Seam’s chain of servlet filters 92 ■ The Seam
phase listener 95

3.2 The JSF life cycle sans Seam 96
The JSF life-cycle phases 97 ■ The initial request 98 ■ The
postback 100 ■ Shortcomings of the JSF life cycle 101

CONTENTS ix
3.3 Seam’s page-oriented life-cycle additives 103
Advanced orchestration with pages.xml 104 ■ Intelligent
navigation 105 ■ Seam UI command components 109 ■ Page
parameters 110 ■ Page actions: execute me first! 114

3.4 Combining page actions with navigation 116
Sanity checking a request 117 ■ Built-in page
actions 118 ■ Search engine–friendly URLs 120

3.5 The JSF life cycle with Seam 122
Phase listeners versus servlet filters 122 ■ Stepping through the
augmented life cycle 122

3.6 A try-catch block around the life cycle 126
Failing gracefully or with intentional crudeness 126 ■ Registering
an exception handler 126 ■ Handling the exception at the
source 127

3.7 Summary 129

4 Components and contexts 130
4.1 Seam’s contextual naming container 131

Seam’s context model 131 ■ Unifying the Java servlet
contexts 132 ■ Seam’s new stateful contexts 133 ■ Seam’s
enhanced servlet contexts 134

4.2 Sorting out components 135
Components vs. component instances 135 ■ Seam manages
components 137

4.3 Defining components using annotations 138
Giving a component a @Name 139 ■ Putting a component
in @Scope 140

4.4 A comprehensive component example 141
Creating the entity components 141 ■ Preparing an action
bean component 145 ■ Integration testing
components 146 ■ Hooking components into JSF 148

4.5 A component’s life 150
Loading component definitions 151 ■ When to
@Install a component 152 ■ Giving a component multiple
@Roles 155 ■ Instantiating components at
@Startup 156 ■ Component life-cycle callbacks 157
Wiring components together 159 ■ Where all components go
to die 161

CONTENTSx
4.6 Using EJB 3 session beans in Seam 161
Whose component is it, anyway? 162 ■ The making of a Seam
session bean component 162 ■ The mechanics of the
interaction 164

4.7 Accessing components 168
Access modes 169 ■ Access strategies 170

4.8 Summary 177

5 The Seam component descriptor 179
5.1 Defining components using XML 180

Choosing your descriptor strategy 181 ■ The structure of the
component descriptor 182 ■ Fine-grained component
descriptors 184

5.2 XML namespaces in the component descriptor 185
The purpose of XML namespace declarations 185 ■ Defining an
XML @Namespace for components in a package 189 ■ How XML
namespaces are interpreted 190 ■ Importing a context variable
prefix 193

5.3 Configuring component properties 195
Component definitions as object prototypes 195 ■ Where
component properties are defined 196 ■ Property value
types 202 ■ Wiring components together 209

5.4 Component definitions vs. component configuration 212
Avoiding conflicts with an existing definition 212 ■ Dividing the
configuration between annotations and XML 213

5.5 Configuring and enabling built-in components 214
Using the component descriptor to control Seam 214 ■ Configuring
Seam’s internationalization support 215

5.6 Summary 218

6 Absolute inversion of control 219
6.1 Bijection: dependency injection evolved 220

Introducing bijection 220 ■ Bijection on the golf
course 222 ■ Activating bijection 222

6.2 Dynamic dependency @In-jection 224
Declaring an injection point 224 ■ The injection process 226
Mixing scopes and serializability 228 ■ Injection variants 229

CONTENTS xi
6.3 @Out-jecting context variables 231
The outjection process 232 ■ Outjection use cases 233
Built-in @DataModel support 235

6.4 Bypassing bijection 244
Internal method calls 244 ■ The mystical method context 245
Reentrant method calls 246 ■ Disabling bijection by disabling
interceptors 248

6.5 Component events 249
Raising an event from a component 250
Defining an event @Observer 252 ■ Raising events
on page transitions 253 ■ Built-in events 254

6.6 Custom method interceptors 255
Two sides to the interceptor coin 255 ■ Defining a Seam
interceptor 257

6.7 Factory and manager components 259
A context variable @Factory 259 ■ Components that @Unwrap 266

6.8 Summary 270

PART 3 SEAM’S STATE MANAGEMENT271

7 The conversation: Seam’s unit of work 273
7.1 Learning to appreciate conversational state 274

Redefining the unit of work 275 ■ The burden of managing state 275

7.2 The conversation context 278
Carving a workspace out of the HTTP session 278 ■ What you
might store in a conversation 281

7.3 Establishing conversation boundaries 281
A conversation’s state 282 ■ Beginning a long-running
conversation 286 ■ Keeping the conversation going 292
Enlisting objects in a conversation 294 ■ Ending a long-running
conversation 298

7.4 Putting the conversation aside 300
Abandoning a conversation 300 ■ Creating nested conversations 301

7.5 Switching between conversations 305
The conversation as a workspace 305 ■ Giving conversations a
description 307 ■ Using the built-in conversation switchers 308

CONTENTSxii
7.6 Driving the conversation with a page flow 314
Setting up a page flow 315 ■ Learning your way around a page
flow 315 ■ Advancing the page flow 318 ■ Addressing the back
button 320

7.7 Ad hoc conversations 321
Open for business 321 ■ Show me what you’ve got 322

7.8 Summary 323

8 Understanding Java persistence 325
8.1 Java persistence principles 326

Establishing expectations 326 ■ The four pillars of Java
persistence 327

8.2 Entities and relationships 328
Mapping metadata 329 ■ Transitive persistence 329 ■ Bringing
annotations to the persistence layer 330

8.3 The persistence unit 331
Defining a JCA data source 332 ■ The persistence unit
descriptor 332 ■ The persistence manager factory 334

8.4 The persistence manager 335
Obtaining a persistence manager 335 ■ The management
functions of a persistence manager 336 ■ Persistence context
scoping 337

8.5 Transactions 338
Sorting out the transaction APIs 338 ■ Atomic units of
work 339 ■ ACID abridged 340

8.6 Managing persistence in the enterprise 341
Introducing the extended persistence context 341 ■ The benefits of
an extended persistence context 342

8.7 Choosing between JPA and Hibernate 348
How Hibernate relates to JPA 348 ■ What sets Hibernate and JPA
apart 349 ■ Seam’s hybrid approach 350

8.8 Summary 351

9 Seam-managed persistence and transactions 352
9.1 Getting persistence context management right 353

Respecting the persistence manager 353 ■ Managing an extended
persistence context 354

CONTENTS xiii
9.2 Enhancing the capabilities of the persistence manager 356
Seam’s standard enhancements 357 ■ Letting Hibernate shine
through 359

9.3 Setting up a persistence unit in Seam 361
Seam’s persistence manager factories 361 ■ Seam-managed persistence
contexts 364 ■ Sharing the persistence manager factory through
JNDI 366 ■ Validating the persistence context at startup 368

9.4 Seam’s transaction support 369
Global transactions 370 ■ Seam’s transaction abstraction
layer 371 ■ Controlling Seam-managed
transactions 373 ■ Application transactions 376

9.5 Summary 379

10 Rapid Seam development 380
10.1 A framework within a framework 381

Wrapping the persistence API 382 ■ The persistence
controllers 383 ■ Two ways to play 385

10.2 Stateful CRUD using the Home component 386
Remedying the Anemic Domain Model 386 ■ Giving the domain
object a Home 387 ■ Putting Home to work 391 ■ Venturing
away from home 403 ■ CRUD a la XML 408

10.3 Providing feedback 410
Customizing the status messages 410 ■ Creating i18n-compliant
messages 412 ■ Transaction success events 413

10.4 Smarter queries with the Query component 413
Creating a result set listing 414 ■ Paging the result
set 417 ■ Deleting multiple records at once 420 ■ Putting the
results in order 420 ■ Placing restrictions on the result set 422

10.5 Summary 429

PART 4 SINKING THE BUSINESS REQUIREMENTS.................431

11 Securing Seam applications 433
11.1 Authentication jump-start 434

Giving the user an identity 434 ■ Implementing
authentication in three steps 436 ■ A glimpse at Seam’s identity
management 443 ■ Even more “Basic” authentication 444

CONTENTSxiv
11.2 Securing pages 446
The challenge with JSF security 447 ■ Requiring
authentication 448 ■ Serving pages securely 453

11.3 Role-based authorization 455
Expressing restrictions 456 ■ Declaring role-based restrictions 458

11.4 Rule-based authorization using Drools 462
Rules vs. roles 462 ■ Setting up Drools 462 ■ Creating rules
with Drools 464 ■ Automatic context detection 469

11.5 Separating the computers from the humans 472
An overview of CAPTCHA 472 ■ Adding a CAPTCHA challenge
to forms 472

11.6 Summary 473

12 Ajax and JavaScript remoting 475
12.1 Using Ajax with JSF 476

Embracing a server-centric application model 476 ■ Ajax4jsf and
ICEfaces open a communication channel to JSF 477 ■ Seam’s role
in Ajax-based JSF requests 482

12.2 Partial form submits 484
Live validation 484 ■ Business-savvy validations 486
Working alongside the user to fill out a form 487

12.3 Ajax Push with ICEfaces 489
12.4 JavaScript remoting to Seam 491

Transparent Ajax 491 ■ Giving the browser access to Seam
components 493 ■ Making calls to a server-side
component 496 ■ Local stubs 500

12.5 Conversational remoting calls 503
Joining the conversation in progress 504 ■ Striking up a
conversation 504 ■ Storing up requests for a shipment 506

12.6 Responding to GWT remoting calls 506
A quick introduction to GWT integration 507 ■ Preparing the remoting
service 507 ■ Making a GWT service call through Seam remoting 508

12.7 Summary 509

13 File, rich rendering, and email support 511
13.1 Uploading files and rendering dynamic images 512

Accepting file uploads 512 ■ Rendering images from raw data 515

CONTENTS xv
13.2 PDF generation with iText 517
Laying out a PDF with UI components 517 ■ Working with tables
and cells 521 ■ Adding a splash of color 524 ■ Graceful failures
and friendly file extensions 525 ■ Serving dynamic documents 526

13.3 Quick and easy charting with JFreeChart 528
Chart basics 528 ■ Bar charts 529 ■ Line charts 530 ■ Pie
charts 532

13.4 Composing email the Seam way 533
Sending your first message 533 ■ Adding an entourage to the
message 536 ■ Setting up JavaMail in Seam 540 ■ Publishing
newsfeeds 543

13.5 Customizing the UI with resource bundles 544
Getting Seam to speak the right language 544 ■ Themes 548

13.6 Summary 549

appendix A Seam starter set 551
resources 562
index 565

foreword
The most challenging part of being a developer on the Seam project isn’t writing the
code—it’s trying to explain Seam to new users. There’s a large gap that a Seam neo-
phyte must cross to really “get” what Seam is about. The problem isn’t that Seam is
overly complex, or that it requires an esoteric skill set. Seam puts together a number
of ideas that are unfamiliar to mainstream Java developers. Many of those ideas chal-
lenge the common wisdom of enterprise Java development.

 To start with, Seam fills a gap not many Java developers realize exists. We are so
accustomed to working with a half dozen disintegrated technologies that a truly inte-
grated application framework seems foreign to us. This disintegration is most pain-
fully clear at the persistence layer. Where ineffective caching and lazy instantiation
issues plague most applications, Seam actually gets it right. When you consider that
the creators of Seam were the brains behind Hibernate, that’s not hard to believe!

 Then you’ve got Seam’s dynamic bidirection injection (bijection), which is radi-
cally different from the static injection offered by the popular dependency injection
frameworks. And we haven’t even mentioned the clever stateful components in a
world where the prevailing technologies force all applications into a multilayered
stateless architecture regardless of whether that architecture suits the application
being developed.

 We’re just scratching the surface, and already we can see that Seam offers a vision
that’s so different from the status quo that guiding a new Seam user becomes a huge
challenge. As a result, few introductions to Seam go beyond the basics, presenting the
ABCs of the technology without showing how to put the letters together to make words
and sentences. Seam in Action is the first Seam book to capture the spirit of Seam and
xvii

FOREWORDxviii
show you how to put those words and sentences together the way we on the Seam
team intended the technology to be used.

 What impresses me most about the book you’re holding in your hands is that it
doesn’t blindly toe the Seam party line. Dan Allen has painstakingly broken Seam
down to its core concepts and reassembled them in a way that is fresh and unique.
Seam in Action isn’t a simple-minded regurgitation of the Seam reference documenta-
tion. Instead, it’s a perfect companion to it, showing how to understand Seam and
best apply it to your own applications.

 Seam can help you code better, more functional applications. It can help you work
faster, and it can help you code your applications with a simpler, easier-to-manage
architecture. But you’ll only reap those benefits if you take the time to learn how to
best apply the technology. Seam in Action is the perfect guide to get you to the point
where you can apply Seam to its full potential.

 If you’re up to the challenge, then, to shamelessly borrow the analogy of the book,
I invite you to step up to the first tee—and take a swing.

 NORMAN RICHARDS

 Senior Engineer, Red Hat

preface
We can’t solve problems by using the same kind of thinking we used when we created them.

—Albert Einstein

As I write this passage, I’m flying over the Atlantic Ocean on my way back from Europe
to the United States for the second time in a month. This trip was to Tuscany for a meet-
ing to discuss Seam’s future; the previous trip had been to Zurich, where I spoke about
Seam at the Jazoon ’08 conference. The first trip was especially significant to me because
it marked the first time in the 30 years of my life that I’ve traveled outside of North Amer-
ica. I was beginning to think that day would never come, but it did, thanks to Seam. (And
because my brother purchased the ticket to get me there. Thanks, Kevin!)

 You might think I’m ridiculous for attributing this milestone to Seam. After all, how
can a framework motivate a person to embark on an unprecedented trip? Before you
call me crazy, let me explain how I got involved in Seam and how it influenced me to
expand my horizons.

 Around the time Seam was being developed, I was spending my days banging my
head on a project built using Spring and JSF. For more than a year, I felt stuck in a rut
trying to manage the application’s state, wrestling with irrelevant decisions such as
whether to name a business object a Manager or a Service, and rationalizing how many
layers to use and which layer should take ownership of a given task. All of these distrac-
tions held back the project and my growth. I kept looking for some way out.

 The spark that attracted me to Seam is the fine-grained control it provides over JSF
requests through its page descriptor. The reason I stuck with Seam (and ultimately
decided to write about it) goes well beyond the voids it filled for me at the time.
xix

PREFACExx
 Seam has clout because it follows a consistent approach without imposing arbi-
trary restrictions. It leverages annotations, interceptors, XHTML-based templates, and
JSF components to give you the most bang for your keystroke. It provides access to
objects when and where you need them and manages them so you don’t have to. It
also helps establish continuity from one page request to the next. Above all, it gives
you freedom to organize the application as it suits you and to choose the tools you
want to use to build it: Java or Groovy, XML or annotations, JavaScript or rich wid-
gets, built-in or custom components, and so on.

 But we have a tendency to get caught up in the word framework and forget the real
reason we’re writing software: to serve the needs of our users or our clients’ users.
That’s the angle you have to take going into learning one of these tools.

 Users don’t want to spend their days paging through endless result sets and could
care less if you’re having a problem with lazy initialization exceptions in the view. They
want mature software. They want advanced searches, reports in PDF or Excel, charts,
emails, file uploads, dynamic graphics, wizards, workspaces, and so on. Basically, they
want the stuff that’s really hard to develop, or at least harder than feeding the database
through a CRUD generation tool. Seam gives you the CRUD generation tool, which gets
you developing immediately, and it also provides the extra stuff.

 Seam is worth knowing because it touches on nearly every aspect of Java EE. Sure,
you have a lot to learn, but Seam makes every facet of the platform remarkably accessi-
ble and gets you working on the advanced parts of your application early in the proj-
ect. You no longer have to dread those wild and crazy requirements that the user
dreams up. Instead, you feel empowered to write applications—and you’ll get to the
feature wish lists.

 As an integration framework, Seam keeps a vast number of technologies close at
hand and accessible. As a result, you find yourself trying out technologies you never
thought you’d use, and you witness your application and skill set maturing quickly. You
also start introducing new styles of interaction into your application, such as the event-
observer model or something as revolutionary as Ajax Push. You get used to venturing
into new territory, without having to abandon the familiar, and it affects your general
attitude toward life.

 That brings me back to my original statement. Seam is the driver that finally
launched me out of North America. It also kick-started my writing and consulting
career, got me involved in a successful open source project, and allowed me to meet
interesting and talented people. How will Seam change your career? How will it change
your life?

 Somewhere over the Atlantic, July 2008

acknowledgments
While writing this book, I made many promises to myself and others about what I’d
do when I finished. The most important of those promises was to acknowledge every-
one who made this book possible. Of course, I’m grateful to have you as a reader. But
you should appreciate those people who got this book out on the shelves and into
your hands.

 The first and last person I want to thank is my wife, Sarah. If it weren’t for her help,
you wouldn’t be holding this book. I have no idea where to even begin thanking her.
She pushed me to believe in myself, kept me motivated when the end kept moving
further away, tolerated being inundated with Seam and my relentless questioning
about how to structure the book, edited drafts, assembled the index, provided ther-
apy, made sure I ate, and took care of countless chores I let slip. What meant the most
is that she put my project before her own, something I look forward to doing for her
now. Please help me in thanking her.

 Writing a book puts a tremendous strain on relationships. I would like to thank all
my friends and family for supporting me in this endeavor and having faith that I would
eventually come out of my hole and once again answer phone calls, hang out, and talk
about something other than writing a book. I am forever indebted to my parents, James
and Mary Allen, for extending me every opportunity in my life to be successful. You
only get one childhood and they made it both a rewarding and a memorable one. Mom
and Dad, thanks for passing on to me your relentless perseverance and strong desire to
learn and for always being there to support me in my endeavors.

 Rewinding to the origin of this book, I want to thank Andrew Glover for introduc-
ing me to Jennifer Aloi from IBM developerWorks, who in turn launched my technical
xxi

ACKNOWLEDGMENTSxxii
writing career by sponsoring the Seamless JSF series. Much of the credit for that series’
success goes to Athen O’Shea for doing a superb job of editing and helping me find
the right words. Little did I know that I would soon be buried deep in turning those
ideas into a book.

 I want to thank Marjan Bace and Michael Stephens for taking a chance on me and
trusting that I would finish as I blew past one deadline after the next. Something tells
me they had the real schedule hidden in a drawer and had already anticipated the 15
months that would elapse over the course of this project. I’m also grateful to Andy Kapit
and Andrew Van Etten of CodeRyte, Inc., for endorsing this book in its early stages.

 Moving along chronologically, I’d like to acknowledge Cynthia Kane for helping
me see the big picture and for reminding me that I had a book to write when I started
to daydream. I was fortunate to have an ambitious and talented set of reviewers who
donated their time and insight to help make this the best Seam resource available:
Peter Johnson, Doug Warren, Peter Pavlovich, Devon Hillard, Nikolaos Kaintantzis,
Hung Tang, Michael Smolyak, Benjamin Muschko, Kevin Galligan, Judy Guglielmin,
Valentin Crettaz, Carol McDonald, Ara Abrahamian, Horaci Macias, Norman Rich-
ards, Ted Goddard, Costantino Cerbo, Mark Eagle, Carlo Bottiglieri, and Jord Son-
neveld. Thanks to Karen Tegtmeyer for seeking out the reviewers, conducting the
reviews, and scaring the volunteers into actually sending back their comments. Special
thanks to Benjamin Muschko, Pete Pavlovich, and Ray Van Eperen for thoroughly
reading the book and giving me line-by-line edits and advice; thanks to Michael
Youngstrom for reviewing chapter 15; thanks to Ted Goddard and Judy Guglielmin for
their help with chapter 12 and the development of the source code for the ICEfaces
example; and thanks to Valerie Griffin and Daniel Hinojosa for providing last-minute
corrections and feedback. I also want to thank all my loyal MEAP readers and forum
participants, especially those who were there from the very beginning, patiently wait-
ing for this book to materialize into print.

 The heroes of this project are the production team, under the leadership of Mary
Piergies, who coaxed me out of rewriting hell and worked in overdrive to get this book
into print. The person who took on the biggest burden in this transition was Liz
Welch, my copy editor. I want to extend enormous thanks to Liz for weeding out all
the inconsistencies in the book and tolerating my pursuit of perfection. I also want to
thank Norman Richards, my technical editor, for challenging me to get all my facts
about Seam straight and steering me away from giving readers impractical advice. I’d
like to recognize the tremendous work done by the remaining members of the pro-
duction and postproduction team: Katie Tennant for proofreading the manuscript,
squashing all of those “writing bugs”; Dottie Marsico and Gordan Salinovic for mor-
phing the chapters from office document format into the professional layout that you
see in front of you in record time; Leslie Haimes for making the book look eye-catch-
ing on the shelves and enticing readers, like yourself, to dive into it; Tiffany Taylor for
maintaining the document templates; Gabriel Dobrescu for handling the book’s web
presence on manning.com; and Steven Hong for continued support in publicizing
the book and preparing marketing materials.

ACKNOWLEDGMENTS xxiii
 Join me in thanking Gavin King for sharing his vision of Seam and its contextual
component model with the world as an open source project and to all the Seam devel-
opers that matured his vision into the robust integration framework that it is today.

 I would like to thank Panera Bread in Laurel, MD, for serving as my retreat/second
office when my house was trying to stifle my writing. I am grateful for the bottomless
tea and free wireless internet. I wish more companies were as progressive as yours.

 I’m happy to say that each and every person mentioned in this passage, and sadly
those I overlooked, helped me complete the most ambitious goal of my life. Thanks
again to my wife for standing by me during this project.

about this book
If you’re ready to become an expert on Seam, I can guarantee you that this book will
get you there. I don’t use terms that confuse you just to make myself feel smart. I don’t
say “trust me on this; it will all work out.” I don’t distract you with an outline of the
next chapter when you’re trying to focus on the current material. And especially, I
don’t sprinkle @In and @Out annotations over a class and expect that you’ll know what
they will do. Nope. I lay down the facts. I show you the steps. I reveal the logic. I dia-
gram the flow. What I like most about programming is that each thing happens for a
reason. The exciting challenge is learning what that reason is and then turning
around and discovering how to make practical use of it. Some areas of Seam are hard
to get, I’ll admit. But trust that with guidance, you will get it. Never settle for less than
the facts, and don’t give up!

 Not only do I teach you how Seam works, I also teach you the how and the why so
you can go off and teach Seam to others. I’ve traveled into each and every corner of
Seam, and I want to share with you what I’ve experienced to motivate you to travel
there yourself. I want to give you what Seam gave me: the ability to reach my true
potential as a developer. This is the best resource to help you understand Seam with-
out gaps.

Roadmap

The goal of this book is to get you started with Seam quickly. It’s divided into four
parts. The first part does a flyover of Seam and gets you ready to learn about it. The
second part focuses in on the core concepts until you can see the blades of grass. The
third part studies Seam’s state-management solution and Java persistence support.
xxiv

ABOUT THIS BOOK xxv
The last part teaches you to make your application secure and stand above the compe-
tition. Best of all, you get to have fun.

 Chapter 1 answers three questions: What is Seam? Why was Seam created? What does a
Seam application look like? The chapter explains how Seam fits into the Java EE landscape
and enumerates ways it extends the platform to make it more accessible and pertinent.
You see a basic Seam application, which provides an overview of what is to come.

 Rather than diving directly into the fundamentals of Seam, chapter 2 steps you
through setting up a Seam project. Not only does this give you an environment for
testing the Seam concepts covered in the remainder of the book, it leaves you with a
complete CRUD application that supports incremental hot deployment of changes.

 Because JSF is the primary view framework in Seam, chapter 3 provides a glimpse
of it, identifies its weaknesses, and shows how Seam improves it. You study the page-
oriented enhancements to JSF that Seam provides and get a high-level overview of how
Seam involves itself in the JSF life cycle. By the chapter’s end, you should appreciate
that the only reasonable way to develop using JSF is with Seam.

 Chapter 4 explores the heart of Seam: the contextual container. You learn what a
Seam component is, how it differs from a component instance, the palette of scopes
in which you can store instances and other context variables, and how Seam manages
the component life cycle. You get a feel for using annotations to control the applica-
tion. You also learn ways to access components and when they are instantiated.

 Seam’s central switchboard, the component descriptor, is introduced in chapter 5.
You learn about its two main functions: defining a component in XML as an alterna-
tive to annotations and assigning initial property values, either to control the behavior
of a component or to build object prototypes. Although the metadata in this file is
XML, Seam leverages namespaces to make the configuration type-safe. You even learn
to develop your own namespace. Tucked away at the end of the chapter is an introduc-
tion to Seam’s simple, yet powerful, approach to managing message bundles.

 Chapter 6 is paramount because it presents Seam’s most compelling and progres-
sive feature, bijection. The key benefit bijection provides is to allow component
instances in different scopes to safely collaborate without risk of scope impedance or
concurrency violations. The other theme in this chapter is how Seam initializes
objects on demand.

 Chapter 7 covers Seam’s conversation, another vital feature. Java-based web applica-
tions have always lacked a scope that correlates with the user’s activity. You discover
that the conversation fits this need, overcomes the shortcomings of the HTTP session,
and provides a way for the user to manage parallel activities. The most important use
of the conversation is to manage the persistence context.

 To appreciate how Seam improves Java persistence, you have to learn what it is.
Chapter 8 gives you an introductory view of Java persistence and points you to valu-
able resources on the topic; explains how Java persistence is managed in a pure Java
EE environment; and helps you distinguish between Hibernate and JPA.

 Chapter 9 presents Java persistence under the stewardship of Seam and demon-
strates how Seam gets persistence right, where Java EE falls short. You learn that the
conversation-scoped persistence context frees you from lazy initialization errors and
dirty merge operations. You also learn that Seam blankets the request in a series of
transactions, extending the guarantees they provide to all operations in a request. The

ABOUT THIS BOOKxxvi
chapter concludes by examining the most important feature of a multiuser web appli-
cation: the application transaction, which makes persistence operations in a conversa-
tion atomic.

 Chapter 10 is round two of developing a CRUD application—only this time, you do
everything yourself. Well, not everything. You learn how to leverage the classes in the
Seam Application Framework to handle most of the boilerplate code, so all you have to
do is design and customize the user interface. After reading chapter 2 and chapter 10,
you should be able to do CRUD in your sleep.

 An application wouldn’t be much use without security. In three strokes, chapter 11
gets you authenticating users and then proceeds to teach you how to implement basic
role-based and contextual rule-based authorization to protect your application in pow-
erful ways.

 One of the things Seam does well is make other technologies look good. In chap-
ter 12, you learn how to add Ajax to your application using RichFaces or ICEfaces com-
ponents without touching a line of JavaScript. Seam manages state to ensure these
Ajax interactions don’t bog down the server resources. You also learn to enhance the
capabilities of JavaScript by giving it direct access to server-side components and learn
to integrate Seam with a rich user interface technology such as GWT.

 Chapter 13 lets you escape the humdrum of HTML by teaching you to create a wide
variety of content types, such as PDFs, emails, charts, graphics, and binary documents.
You also learn to style your application and give the user control over the user interface.

 I had so much to talk about that the last two chapters wouldn’t fit in the book. On
this book’s website (www.manning.com/SeaminAction), you can check out Seam’s
business process management solution in chapter 14 and Seam’s Spring integration in
chapter 15.

 Appendix A shows you how to set up Seam and the supporting environment and
prepares you to follow along with the source code for this book.

Who should read this book?

Seam in Action was described by one reviewer as “written by an expert for experts.” If
you’ve picked up this book hoping it has the breadth of knowledge you seek, that quote
should satisfy you. A second reviewer claimed that “experienced Seam developers are
likely to get something out of reading the book.” Another stated that “even if you are
already an expert in the underlying technologies, you will not be disappointed.” If you
want to master Seam, it’s well worth having this book in your backpack.

 Where does that leave the rest of you, who are just getting started with Seam? You
won’t be disappointed either. If you’re a Seam newbie or a manager, you’ll get plenty of
value out of just the first two chapters. If you want to go further, you have to ask yourself
if you’re committed to learning about this technology and if you’re willing to put some
effort into it. Are you ready to become an expert? If not, it might be best for you to start
with the Seam reference documentation or perhaps an introductory book. Chances
are, you’ll be back when you’re ready to know all the details about how Seam works.

 If you’re still with me, be aware that you need some prior experience before you
take on this book. I’ve been able to go into detail in the book because I’ve left out
introductory material that’s readily available elsewhere. At the very least, I expect that

www.manning.com/SeaminAction

ABOUT THIS BOOK xxvii
you have experience developing with Java, using the Java Servlet API, and deploying to
application servers or servlet containers. I move quickly through JSF and ORM technol-
ogies, assuming that you’ve at least read about them. You should also have some aware-
ness of method interceptors and how they work, although this knowledge can be
inferred from the text. Finally, if you’re interested in the parts of the book that cover
the EJB 3 integration or Spring integration, you need some prior experience with these
technologies. That sounds like a lot of prerequisites, but if you’re dedicated, you can
pick up this information from the book and the resources I recommend as you read.

 If you’re worried about the requirement to understand JSF, the next section pro-
vides a brief introduction that should get you by. I also suggest a couple of additional
resources if you feel you need more explanation. Honestly, though, basic JSF is
straightforward, and Seam hides a lot of complexity beyond that point.

What you need to know about JSF to use Seam

JSF is a component-oriented user interface (UI) framework as opposed to an action-
based framework like Struts. Struts requires that you write a custom action handler
that processes the request and then forwards control to a JSP page, which renders the
HTML response. JSF, on the other hand, resolves a view template—typically a JSP
page—automatically from a request and transfers control directly to it. The lack of a
front controller may appear to be a step backward. The enhancement comes in the
way the view template is processed.

 JSF reads the view template, which contains custom JSP or Facelets tags, and con-
structs a UI component tree, effectively deferring the rendering process. The UI com-
ponent tree is a hierarchical graph of Java objects that represents the structure of the
page. Rendering is only a secondary concern and occurs when the component tree is
“encoded” to the client (that is, the browser). The renderer attached to each compo-
nent produces the markup.

 The main concern of the UI component tree is to act as a server-side representa-
tion of the view and listen for events that occur in the UI. There is a one-to-one map-
ping between the elements in the component tree and the elements on the page (with
the exception of literal HTML). For instance, if the page contains a form with inputs
and buttons, a corresponding form and nested input and button components exist in
the UI component tree. Because the processing of the view template is separate from
the encoding of the UI component tree, you can build the component tree using an
alternate view technology, such as Facelets or pure Java. The component tree can also
produce markup other than HTML.

 The design of JSF goes beyond separating the view definition and view rendering
with an intermediary object graph. JSF uses the component tree to capture events and
allow programmatic, server-side manipulation of the view. In this regard, it’s similar to
Swing, except that it operates in the context of the web environment. Any event per-
formed by the user results in an HTTP request. During this request, or postback, the
component tree is “restored” from its previous state. The events are processed, and
the component tree is once again encoded to the client (the HTML response).

 A simple example of the event mechanism is when the user clicks a button—a
UICommand component—in a JSF form. As a result, the method bound to the action of

ABOUT THIS BOOKxxviii
the button is executed. You don’t have to worry about how the request is handled or
how this mapping is prepared. If the form has inputs—UIInput components—the val-
ues in those inputs are assigned to the JavaBean properties to which they’re bound.
The properties are then available to the action method when it executes. The objects
that are bound to UI components are called managed beans. As you learn later, JSF does
the managing.

 How is a managed bean bound to a UI component? This binding is done using
expression language (EL) notation, also found in JSP. There are both value- and
method-binding expressions, although the latter are unique to JSF. JSF can use a value
expression to capture a property value, in addition to outputting it, unlike in JSP. A
method expression is used to bind a method to a UI component so that the method is
invoked when the component is activated.

 In the button example, a method on a managed bean might be bound to the
action of the button through the expression #{beanName.methodName}. This expres-
sion resolves to the methodName() method on an instance of a JSF managed bean
named beanName. Managed beans are defined in the JSF descriptor, faces-config.xml,
using the <managed-bean> element. JSF automatically creates instances of these man-
aged beans as needed.

 Value expressions appear identical to method expressions, although they have a
vastly different purpose. The value of an input component might be bound to a prop-
erty on a managed bean using the expression #{beanName.propertyName}. JSF reads
the value from the JavaBean getter method, getPropertyName(), when the page is
rendered and writes the new value captured in the input to the setter method, set-
PropertyName(), after the button is clicked. Again, you don’t have to worry about
reading request values from the HttpServletRequest object. The assignment hap-
pens automatically, and you can focus on implementing the business logic.

 The EL is an important part of JSF and Seam, and you should be sure to understand
it. Two resources I recommend are the article “Unified Expression Language for JSP and
JSF,” published on java.net,1 and the FAQs about the EL on seamframework.org.2

 The example just presented appears simple enough, but what goes on during each
JSF request, especially the postback, is quite a bit more sophisticated. Each request
activates the JSF life cycle, which consists of six phases:

1 Restore View
2 Apply Request Values
3 Process Validations (and conversions)
4 Update Model Values
5 Invoke Application
6 Render Response

If the request is a postback, the UI component tree is restored during the Restore View
phase. If this is an initial request, meaning the URL was requested from the browser’s
location bar or a regular link, the life cycle skips directly to the Render Response phase.

1 http://today.java.net/pub/a/today/2006/03/07/unified-jsp-jsf-expression-language.html
2 http://seamframework.org/Documentation/WhatIsAnExpressionLanguageEL

http://today.java.net/pub/a/today/2006/03/07/unified-jsp-jsf-expression-language.html
http://seamframework.org/Documentation/WhatIsAnExpressionLanguageEL

ABOUT THIS BOOK xxix
 A postback continues through the life cycle. In the three phases that follow Restore
View, the form values are captured, converted, validated, and assigned to the JavaBean
properties on the managed beans to which they are bound. Validations and conver-
sions get assigned to an input component either as nested tags or correlated with the
property’s type in the JSF descriptor.

 The Invoke Application phase is where the action methods are executed. There can
be at most one primary action and any number of secondary action listeners. The dif-
ference between the two types is that only the primary action can trigger a navigation
rule. The navigation rules, also defined in the JSF descriptor, dictate the next view to
render and are consulted once the Invoke Application phase completes.

 Finally, in the Render Response phase, the UI component tree is built from the view
template and subsequently encoded to HTML (or alternate output) and sent to the
browser (or client).

 That’s all there is to JSF. If you’re a newcomer to the framework, this brief explana-
tion may leave you wanting. In that case, I’ll point you to several excellent resources
on JSF that should get you up to speed. If you read nothing else, check out the JSF for
nonbelievers series3 on IBM developerWorks. While you’re there, also check out the arti-
cle titled “Facelets fits JSF like a glove”4 to learn about Facelets, the alternate view tech-
nology used in Seam applications. If you’re willing to invest in your JSF knowledge,
you should pick up a copy of either JavaServer Faces in Action (Manning, 2004) or Pro
JSF and Ajax (Apress, 2006). When reading these resources, keep in mind that you’re
studying JSF to learn how to use Seam, not necessarily to buy into JSF by itself. In chap-
ter 3, you learn about the many enhancements Seam brings to JSF, a combination that
is sure to please.

 Next, because this book makes numerous references to golf, I want to give you
some background to help you understand it as well.

The game of golf

The objective of golf is simple. You must get your ball into a hole in the ground using
the fewest strokes possible, beginning from an area paired with that hole known as a
tee box—or tee for short. A regulation golf course has 18 such holes. Each hole has a par,
which is a guideline for how many strokes you should expect to take to get the ball
into the hole; this number is significant in calculating your score.

 The term hole refers to both the hole in the ground and its pairing with a tee box.
A hole has a fixed number of tee boxes, each identified by a color. The tee boxes are
set various distances from the hole and represent different experience levels, to make
the game more challenging for those who are better at it. You pick one color and start
from the designated area for that color on each hole. Those starting points are known
as your tee set. In a golf round, you play each hole in sequence for a given tee set.

 To advance the ball, you use a set of golf clubs. Each golf club consists of a shaft
and a head. The angle of the head determines the loft of the ball when you hit it. The

3 http://www.ibm.com/developerworks/views/java/
libraryview.jsp?sort_order=asc&sort_by=Date&search_by=nonbelievers%3A&search_flag=true

4 http://www-128.ibm.com/developerworks/java/library/j-facelets/

http://www.ibm.com/developerworks/views/java/libraryview.jsp?sort_order=asc&sort_by=Date&search_by=nonbelievers%3A&search_flag=true
http://www.ibm.com/developerworks/views/java/libraryview.jsp?sort_order=asc&sort_by=Date&search_by=nonbelievers%3A&search_flag=true
http://www-128.ibm.com/developerworks/java/library/j-facelets/

ABOUT THIS BOOKxxx
lower the loft, the further the ball is supposed to go (realizing this difference requires
some skill). To hit the ball, you swing the club much like you would a baseball bat, but
don’t tell the golf pro I said that! You use a special club called a putter to advance the
ball on the green—the area that surrounds the hole. When using the putter, you tap
the ball rather than swing at it. Each time you make contact with the ball, regardless of
which club you use, it counts as one stroke.

 When you start each hole, you’re permitted to elevate your ball using a golf tee.
The first shot on a hole is the only time you’re allowed to use this aid. The tee is
intended to accommodate the swing of a driver, the club in your bag with the lowest
loft. Once you take your first stroke on a given hole, you advance the ball using a club
until the ball lies at rest in the hole. You then pick up your ball and walk—or ride—to
the next tee. At the end of the round, you add up all your strokes to calculate your raw
score (I won’t get into the concept of a handicap, but just know that it is used to weight
your score.) The lower that number, the better you played.

 I chose golf as the topic of the example application because, like programming, it’s
challenging. In golf, you’re only as good as your next round. Sounds a lot like the pro-
gramming world, doesn’t it? As soon as we master a technology, there’s one right behind
it to learn. Fortunately, lots of books are available to help us keep on top of our game.

Code conventions

The book provides copious examples, which include all the Seam application artifacts:
Java code, XML-based descriptors, Facelets templates, and Java property files. Source
code in listings or in text is in a fixed-width font like this to separate it from ordinary
text. If there is part of the example I want to draw your attention to, it will be emphasized
using bolded code font. Additionally, Java method names, Java class names, Seam com-
ponent names and context variable names, event names, request parameter names, Java
keywords, object properties, EL expressions, Java 5 annotations and enum constants,
XML elements and attributes, and commands in text are also presented using fixed-
width font. When an annotation appears in the text, the @ symbol is treated as silent.

 Java, XHTML, and XML can all be verbose. In many cases, the original source code
(available online) has been reformatted; I’ve added line breaks and reworked inden-
tation to accommodate the available page space in the book. In some cases, even this
was not enough, and the listings include line-continuation markers (➥).

 I apply several other space optimizations. Comments in the source code have been
omitted from the listings, and the code is instead described in the text. Class imports
in Java classes also tend to take up a lot of space, so I omit those in cases when the
code editor can easily resolve them for you. The complete set of imports can be found
in the source code. When an implementation of a method isn’t important or remains
unchanged from a previous listing, you will see { ... }, which is a code fold. Often, I
place Java 5 annotations inline with the properties or methods to which they apply to
conserve space. Personally, I prefer to use a newline after each Java 5 annotation in my
own code.

ABOUT THIS BOOK xxxi
 Code annotations accompany some of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 The location of individual applications will be referred to throughout the book
using a variable notion. For instance, the JBoss AS directory is tokenized as
${jboss.home}.

Source code downloads

Seam is an open source project released under the Lesser GNU Public License
(LGPL). Directions for downloading the Seam distribution, which includes both the
source and binaries, are available from the Seam community site, http://seamframe-
work.org/Download/SeamDownloads.

 The source code for the Open 18 examples in this book is available from http://
code.google.com/p/seaminaction and released under the LGPL. Because Seam is con-
stantly evolving, I decided to make the source code available as an open source project
so that I can keep the code up to date for readers as needed. You can also download the
code for the examples in the book from the publisher’s website, http://www.
manning.com/SeaminAction. Details about how to use the source code can be found
in the README.txt file at the root of the source code and also on the project wiki.

Organizing the software

To help you keep the software in order so that you can follow along with the source
code examples, I recommend a directory structure that I adhere to throughout the
book. But it’s just a recommendation. Only you have a say in where your files are
placed, and these conventions are by no means a prerequisite to using Seam.
THE DIRECTORY YOU CALL “HOME”

Your home directory is where your personal files live. The last path in the directory is typ-
ically the same as your username. The book uses the home directory of a fictional
developer, whose username is twoputt, whenever an absolute path must be referenced.
Table 1 shows the home directory for twoputt as it would appear on several different
operating systems. Whenever you see twoputt’s home directory used in the book,
replace it with your own home directory.

The home area on several operating systems

Operating system Home area

Linux /home/twoputt

Mac OSX /Users/twoputt

Windows C:\Documents and Settings\twoputt

http://seamframework.org/Download/SeamDownloads
http://seamframework.org/Download/SeamDownloads
http://code.google.com/p/seaminaction
http://code.google.com/p/seaminaction
http://www. manning.com/SeaminAction
http://www. manning.com/SeaminAction

ABOUT THIS BOOKxxxii
The terminal output included in the listings has been generated on a Linux system,
but you can look beyond this detail because it makes no difference which operating
system you use for developing Seam applications.
STRUCTURING YOUR HOME

Table 2 lists several folders, along with their purpose, that I like to set up when doing
development. You’ll recognize these directories from the book’s source code.

Appendix A shows you how to install the software you need to use the examples in this
book and Seam, with references to this structure.

About the author

DAN ALLEN is an independent software consultant, author, and open source advocate.
After graduating from Cornell University with a degree in materials science and engi-
neering in 2000, Dan became captivated by the world of free and open source soft-
ware, which is how he got his start in software development. He soon discovered the
combination of Linux and the Java EE platform to be the ideal blend on which to
build his professional career. In his search for a robust web framework, Dan discov-
ered Seam, which was quickly granted this most coveted spot in his development tool-
box. Excited about Seam, Dan decided to share his thoughts with the world. This
project is a (rather extensive) continuation of his three-part series on Seam published
by IBM developerWorks. Dan continues to write articles on Seam and related technol-
ogies. Dan is a member of the Seam project, an active participant in the Seam commu-
nity, and a Java blogger. You can keep up with Dan’s development experiences by
subscribing to his blog at http://mojavelinux.com.

Author Online

Purchase of Seam in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to http://www.manning.com/SeaminAction. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue among individual readers and between readers and the authors can take place.

Folders in the development area

Folder What it contains

databases File-based databases and database schemas

lib JAR files not included with Seam, such as the H2 driver

opt Java applications, such as JBoss AS and Seam

projects Development projects

http://mojavelinux.com
http://www.manning.com/SeaminAction

ABOUT THIS BOOK xxxiii
It is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the AO remains voluntary (and unpaid). We suggest you try ask-
ing the author some challenging questions, lest his interest stray! Since authors are busy
people, like most people in the technology field, there is a chance your question will not
be answered as quickly as you would like. In that case, you are encouraged to try your
question on the Seam community website, http://seamframework.org, where you will
find a much larger pool of people reading and answering Seam-related posts.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://seamframework.org

about the cover illustration
The figure on the cover of Seam in Action is captioned “La Béarnaise,” or a woman
from the former Béarne province, a mountainous region in southwest France. The
illustration is taken from the 1805 edition of Sylvain Maréchal’s four-volume compen-
dium of regional dress customs. Each illustration is finely drawn and colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally
apart the world’s towns and regions were just 200 years ago. Isolated from each other,
people spoke different dialects and languages. In the streets or the countryside, they
were easy to place—sometimes with an error of no more than a dozen miles—just by
their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxxiv

Part 1

Teeing off with Seam

Many excellent frameworks exist to support the development of web-
based Java applications. Chapter 1 presents Seam and explains how it manages to
stand above this crowd by incorporating all of your existing Java Enterprise
experience into an innovative and modernized rendition of the Java EE platform.
You learn how Seam uncovers the platform’s tremendous capabilities, buried
underneath layers of complexity for more than a decade, through the use of
annotations, interceptors, and configuration by exception. EJB 3 components,
Groovy scripts, and anything in between can participate in this lightweight, POJO-
based programming model. After this introduction, you are taken through a
Seam example, emphasizing how Seam removes infrastructure code and allows
components to focus on pure business logic. The chapter also highlights ways in
which Seam improves the development process, getting you to your target sooner.

 In today’s fast-paced world, we often have to show results before completely
understanding what we are doing. To help you get started, chapter 2 highlights
Seam’s project generator tool and shows you how to use it to create a functional,
database-oriented application without any coding involved. You are given a
glimpse of a Seam project’s structure and get a chance to feel out the develop-
ment cycle by making a few customizations. While you won’t have a lot of oppor-
tunity to write code in part 1, it will build up enough anticipation to prepare you
to take on the commitment of learning a new framework. The best part is, you
will have plenty of time to do so since your boss will be drooling over the applica-
tion you create in the second chapter. That same application also serves as a
working model for you as you explore Seam.

Seam unifies Java EE
Is JSF worth a second look? Is EJB really fixed? Is it worth sticking with Java rather
than jumping ship for Ruby on Rails?

 With the release of Seam 2.0, you can now confidently answer yes to all of these
questions. Seam is a progressive application framework for the Java Platform, Enter-
prise Edition (Java EE) that makes writing web-based applications simple by finally
delivering on the promise of a unified component architecture. Seam builds on the
innovative changes in Java EE 5 brought about primarily by the Enterprise JavaBeans
(EJB) 3 specification. These changes include favoring annotations over container
interfaces and relying on configuration by exception rather than verbose and labo-
rious XML descriptors. Seam tears down Java EE’s remaining heavyweight legacy by
spreading EJB 3’s pivotal changes across the platform. Seam also extends the plat-
form as designed by weaving additional functionality into the JavaServer Faces (JSF)
life cycle and taps into the unified Expression Language (EL) to allow a wide range
of technologies to communicate. With Seam, the pain typically associated with using

This chapter covers
■ Lightweight Enterprise Java
■ Seam as an application stack
■ Simplified configuration using annotations
■ Tools that enable agile development
3

4 CHAPTER 1 Seam unifies Java EE
Java EE has vanished and JSF, in particular, appears completely revamped and worthy
of attention.

 In this chapter, you discover why Seam is the most exciting technology in Java right
now and the reasons why you should make Seam your framework of choice. I demon-
strate how Seam solves your current problems with the Java EE platform by blending
innovation with existing standards. In a world inundated with frameworks, Seam is the
unframework. It does not prescribe a new programming model that you must adopt.
Seam simply pulls together the standard Java EE APIs, most notably EJB 3, JSF, Java Per-
sistence API (JPA)/Hibernate, and Java Authentication and Authorization Service
(JAAS), and makes them more accessible, functional, and attractive. Seam finishes off
these improvements with modern upgrades such as conversations, page flows, busi-
ness processes, rule-based security, JavaScript (Ajax) remoting, PDF rendering, email
composition, charting, file uploads, and Groovy integration. Like a classic car, Seam
sports the muscle of Java EE under the hood, but on the surface it appears stunning
and elegant.

 Putting Seam’s strengths aside, the fact remains that you can choose among many
qualified frameworks. In the next section, I provide you with advice that can hopefully
put an end to your search and move you toward developing your application. Despite
the fact that no one can tell you what framework is right for you, you’re probably
going to ask anyway, right? Don’t worry—I came prepared.

1.1 Which framework should I use?
In a world full of framework
options, how do you choose one?
There are so many frameworks
available for the Java platform,
some proven, some promising,
that the decision is downright
agonizing! Does figure 1.1 speak
to you?

 The choice is so bewildering
that the framework inquiry is
now the dominant greeting
exchanged between developers
at conferences. While the ques-
tion “What do you do?” may
have traditionally served in the role of sizing up a person’s abilities, these days you are
judged based on the merit of what framework you use for software development (or
the advice that you can give pertaining to that choice). Just when you’ve made a deci-
sion, a new framework arrives on the scene promising to bury its predecessors.

 These choices can be harmful, especially to productivity. Barry Schwartz argues in
The Paradox of Choice (Ecco, 2003) that having a bewildering array of options floods

Figure 1.1 The great
framework decision

5Choosing Seam
our already exhausted brains. The result is that your ability to write a quality applica-
tion stalls. You keep believing that the best framework is the one you haven’t tried yet.
As a consequence, you spend more time researching frameworks than you do design-
ing functional applications. The search consumes you. You develop a false sense of how
busy you are.

 If any of these choices were truly satisfying, then you probably would not be read-
ing this book. You would already have a set of tools that you know, beyond all doubt,
allows you to be highly productive. But you don’t, do you? You’re still searching for a
framework that is new, yet familiar. Lightweight, yet powerful. You are in need of a
platform that integrates the vast landscape of Java technologies into a unified stack.
Seam might be just the framework you are looking for.

1.2 Choosing Seam
You might be tempted to think that Seam is just another web framework, competing
in an already flooded market. In truth, to tag Seam as a web framework is quite unfit-
ting. Seam is far broader than a traditional web framework, such as Struts, and is bet-
ter described as an application stack.

1.2.1 A complete application stack

Let’s consider the distinction between an application stack and a web framework. Web
frameworks are analogous to the guests who show up just in time for dinner and then
leave immediately after eating. They entertain and soak up the limelight, but they are
mostly unhelpful. They go out the same way they arrived: with lots of flair. An applica-
tion stack, in contrast, is like the people who help to plan the dinner party, shop for the
groceries, cook, set up, serve, make the coffee,
and then ultimately clean up when it is all over.
They are steadfast and resourceful. Sadly, their
work goes mostly unrecognized.

 In a world where everyone wants to be a rock
star (i.e., web framework), Seam is your practical
sidekick, your sous-chef. The Seam application
stack includes the framework, the libraries, the
build script and project generator, the IDE inte-
gration, a base test class, the Embedded JBoss
container, and integrations with many technol-
ogies. Seam is certainly a hard worker. Figure 1.2
gives a sample cross section of the technologies
that Seam is capable of pulling together in a typ-
ical application.

 While this stack gives you an idea of the tech-
nologies used in a Seam application, it does not
give you a clear picture of Seam’s purpose and

Facelets / RichFaces

JavaServer Faces

Seam

JPA

EJB 3 Session Bean

JCA JTA

Seam Container

Application Server

Figure 1.2 A cross section of the tech-
nologies incorporated in the Seam stack

6 CHAPTER 1 Seam unifies Java EE
why it exists. To understand why Seam was created, you have to recognize the challenge
that it faced. Although the Java EE 5 release took a gigantic step toward establishing an
agile platform for enterprise Java development, it left behind a rather significant gap
between the component-based web tier managed by JSF and the component-based
business-tier managed by EJB 3. A bridge was needed.

1.2.2 Why Seam was created

The Java EE 5 specification incorporates two key component architectures (specifica-
tions for creating reusable objects) for creating web-based business applications: Java-
Server Faces (JSF) 1.2 and Enterprise JavaBeans (EJB) 3. JSF is the standard
presentation framework for the web tier that provides both a user interface (UI) com-
ponent model and a server-side event model. EJB 3 is the standard programming
model for creating secure and scalable business components that access transactional
resources. EJB 3 also encompasses the Java Persistence API (JPA), which defines a stan-
dard persistence model for translating data between a relational database and Java
entity classes.

 Aside from their residence in the Java EE 5 specification, the two architectures just
mentioned share little resemblance, their backs facing each other like two sides of a
coin. This communication barrier casts a shadow on the tremendous potential of each
technology. While it’s true that developers are able to get these two Java EE tiers to
work together, it requires a lot of “glue” code. Seam absorbs that responsibility and fits
JSF and EJB 3 together, thus ironing out one of the roughest spots in the Java EE 5
specification and completing the missing link in the evolution of the Java EE platform.
As such, Seam has positioned itself as the prototype for future Java EE specifications.
So far, three Java Specification Requests (JSRs) have been accepted: JSR 299 (Web
Beans), JSR 314 (JavaServer Faces 2.0), and JSR 303 (Bean Validation). Seam isn’t mar-
ried to JSF or EJB 3, as figure 1.2 suggests. You can swap in alternative view technolo-
gies such as Wicket, Tapestry, GWT, and Flex in place of JSF, though understandably
with less accord. In the business tier, Seam supports the use of JavaBeans as transac-
tional components and also boasts integration with the Spring container, both of
which are arguably better choices than EJB 3.

 With that said, becoming an important part of Java EE’s future and an integration
point for many open source technologies is not what sparked Seam. That’s just what
Seam has managed to accomplish. As with most software projects, Seam was started to
scratch a single developer’s itch.
THE REAL STORY

As the story (really) goes, Gavin King was fed up with developers using Hibernate
improperly by trapping it inside of the stateless design proliferated by the Spring
Framework. Recognizing that the missing integration between JSF and EJB 3 would
only lead to further abuse of Hibernate as a JPA provider, he decided to step up and
build a foundation that would allow the persistence context (Hibernate Session or
JPA EntityManager) to transcend layers and would permit stateful session beans to

7Choosing Seam
respond directly to JSF UI components. To support this vision, Seam encourages the
adoption of a stateful, yet efficient, architecture. As a result, applications built on
Seam have effortless continuity from one user interaction (or event) to the next, a fea-
ture that is labeled a web conversation. The keen focus on variable scoping is what
makes Seam contextual.

 The name Seam was chosen for the project because it provides a foundation that
brings JSF and EJB 3 together and teaches them to play nicely together in the same
sandbox. In the process of solving the mismatch between JSF and EJB 3, the Seam
architects broadened the solution to include any Plain Old Java Object (POJO) acting
as a business component, not just the EJB 3 variety. Seam’s universal component
model brings the implicit and declarative services provided by the EJB 3 program-
ming model, such as transactions, interceptors, threading, and security, to non-EJB
components such as JavaBeans and Spring beans. For non-EJB components, Seam
takes on the role of processing the Java EE 5 annotations—or synonyms of these
annotations from the Seam API—and weaves in the managed services. What this
means is that you do not have to rely on an EJB 3 container to leverage the benefits
that EJB 3 provides. You may even want to reconsider the use of EJB 3 unless you have
a specific need for it, choosing to go with JavaBeans instead. Regardless of your
choice, you aren’t required to deploy a Seam application to the JBoss Application
Server, despite what you may have heard.

1.2.3 Debunking the “vendor lock-in” myth

I don’t want to be shy about addressing the myth that Seam is a JBoss-focused technol-
ogy or that by using Seam, you get locked into JBoss. The Seam development team
isn’t hesitant about making recommendations against the JBoss party line. The Seam
application stack is an aggregation of best-of-breed technologies known to work well
together. Seam is no more a JBoss technology than Struts is an Apache technology or
Spring is a SpringSource technology. An examination of the most successful complex
projects in enterprise Java outside of JBoss, such as Spring, Hibernate, Eclipse, and the
Java EE platform itself, reveals that these projects are supported by organizations with
paid developers. Seam is open source and can be whatever you, the community,1 drive
it to be. Although the projects may be hosted in the JBoss Labs under the roof of
JBoss/Red Hat, the source code is yours to copy, share, and modify. Specifically, JBoss
Seam is licensed under the Lesser GNU Public License (LGPL), which is considered
one of the more flexible options.

 Seam was designed to be container agnostic and much effort has gone into ensuring
that Seam is compatible with all major application servers, including BEA WebLogic,
IBM WebSphere, Oracle Containers for Java EE (OC4J), Apache Tomcat, and GlassFish.
But the compatibility runs deeper than deployment. The improvements that Seam has
introduced into Java EE are being contributed back into the platform as standards using
the Java Community Process (JCP) as a vehicle and captured in JSR 299: Web Beans, as

1 http://www.seamframework.org is the main community site for Seam.

http://www.seamframework.org

8 CHAPTER 1 Seam unifies Java EE
mentioned earlier. The goal of this JSR is to unify the JSF managed bean component
model with the EJB component model, resulting in a significantly simplified program-
ming model for web-based application development. The effect of this JSR is that it will
foster alternative implementations of Seam’s innovations.

 With an understanding of why Seam exists, and faith that you are not getting
locked into JBoss by choosing this technology, you now need to consider whether
Seam is the right framework for you based on technical merit. After all, Seam may
have saved Java EE, but can it fit the bill as your development framework of choice?

1.2.4 Making the case for Seam

Is there really a need for another application framework? Wasn’t Spring supposed
to be the one framework to rule them all? I’ll let the success of Ruby on Rails, and
the wave of Java developers flocking to it, prove that the need for a suitable Java
application framework—or, in some developers’ minds, an entire programming
environment—remains. So, should you follow the crowd? My advice is to look before
you leap.

 Promising that a framework will make the job of developing applications simpler is
lip service. Just because you are able to create a throwaway blog application with a
framework doesn’t make it viable. To earn the right to be called enterprise software,
the framework has to stand up to the challenges of the real world, warts and all, and
help the developer create well-designed, robust, and readable code. That is Seam’s
goal. Seam eliminates complexity and makes proven libraries more accessible. Seam
doesn’t turn its back on the pervasive Java EE platform, but rather serves as the glue
that makes it truly integrated. Rather than encourage you to forget everything you
know, Seam finds a way to allow you to use the Java EE services in a more agile way,
while also providing enough new toys, in the form of extensions and third-party inte-
grations, to make using it fun and interesting.

 Here is a small sampling of the many improvements that Seam brings to the Java
EE platform, all of which succeed in making the platform simpler:

■ Eliminates the shortcomings in JSF that have been the subject of countless rants
■ Mends the communication between JSF and transactional business components
■ Collapses unnecessary layers and cuts out passive middle-man components
■ Offers a solution for contextual state management, discouraging the use of the

stateless architecture (i.e., procedural business logic)
■ Manages the persistence context (Hibernate Session or JPA EntityManager) to

avoid lazy initialization exceptions in the view and subsequent requests
■ Provides a means for extending the persistence context for the duration of a

use case
■ Connects views together with stateful page flows
■ Brings business processes to the web application world

9Seam’s approach to unification
■ Plugs in a POJO-based authentication and authorization mechanism backed by
JAAS that is enforced at the JSF view ID level, accessible via the EL, and can be
extended using declarative rules and ACLs

■ Provides an embedded container for testing in non-Java EE environments
■ Delivers more than 30 reference examples with the distribution

As you can see, Seam isn’t shy about addressing problems in the platform, particu-
larly those with JSF. For existing JSF developers, the first bullet point is enough to jus-
tify the need for this framework. They can attest to that fact that JSF can be quite
painful at times. That is no longer true with Seam’s aid. The second point justifies
Seam’s usefulness in standards-based environments, where Seam fits in quite natu-
rally. But Seam doesn’t stop there. It encourages developers to collapse unnecessary
layers to achieve simpler architectures and promotes the use of long-running con-
texts to relieve the burden of state management. Aside from improving the program-
ming model, Seam provides a tool that prepares the scaffolding of a Seam-based
project; generates a create, read, update, delete (CRUD) application from an exist-
ing database schema; makes integration testing easy; and serves up Ajax in a variety
of ways.

1.3 Seam’s approach to unification
Seam revitalizes the standard Java EE platform by putting an end to its divergence and
unifying its components, filling in the voids for which it is often criticized, making it
more accessible, extending its reach to third-party frameworks and libraries, and
form-fitting them all together as a well-integrated and consistent stack. While the fea-
tures of Seam are vast, Seam’s core mission is getting JSF, JPA, and POJO components
to work together so that the developer’s focus can be placed on building the applica-
tion, not on integrating unallied technologies.

1.3.1 Seam integrates JSF, JPA, and POJO components

Getting technologies to work with one another is more than just having them pass
messages back and forth. It’s about creating an interaction that blurs the boundary
between them, making them act as a single, unified technology. Seam achieves this
integration by fitting EJB 3 up against the web tier, finding a place for JPA, and scrap-
ping the ineffectual JSF managed bean container. After reviewing how Seam tackles
these challenges, you get a chance to determine which Seam stack is right for you.
HELPING OUT A WEB-CHALLENGED EJB 3

By design, EJB components cannot be bound directly to a JSF view. It’s great that EJB
components are scalable, transactional, thread-safe, and secure, but it doesn’t do much
good if they are completely isolated from the web tier, accessible only through a JSF
backing bean acting as an intermediary. This isolation makes them of limited use in web
applications because of the complexity involved to integrate them. They are not able to
access data stored in any of the web-tier scopes (request, session, and application) or
the JSF component tree, thus impairing their insight into essential parts of the applica-

10 CHAPTER 1 Seam unifies Java EE
tion. (The goal here is really just to give EJB 3 components access to Seam’s stateful
scopes.) Also, it’s easy to get into trouble with concurrency when using EJB components
from the web tier. For instance, the Java EE container is not required to serialize access
to the same stateful session bean, leaving it up to the developer to take care of this
task or catch the exception that can result. Also, complexities arise when dealing with
non-thread-safe resources such as the JPA EntityManager. The only way the developer
can safely use EJB components in the web tier is by interfacing with an adapter layer.

 Seam gives EJB 3 components access to web-tier scopes, offers a way to manage the
state of EJB 3 components so that they can be used safely in the web tier, and even seri-
alizes access to stateful components to make concurrency issues a responsibility of the
infrastructure and not the developer. Also, there is never a question about accessing
non-thread-safe resources since Seam handles the scoping properly.

 Turning the tables, JSF faces equivalent challenges accessing business-tier
components.
HOOKING JSF TO A BETTER BACK END

JSF has its own “managed” bean container that is configured using a verbose XML
descriptor, as opposed to the annotation-based configuration in EJB 3, and has a lim-
ited dependency injection facility. While JSF managed beans can be stored in the web-
tier contexts, they are barren objects, lacking scalability, transaction atomicity, and
security (probably why they are termed beans and not components). They must reach
out to an EJB 3 component to attain these business services. What you find is that
you’re stuck creating this façade layer to bridge EJB 3 components to the UI that acts
on them.

 To correct this mismatch, Seam enables JSF UI components to tap right into the
EJB layer by allowing EJB 3 components to stand in as JSF “backing” beans and action
listeners. There’s no longer a need for the managed bean façade layer and its verbose
XML descriptor. By eliminating the complexity caused by the mismatch, it encourages
developers to relax stringent mandates on overarchitected designs.
WHICH SEAM ARE YOU?

Seam is not just a collection of classes and artifacts that get dropped on your desk with
the disclaimer “Some assembly required.” The key to Seam’s success is that it offers a
handful of well-tested bundles that operate fluently. These bundles include compati-
ble versions of many third-party libraries. You can liken the offering to the simplicity
of buying a Mac when compared to buying a Dell. When you buy a Dell, you can cus-
tomize the assembly down to the last stick of RAM. You get a product customized
exactly to your needs, but getting there requires a lot of thought and effort on your
part. Buying a Mac is much simpler in comparison. You choose between a laptop and
a notebook, and then you select a screen size. Everything else is just details that Apple
works out for you. Seam has a comparable set of options. You choose a state provider
and a persistence provider (and, down the road, a web framework). Everything else is
just details that the Seam developers work out for you. By removing the burden of too
many choices, Seam can make life for the developer simpler.

11Seam’s approach to unification
The two main technology choices in a Seam application, summarized in figure 1.3, are
the state provider and the persistence provider. The state provider is the technology
that handles the application logic and responds to events in the UI. The persistence
provider transports data to and from persistence storage. Seam manages the persis-
tence provider to allow for the persistence context to be extended across a series of
pages and shared among multiple components.

 As mentioned earlier, Seam does not require you to use EJB 3. You have the option
of using basic JavaBeans along with Hibernate without fear that you are losing out on
functionality. The term JavaBean broadly encompasses all non-EJB components, so
Spring beans apply here as well. Another popular choice is to partially adopt EJB 3 by
combining JPA with JavaBeans, which is the bundle used by the example application in
this book.

 Prior to Seam, getting these technologies to work together meant integrating the
containers that manage them. EJB 3 has its container. JSF has one too. Spring is yet
another. Once again, the task of writing this glue code fell on the shoulders of the
developer. The need for a central integration point gave rise to Seam’s contextual
component model.

1.3.2 The contextual component model

At the heart of Seam is the contextual component model. Before your eyes gloss over,
give me three short sentences to make this term meaningful to you. (1) Seam is a fac-
tory that constructs objects according to component definitions. (2) After creation,
each object is stored in the container under one of several contexts (i.e., variable
scopes) with varying lifetimes, making the objects contextual and capable of holding
state (i.e., stateful). (3) Seam promotes the interaction of these stateful objects across
contexts, assembling them together according to metadata associated with their
respective classes. Chapter 4 explores components and contexts in depth and gives
you an opportunity to learn how they are used in an application.

Seam Core

HibernateJavaBean

EJB 3 JPA

State Persistence

Figure 1.3 Seam’s stack
matrix, with options for a
state and persistence provider

12 CHAPTER 1 Seam unifies Java EE
 In this section, you learn how this model provides the basis for the unification of
the technologies previously discussed. The unification is facilitated by a combination
of the component registry, annotations, configuration by exception, method intercep-
tors, and the unified Expression Language (EL).
A CENTRAL COMPONENT REGISTRY

Seam rakes in all of the Java EE components into a central registry, whether they are
EJB session beans, JavaBeans, Spring beans, or JPA entities. Any technology incorpo-
rated into the Seam stack can look to the Seam container to retrieve instances of the
components by name and collaborate with the container to exchange state. Technolo-
gies that have access to the container include Seam components, JSF view templates,
Java Business Process Management (jBPM) process definitions, Java Process Definition
Language (jPDL) page flow definitions, Drools rules, Spring beans, JavaScript, and
more. Seam’s container also unifies the variable scopes of the Servlet API while intro-
ducing two of its own stateful scopes, conversation and business process, that are bet-
ter suited to support user interactions.

 Of course, components aren’t just going to fall into this registry; they have to be
recruited. Seam scours the classpath and enlists any class that contains a marker anno-
tation, discussed next, that identifies it as a Seam component.
ANNOTATIONS OVER XML

One way that Seam cuts down on the configura-
tion overhead of Java EE is by eliminating need-
less XML. Although once thought to be desirable
because of is flexibility, XML is external configu-
ration and quickly becomes out of sync (and out
of touch) with the application logic. Seam brings
configuration back in line with the code where it
is easier to locate and can be refactored.

 When the temptation arises to define JSF man-
aged beans in XML, Seam just says “No!,” a tenet
that is captured in figure 1.4. Seam reduces the
declaration of a component to a single annota-
tion, @Name, placed above the class definition.
Seam components can take the place of JSF man-
aged beans.

 With enough dedication, you can avoid the use of XML in Seam altogether, which
is quite surprising given the number of places it could be warranted. Seam only resorts
to XML when annotations do not suffice or to isolate deployment overrides. If you are
not a fan of annotations, don’t go running for the door just yet. Seam still allows you
to define components using XML, which is the main topic of chapter 5. Annotations
are just more concise and easier to maintain, in my opinion.

 Moving to annotations is more than just improving the efficiency of keystrokes.
Annotations are the central piece of Seam’s configuration by exception strategy, con-
serving keystrokes until they are really necessary.

<managed-bean>
<managed-bean-name>

NumberBean
</managed-bean-name>
<managed-bean-class>

guess.NumberBean
</managed-bean-class>

</managed-bean>

n-na
ean

d-be
ged-b

ess N
mana

mana

Figure 1.4 Seam cuts down on super-
fluous XML configuration that’s difficult
to keep in sync with the source code.

13Seam’s approach to unification
CONFIGURATION BY EXCEPTION

A good way to describe configuration by exception is by saying that the software is
“opinionated.” The general idea is that the framework happily prefers to operate as
designed. The more you embrace the defaults, the less work you have to do. You are
only required to step in and play a part when the software needs to do something dif-
ferent than the typical behavior.

 In Seam, configuration by exception goes hand in hand with annotations. The
annotations give Seam a hint to apply behavior and Seam tries to assume as much as
possible about the declaration by relying on sensible defaults and standard naming
conventions to keep your load light. In this way, Seam offers a nice balance between
explicit declarations and assumed functionality.

 While annotations cut down on keystrokes, there’s more to annotations than just
the elimination of XML. Annotations supply extra metadata to the class definition,
where it is easier to find and refactor than metadata stored in external descriptors.
DECORATING COMPONENTS WITH SERVICES

Since components are requested through the Seam container, Seam has an opportu-
nity to manage the instances throughout their life cycle. Seam wires the object with
interceptors, wrapping it in a shell known as an object proxy, before handing down
the newly created instance. This allows Seam to act as the object’s puppeteer, pulling
on its strings during each method call to add behavior, as depicted in figure 1.5. Inter-
ceptors account for much of the implicit logic in Seam that makes it “just work.”
Examples include beginning and committing transactions, enforcing security, and
getting objects to socialize with one another. Annotations on the class definition give
the interceptors a hint of how to apply the extra functionality, if for some reason it
can’t be implied or needs to be different than the default behavior.

The final piece to the unification puzzle is to give the application a way to access
components in the container using a universal syntax. That’s the role of the uni-
fied EL.
EXTENDING THE REACH OF THE UNIFIED EL

The unified EL is an expressive syntax used to resolve variables and bind components
to properties and methods on JavaBeans. It was first introduced to better integrate JSF
with JavaServer Pages (JSP), to look up managed beans and other objects stored in

Caller

Se
cu

rit
y

In
te

rc
ep

to
r

Proxy Object

Tr
an

sa
ct

io
n

In
te

rc
ep

to
r

Target Object

Component Instance

Figure 1.5 Interceptors trap method calls and perform cross-cutting logic around a method invocation.

14 CHAPTER 1 Seam unifies Java EE
web-tier scopes, and to serve as the basis for the JSF binding mechanism. Its impact,
however, is far more widespread, thanks to its pluggable design.

 The EL is an open API that allows custom resolvers to be registered, thus turning
the EL into a variable hub. Consequently, any layer of the code that wants to tap into
the EL unified variable context can do so using the public API. Thus, the EL frees you
from having to develop a custom bridge between the variable contexts used by the dif-
ferent technologies in your application. Although you’re used to seeing the EL only in
the view, there isn’t anything web specific about it.

 Seam takes advantage of the EL in two ways. First, it registers a custom EL resolver
that is aware of the Seam container. This allows Seam components to be accessed
using EL notation from anywhere in the application where the EL is available (which is
pretty much everywhere). Second, Seam makes heavy use of the EL under the covers,
allowing EL notation to be used in annotations, configuration descriptors, log and
message strings, Java Persistence Query Language (JPQL) queries, page flow defini-
tions, and even business processes. With Seam, the EL truly is unified.

 Despite all that has been said about Seam, nothing speaks to a programmer like
lines of code. To help demonstrate why Seam is a sound choice and how it saves you
valuable development time, I am going to whet your appetite with a brief example. In
chapter 2, you’ll get a chance to sink your teeth into Seam by building an entire
application with just a couple of commands.

1.4 Your first swings with Seam
To demonstrate some of the core principles of Seam, I’m going to step you through a
basic application that manages a collection of golf tips. Don’t worry about trying to
understand everything that you see here. Instead, focus on how Seam relies on anno-
tations to define components, how the layers of the application are pulled together
through the unified component model, and the high signal-to-noise ratio in the busi-
ness logic thanks to configuration by exception. I demonstrate a densely packed set of
features in this example, so don’t think that you have to use all of these techniques in
order to use Seam.

 We all want to be better golfers (at least, those of us who torture ourselves with
the sport). Focusing on a simple golf tip can help shave off a couple of strokes from
your round. To keep track of the tips that you collect from the pros, buddies, and
articles, you’re going to slap together a Seam application that reads and writes these
tips to a database. Aside from the deployment artifacts, which aren’t considered in
this example, there are only a handful of files that you need to produce a func-
tional application.

1.4.1 Entity classes serving as backing beans

I’ll start by discussing the GolfTip JPA entity class, shown in listing 1.1. In a Seam appli-
cation, entity classes serve two purposes. Their primary role is to carry data to and from
the database. The object-relational mapping (ORM) mechanism, as this is called, is not
part of Seam per se. That work is handled either by JPA (the standard Java persistence

15Your first swings with Seam
framework) or Hibernate, though you discover in chapter 8 how Seam can bootstrap the
ORM runtime and regulate the lifetime of the ORM’s persistence manager.

 The second role of entity classes in a Seam application is to serve as form “backing”
beans (akin to a Struts ActionForm) to capture input from the user, thus replacing the
need for a shallow “backing” bean class. An entity class becomes a candidate for use in
a JSF view if it has a @Name annotation on its class definition, a condition that is satis-
fied by the GolfTip class in listing 1.1. You then bind the form inputs directly to prop-
erties on the entity class and JSF handles the necessary conversions and validations.

@Entity
@Name("tip")
public class GolfTip implements Serializable {
 @Id @GeneratedValue
 protected Long id;

 protected String author;

 protected String category;

 protected String content;

 // getters/setters for author, category and content not shown
}

The keywords prefixed with the @ symbol are Java 5 annotations. The @Name annota-
tion B, shown in bold, is a Seam annotation that registers the GolfTip class as a Seam
component named tip. Whenever the context variable tip is requested from the
Seam container, Seam creates a new instance of the GolfTip class, binds the instance
to the tip context variable in the conversation context (the default scope for entity
classes), and returns the instance to the requester.

 The remaining annotations in this class pertain to JPA. The @Entity annotation C
associates the GolfTip class with a database table by the same name. The @Id annota-
tion D indicates to JPA which property is to be used as the primary key. The @Gener-
atedValue annotation D enables automatic surrogate key generation in the database.
All of the other properties on the class (author, category, and content) are automat-
ically mapped to columns with the same name as the respective property in the Golf-
Tip table, following configuration by exception semantics.

 As you can see, using the @Name annotation gives you one less file to worry about
(that of the JSF managed bean facility and its verbose XML dialect). Staying away
from the managed bean configuration is one of the early benefits of moving to Seam
components. Another compelling advantage of adopting Seam is being able to bind
the action of the UI command component to a method on a transactional busi-
ness object.

1.4.2 An all-in-one component

As with entity classes, there’s no need to create a dedicated managed bean to act as a
mediator between the JSF page and the service object in Seam. Instead, the service

Listing 1.1 The JPA entity class that represents a golf tip

C
B

D

16 CHAPTER 1 Seam unifies Java EE
object can respond directly to an action invoked in the UI. At first, that might sound
like a bad idea because it appears to cause tight coupling between the UI and
the application logic. Seam prevents this coupling by acting as the mediator. As a
result, the action component does not have to contain a single reference to a JSF
resource. In fact, in chapter 3 you discover that the return value of the method need
not serve as a logical outcome for a navigation rule—a typical requirement of JSF
managed beans—since Seam can evaluate an arbitrary EL value expression for this
purpose. This example relaxes the separation from JSF to keep the number of classes
to a minimum.

 In the golf tips application, the TipAction class, shown in listing 1.2, is declared
as a Seam component using the @Name annotation and is thus capable of having its
methods bound to UI controls. It handles the add and delete operations in the golf
tips interface.

@Name("tipAction")
public class TipAction {
 @In
 private EntityManager entityManager;

 @In
 private FacesMessages facesMessages;

 @DataModel(scope = ScopeType.PAGE)
 private List<GolfTip> tips;

 @DataModelSelection
 @Out(required = false)
 private GolfTip activeTip;

 @Factory("tips")
 public void retrieveAllTips() {
 tips = entityManager.createQuery("select t from GolfTip t")
 .getResultList();
 }

 public void add(GolfTip tip) {
 entityManager.persist(tip);
 activeTip = tip;
 facesMessages.add(
 "Thanks for the tip, #{activeTip.author}!");
 retrieveAllTips();
 }

 public void delete() {
 activeTip = entityManager.find(
 GolfTip.class, activeTip.getId());
 entityManager.remove(activeTip);
 facesMessages.add("The tip contributed by " +
 "#{activeTip.author} has been deleted.");
 retrieveAllTips();
 }
}

Listing 1.2 The action listener for the JSF view

B

C

D
E

F

17Your first swings with Seam
Like the GolfTip entity class, the @Name annotation B marks the TipAction class as a
Seam component, this time scoped to the event context (the default scope for Java-
Bean components). What sets this component apart from the GolfTip entity class is
that it is capable of having other components “wired” into it because the @In annota-
tion is placed above certain fields of the class C, a mechanism known as bijection. In
this example, the two dependent components are the JPA EntityManager and Seam’s
built-in JSF messages manager. This component also prepares a collection of GolfTip
objects for use in the JSF view D; captures the GolfTip that the user selects from that
collection, making it available to both the method handling the event and the subse-
quent view E; and interpolates the active GolfTip in the JSF status messages F.

 The TipAction component packs a lot of functionality in a limited amount of
space. What I want you to recognize is that, aside from the annotations, there’s practi-
cally no evidence of infrastructure code in this class. Apart from creating the status
messages, the only code that you’re required to write is code that reads, persists, and
removes tips from the database using the JPA EntityManager instance. It’s probably
best to push this code into a data access object (DAO), which may also be a Seam com-
ponent, but Seam doesn’t impose this architectural requirement on you. Seam’s focus
is on frugality, as demonstrated in this example. Absent are any Servlet API calls that
read request parameter values or set request or session attributes. Instead, the compo-
nent consists solely of business logic.

1.4.3 Binding components to the view

Seam bridges the layers in the golf tips application by binding both the properties of
the entity class and the methods of the action component to elements in the JSF view.
Figure 1.6 shows the golf tips user interface. Behind this rendered page is a Facelets

Figure 1.6 The golf tips
page, which renders the
collection of tips at the top
and a form for contributing a
new tip at the bottom

18 CHAPTER 1 Seam unifies Java EE
template, golftips.xhtml, which associates value- and method-binding expressions to
elements on this page to output data, capture form input, and respond to user
actions. Use this figure to follow along with the discussion of how the JSF view interacts
with the Seam components in the server.

NOTE The file extension .xhtml indicates that this file is a Facelets template.
Facelets is an alternative view handler for JSF that was created to escape
the mismatch between the JSF and JSP life cycles. Facelets is the preferred
view technology for Seam applications and is used throughout the book.

Start by focusing your attention on the form that is used to submit a new tip at the bottom
of the page. Each input element is bound to properties on the GolfTip entity class using
EL notation (e.g., #{tip.author}). When used in the value attribute of an input ele-
ment, the EL notation acts as a value-binding expression. It captures the form value and
transfers it to an instance of the GolfTip entity class as part of the JSF life cycle. Here’s
the (slightly trimmed-down) fragment of the JSF template that renders the form:

<h:form>
 <h3>Do you have golf wisdom to add?</h3>
 <div class="field">
 <h:outputLabel for="author">Author:</h:outputLabel>
 <h:inputText value="#{tip.author}"/>
 </div>
 <div class="field">
 <h:outputLabel for="category">Category:</h:outputLabel>
 <h:selectOneMenu value="#{tip.category}">
 <f:selectItem itemValue="The Swing"/>
 <f:selectItem itemValue="Putting"/>
 <f:selectItem itemValue="Attitude"/>
 </h:selectOneMenu>
 </div>
 <div class="field">
 <h:outputLabel for="content">Advice:</h:outputLabel>
 <h:inputTextarea value="#{tip.content}"/>
 </div>
 <div class="actions">
 <h:commandButton action="#{tipAction.add(tip)}"
 value="Submit Tip"/>
 </div>
</h:form>

Seam makes the association between the value-binding expressions used by the input
fields and the GolfTip entity class through the context variable tip. The @Name anno-
tation on the GolfTip class binds the class to the tip context variable. When the tip con-
text variable is referenced by a value expression in the JSF template (#{tip.*}), Seam
instantiates the GolfTip class and stores the instance in the Seam container under the
variable name tip. All the value expressions that reference the tip context variable are
bound to that same instance of the GolfTip class. When the form is submitted, the input
values are transferred to the properties of the unsaved entity instance.

 Let’s consider what happens when the form is submitted. With Seam working in
conjunction with JSF, any interaction with the Servlet API is abstracted away. Instead,

19Your first swings with Seam
you work through declarative bindings. The method-binding expression specified in
the action attribute of the submit button, #{tipAction.add(tip)}, indicates that the
TipAction component serves as the action component for this form and that when
the button is activated, the add() method is invoked. Notice that this method expres-
sion actually passes the GolfTip instance associated with the tip context variable
directly into the action method as its sole argument, which effectively makes the form
data available to the method. Seam provides parameterized method-binding expres-
sions as an enhancement to JSF. When the method completes, the list of tips is
refreshed and the page is once again rendered.

1.4.4 Retrieving data on demand

What makes Seam so powerful is that it includes a mechanism for initializing a vari-
able on demand. The top half of the screen in figure 1.6 renders the collection of tips
in the database using the following markup:

<rich:dataGrid var="_tip" value="#{tips}" columns="1">
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="#{_tip.author} on #{_tip.category}"/>
 </f:facet>
 <h:outputText value="#{_tip.content}"/>
 <h:commandLink action="#{tipAction.delete}">
 <h:graphicImage value="/images/delete.png" style="border: 0;"/>
 </h:commandLink>
 </rich:panel>
</rich:dataGrid>

The focal point of this markup is the #{tips} value expression. Notice that tips is not
the name of one of the Seam components in the golf tips application. However, it is
referenced in the value attribute of the @Factory annotation above the
retrieveAllTips() method of the TipAction class from listing 1.2. The purpose of
this method is to initialize the value of the tips context variable when it’s requested.
Subsequent requests for the same variable return the previously retrieved value rather
than triggering the method to execute again.

 But hold on a minute! The retrieveAllTips() method doesn’t return a value.
How is the value passed back to the view renderer? That’s where things get a little
tricky. After executing this method, Seam exports properties of the component that
are annotated with either @Out or @DataModel to the view. Seam notices that the
@DataModel annotation is assigned to the tips property on the TipAction compo-
nent. That tells Seam not only to export its value to the tips context variable, but also
to wrap the value in a JSF DataModel instance. The view iterates over this wrapped col-
lection to render the data grid. The reason the collection is wrapped in a DataModel is
to enable clickable lists to support the delete functionality.

1.4.5 Clickable lists

The scope specified on the annotation is ScopeType.PAGE, which instructs Seam to
store the collection of tips in the JSF component tree. Since the data model is being

20 CHAPTER 1 Seam unifies Java EE
stored in the JSF component tree, it is made available to any JSF action that is invoked
from that page (resulting in a “postback”).

 The #{tipAction.delete} method expression, bound to the delete link adjacent
to each golf tip, benefits from the propagation of the tips data model through the
JSF component tree. When the user clicks one of the delete buttons, the data model is
restored along with the JSF component tree. When JSF processes the event, the inter-
nal pointer of the data model is positioned to the index of the activated row. This is
where the complement to the @DataModel annotation, the @DataModelSelection
annotation, is used. This annotation reads the current row data (the instance of
GolfTip) from the data model and injects it into the property over which the annota-
tion resides. All the action method has to do is pass the instance of the selected
GolfTip to the JPA EntityManager to have it removed from the underlying database.
Once again, the action component remains void of infrastructure code. Compare that
to the JSF blueprints.2

 All that’s left is to write a quick end-to-end test to ensure that we can save a new tip
and that it can be subsequently retrieved.

1.4.6 Integration tests designed for JSF

The area of development that has routinely slowed down Java EE developers most
often is testing. Even if you’ve never written a test, you’re still testing. You test your
code every time you redeploy your application or restart the application server to view
the result of your latest modifications. It’s just slow and boring to do it that way. These
days, testing is an integral part of any application development, and no framework is
complete without an environment that allows you to test “outside of the container.”
Seam once again demonstrates its simplicity by exposing a single test class that can
handle all of the integration testing needs in a Seam-powered application.

 To make integration testing of JSF actions a breeze, Seam provides a base test class
that sets up a stand-alone Java EE environment and executes the JSF life cycle within
the test cases. The test infrastructure is driven by TestNG,3 a modern unit-testing
framework that can be configured using annotations. Although TestNG doesn’t
require you to inherit from a base test class, Seam’s testing framework uses this
approach to set up the fixture needed to bootstrap the embedded Java EE environ-
ment and the JSF context.

 The test class GolfTipsTest in listing 1.3 simulates the initial request for the golf
tips page and the subsequent form submission to add a new tip. The code in the test is
invoked nearly identical to when it’s used in the deployed application.

public class GolfTipsTest extends SeamTest {

 @Test
 public void testAddTip() throws Exception {

2 https://bpcatalog.dev.java.net/nonav/webtier/index.html
3 http://www.testng.org

Listing 1.3 An end-to-end test of the golf tips application using the Seam test framework

Designates a
TestNG test method

https://bpcatalog.dev.java.net/nonav/webtier/index.html
http://www.testng.org

21Your first swings with Seam
 new NonFacesRequest("/golftips.xhtml") {
 protected void renderResponse() throws Exception {
 assert (Boolean) getValue("#{tips.rowCount eq 0}");
 }
 }.run();

 new FacesRequest("/golftips.xhtml") {
 protected void updateModelValues() throws Exception {
 setValue("#{tip.author}", "Ben Hogan");
 setValue("#{tip.category}", "The Swing");
 setValue("#{tip.content}",
 "Good golf begins with a good grip.");
 }

 protected void invokeApplication() throws Exception {
 invokeMethod("#{tipAction.add(tip)}");
 }

 protected void renderResponse() throws Exception {
 assert (Boolean) getValue("#{tips.rowCount eq==1}");
 List<FacesMessage> messages =
 FacesMessages.instance().getCurrentMessages();
 assert messages.size() == 1;
 assert messages.get(0).getSummary()
 .equals("Thanks for the tip, Ben Hogan!");
 }
 }.run();
 }
}

Listing 1.3 tests both the initial rendering of the JSF view and the subsequent JSF
action triggered from the rendered page. The first request is an HTTP GET request,
which simulates the user requesting the golf tips page in the browser. This part of the
test verifies that when the tips are retrieved in the Render Response phase, Seam prop-
erly resolves a DataModel, but the collection underlying that model is empty. The sec-
ond part of the test simulates the user submitting the form to create a new tip. The
Update Model Values phase performs the work JSF does to bind the input values to the
value expressions. The method expression that is bound to the submit button is then
explicitly invoked. Because Seam automatically wraps the Invoke Application phase in a
transaction, there is no need to worry about beginning and committing the transac-
tion. Finally, in the Render Response phase, the test verifies that when the tips are
retrieved this time, exactly one tip is found and that the author’s name has been inter-
polated properly in the message displayed to the user. This test is intentionally terse.
There are, of course, many other scenarios that could be verified. Focus instead on
how easy it is to exercise a Seam application using this simple test framework and how
you can leverage EL notation to perform assertions.

 Hopefully the golf tips application has given you a general understanding of how
Seam simplifies your application and saves you time by relying on a centralized con-
tainer, annotations, configuration by exception, and the unified EL. That’s the
essence of Seam. I now want to give you an idea of what else Seam offers before you
begin your journey down the road to becoming a Seam master.

Asserts number
of matched tips

Emulates
user filling
out form

Emulates user clicking
submit button

Asserts
number of
matched
tips

22 CHAPTER 1 Seam unifies Java EE
1.5 Seam’s core competencies
Throughout this chapter, there has been a lot of discussion about how Seam resolves
issues in Java EE. I want to leave you with an understanding of how Seam is going
to help your development process. Given how much Seam has to offer, this was a
challenging exercise, but I’ve been able to summarize its benefits into three core
competencies. Seam offers a better JSF, allows you to get rich quick, and fosters an
agile environment.

1.5.1 Turns JSF into a pro

Although JSF isn’t without flaws, it was selected as the main presentation framework in
Seam because of its extensible request life cycle and strong UI component model.
Realizing its potential, Seam taps into this design to strengthen JSF, making it a com-
pelling and modern technology for creating web-based interfaces. While it’s true that
Seam supports alternative view technologies, this book primarily focuses on using
Seam with JSF. Much of this coverage comes in chapter 3, which covers Seam’s exten-
sion to the JSF life cycle.
ENHANCING JSF

Seam’s most recognizable improvement to JSF is eliminating the requirement to
declare managed beans in the JSF descriptor. In addition, Seam adds a rich set of
page-oriented functionality, covered in chapter 3, that makes the navigation rules in
the JSF descriptor obsolete as well. These features include

■ Prerender page actions
■ Managed request parameters (for a given page)
■ Intelligent stateless and stateful navigation
■ Transparent JSF data model and data model selection handling
■ Fine-grained exception handling
■ Page-level security (per view ID)
■ Annotation-based form validation
■ Bookmarkable command links (solving the “everything is a POST” problem)
■ Entity converter for pick lists
■ Conversation controls
■ Support for preventing lazy initialization exceptions and nontransactional data

access in the view

Part of the cleaning-out process of JSF involves purging passive connector beans that
do nothing more than adapt UI events to back-end business components.
ELIMINATING CONNECTOR BEANS

Any Seam component can be connected to a JSF view using EL bindings. Figure 1.7
shows the design of an interaction between a UI form and an EJB 3.0 session bean (or
regular JavaBean) that completely eliminates the need for the legacy connector bean.
The form inputs are bound directly to the entity class and the session bean is bound to
the Save button to handle the action of persisting the data.

23Seam’s core competencies
By cutting out the middleman, not only does Seam allow you to eliminate a class that
you have to write and maintain, but it allows you to cut back on the number of layers,
thus allowing your applications to become more lightweight.

 Aside from providing universal access to components, the Seam container aug-
ments the coarsely grained scopes in the Java servlet specification—request, session,
and application—to include scopes that make more sense from the perspective of the
application user. Seam offers two “stateful” contexts that are used to support single
and multiuser pages flows in an application.
INTRODUCING STATEFUL VARIABLE SCOPES

One of the main challenges with developing applications that are delivered over the
web is learning how to efficiently propagate data from one page to the next—so-called
state management. The two go-to options are hidden form fields or the HTTP session.
The first is cumbersome for the developer, and the second eventually eats through
precious server resources and hurts an application’s ability to scale.

 Seam addresses need for stateful variable scopes whose lifetime aligns with user
interactions by adding the conversation context and business process context to the
standard web scopes. The conversation scope, covered in chapter 7, maintains data
for a single user across a well-defined series of pages while the business process scope,
covered in chapter 14 (online), is used to manage data that supports multiuser flows
complete with wait states. The relationship between the lifetime of the scopes man-
aged by the Seam container is illustrated in figure 1.8.

Database

Name

County

State

Designer

Add Course

course

CourseAction

saveCourse()

name
county
state
designer

CourseFormBean

saveCourse()

JSF backing bean

Entity class

EJB session bean, JavaBean or Spring bean

Save

name
county
state
designer

Course

Figure 1.7 Seam cuts out the middleman by eliminating the need for a JSF backing bean. Instead, the
entity class and the EJB 3.0 session bean work together to capture data from the UI and handle the
event to persist the data.

24 CHAPTER 1 Seam unifies Java EE
The conversation context is tremendously important in Seam not only because it is so
unique and gives the user a better experience, but because it makes working with an
ORM tool easy on the developer.
EXTENDING THE PERSISTENCE CONTEXT

When you talk to the database using ORM, you use a persistence manager (i.e., JPA
EntityManager or Hibernate Session). Each instance of a persistence manager main-
tains an internal persistence context, which is an in-memory cache of entity instances
that have been unmarshaled from the database. Given that databases are among the
most expensive and heavily used resources in your server room, you want to leverage
this in-memory cache as much as possible to avoid redundant queries. Extending the
persistence context across the entire request is a step in the right direction (the so-
called Open Session in View Pattern), but having it extend across multiple page
requests is even better. Prior to Seam, there was just no good place to stick it, and as a
result, each request reset the persistence context to a blank slate.

 Seam takes control of the persistence manager and stores it in the conversation
context. As a result, Seam is able to carry it, along with its persistence context, across
the duration of an entire use case, potentially spanning more than one request, as
shown in figure 1.9. Extending the persistence context across the three operations in
this feature allows the entity instance to remain managed by the persistence context

Page
Conversation

Session
Business Process

Application

Server Restart

Event (Request)

Figure 1.8 The lifetimes of the six scopes in a Seam application. The standard scopes are represented
by dashed lines. The scopes that Seam contributes appear as solid lines. The business process scope is
persisted to a database and can thus outlive the application scope across server restarts.

Extended
Persistence

Context

Retrieve course Edit course in browser Save course

Save

Old Works

Public

Jack Nicklaus

Name

Type

Designer

Edit course

Extended
Persistence

Context

Figure 1.9 Using the extended persistence context to keep an object in scope for an entire use case,
even across multiple page views. The extended persistence context avoids the need to merge detached
entity instances.

25Seam’s core competencies
and monitored for changes that need to be written to the database. This ensures
object identity and can guarantee atomicity of the operation.

 With Seam in control of the persistence manager, lazy initialization exceptions
(LIEs) are also a thing of the past since the persistence manager remains open through-
out the use case and can thus load additional records as needed. The conversation and
persistence context fit together so naturally that the conversation has been dubbed
Seam’s unit of work. You learn all about the interaction between the two in part 3.

1.5.2 Gets you rich quick

Seam gives you tools to build rich, Web 2.0 applications or to gently weave this rich-
ness into an existing page-oriented application. Lately, the term “rich” has become
synonymous with a desktop-like experience in the web browser driven by Ajax. There
are two approaches you can take to incorporate Ajax into a Seam application. You can
use Ajax-enabled JSF components, such as RichFaces or ICEfaces, or you can invoke
server-side components directly from the browser using JavaScript remoting. Seam
extends the meaning of rich to incorporate media such as PDFs, charts, and graphics.
TAPPING INTO THE JSF ECOSYSTEM

Web user interfaces are getting more and more sophisticated, and it is unreasonable
to think that you can code the XHTML and JavaScript from scratch and get the job
done cheaply. You need to build on what others have done. That is one of the primary
goals of JSF and why Seam went with JSF as the primary UI framework.

 JSF is all about putting widgets on the screen. It decouples the design of a UI com-
ponent from its use. Similar to widgets in Swing, JSF components are general solutions
to common controls. This time, the vendors really did come through. There are loads
of component libraries for JSF that range from basic data tables, to tree structures, to
drag-and-drop targets.

 Historically one of the most entangled parts of an enterprise application is the UI
(let’s share hideous JSP files). By moving to JSF, the UI becomes a much simpler place.
You don’t even need a WYSIWYG IDE because visualizing what these components ren-
der is quite reasonable. They are human-friendly, rather than tool-friendly. With JSF,
the UI finally has an API too.

 While JSF has its place, if you are looking for a lighter way to communicate with the
server, Seam’s JavaScript remoting library is a great alternative.
JAVASCRIPT REMOTING

Invoking server-side components from JavaScript in Seam couldn’t be easier, as chap-
ter 12 proves. You simply add the @WebRemote annotation to the Seam component
method that you want to call from JavaScript, import the JavaScript remoting library
into the web page, and then invoke the component method using a JavaScript client
stub of the component. Seam handles the rest. The punchline of this feature is that it
opens the door to creating single-page applications with Seam.

 Although Ajax gets most of the attention these days when web applications are dis-
cussed, there are other ways to make your application rich. These fall under the head-
ing of rich media.

26 CHAPTER 1 Seam unifies Java EE
CREATING RICH MEDIA

Seam is adept at generating a variety of rich media, which you learn to incorporate
into your application in chapter 13. Seam uses the Facelets view library to support
alternate output based on XHTML templates, including PDF documents, RTF docu-
ments, charts, and multipart emails with attachments that include the previous items.
With the addition of two JSF component tags, Seam can accept file uploads without
any custom, low-level coding and can render dynamic graphics. All of these tasks are
typically passed off by web frameworks to third-party libraries. While it’s true that
Seam leverages functionality provided by libraries such as iText and JFreeChart, the
delegation is abstracted away. You are provided with a consistent approach, based on
Facelets composition templates, that allows these features to be a native part of your
Seam application.

1.5.3 Fosters an agile environment

In addition to being a framework, Seam provides a collection of tools that help you set
up a project, generate code, and develop in an incremental manner.
PROJECT GENERATOR

One of the main highlights of Seam is its project generator, seam-gen. This tool serves
two main functions. It sets up the structure of a Seam-based project, complete with a
build script, environment profiles, a compatible set of libraries, and the configura-
tions required to start developing your application. It’s the best way to get started with
Seam if you are new to the framework. The seam-gen tool can also create an applica-
tion prototype by reverse-engineering a database schema and generating all of the
necessary artifacts to create, read, update, and delete (CRUD) data in that database. In
chapter 2, you learn all about seam-gen and use it to create a complete golf course
directory web application.
HOT DEPLOYMENT

Seam makes preparations to enable “instant change” in the development cycle, which
you learn to take advantage of in chapter 2. Seam’s strategy is to initialize a hot deploy
classloader capable of detecting and dynamically reloading changed Java class files,
just as if they were JSP pages.4 The project build script compiles any source files that
have changed and ships them off to a special path in the server’s hot deployment
directory, where Seam picks them up and incorporates them into its runtime. Because
the modified files remain isolated, they do not cause the application server to restart
nor do they cause the application to reload. That means you can make a change to a
Java file and have it take effect in the application immediately. This feature applies to
Seam page descriptors and uncompiled Groovy scripts as well. You can finally match
the change-view-change-view cycle that was previously only available with scripting lan-
guages such as PHP and Ruby!

4 Java EE containers support dynamic reloading of JSP pages when they're moved into the deployment direc-
tory for the application or web module.

27Summary
SEAM DEBUG PAGE

While developing your application, bad stuff happens. As a result, you get exceptions.
Rather than always having to race to the log file to find the cause, Seam gives you a head
start. When you run Seam in debug mode, any exception that occurs will be caught and
summarized on a special debug page, accessible at the servlet path /debug.seam. In
addition to the exception, this page gives you a snapshot of the JSF component tree and
any Seam component instances that are present at the time of the exception.

 You don’t have to wait for an exception to occur to use this page. When the debug
page is accessed directly, it renders a list of all conversations and sessions that are cur-
rently active. From there, you can drill down on any of the active contexts to inspect
the component instances that are stored in them.
TESTING WITHOUT DEPLOYING

The primary reason developers grew wary of the standard Java EE platform was
because of its inability to operate in isolation. Testing an application meant packaging
it up and shipping it off to a Java EE–compliant application server, a costly process.

 To work around this problem, developers adopted the POJO programming model,
which encourages you to design code in such a way that it can be tested in isolation
from the container and its services. While POJOs are definitely a good thing and
encourage proper unit testing, there is no replacement for integrating your compo-
nents in a real environment to ensure that they work together. Previously, that meant
deploying to the application server once again. Seam has a better solution.

 To support integration test environments (and also deployment to non-Java EE
containers, such as Tomcat), Seam ships with the Embedded JBoss container. This por-
table container bootstraps a Java EE environment to support services such as JNDI, JTA,
JCA, and JMS in a stand-alone environment. With these services up and running, you
can test your application in place without having to deploy to a container. Seam sup-
ports this testing scenario by bootstrapping the Embedded JBoss container as part of
its single class integration test framework, demonstrated back in section 1.4.6. This
test infrastructure should prevent you from having to deploy over and over again to
verify that your action components talk properly to your persistence layer and so on.

 Between the incremental hot deployment support and the in-place testing infra-
structure, your valuable time should rarely be wasted when working on a Seam appli-
cation. If it’s your business logic that is hanging you up, unfortunately there is not
much Seam can do to help you there. That’s all you.

1.6 Summary
The enthusiasm for Ruby on Rails was a real wake-up call for the Java EE platform. It
enlightened developers to the fact that sacrifice is not a prerequisite for creating a suc-
cessful application. Developers no longer wanted to tolerate the burden of “XML sit-
ups”5 and overengineered flexibility. In response, the Seam developers assembled an

5 A term coined by the Ruby on Rails camp that equates XML authoring to strenuous exercise

28 CHAPTER 1 Seam unifies Java EE
agile platform, comprised of best-of-breed Java EE technologies, that takes a bold
stance against the formalities of the Java EE specifications, cutting back the XML
descriptor overgrowth, accentuating the platform’s recent adoption of annotations
and configuration by exception, and embracing the expressive syntax embodied by
the EL, Facelets, and Groovy. With Seam, creating applications in Java becomes excit-
ing again, whether you are a front-end designer, back-end developer, or jack-of-all-
trades. Best of all, you can be confident that applications built with Seam are scalable
because the Java EE platform has proven itself in this regard, giving you productivity
without sacrificing performance.

 First and foremost, Seam makes the task of defining and accessing stateful busi-
ness-logic components simple, regardless of whether they are EJB or non-EJB compo-
nents. A basic @Name annotation atop a class gains it admission into Seam’s contextual
container. The container wraps these components in method interceptors, enabling
enterprise services, such as transactions, security, and component assembly, to be
declared with equivalent ease by applying an annotation at the class, method, or field
level. Seam grants the technologies that it integrates access to the components in this
container, primarily through the use of the unified EL. This arrangement facilitates
the use of JPA entity classes as “backing” beans in a JSF form, EJB session beans or
transactional JavaBeans as action listeners on a JSF UI component, and variables to be
resolved on demand using Seam’s factory or manager mechanism.

 An important aspect of Seam’s container is its state management capabilities. It con-
solidates the variable scopes in JSF with two of its own business-oriented scopes. Seam
understands variable scoping and helps components from different scopes to work with
one another without violating thread safety. Of particular note, Seam can extend the
lifetime of the persistence manager across multiple page requests to reduce load on the
database and eliminate complexities of using ORM in web applications.

 If you picked up this book because you believe that there is a better framework
choice out there for you (and you are not yet using Seam), my promise to you is that
Seam is worth checking out and that the time you spend reading this book will be
worthwhile. But merely knowing what framework someone recommends is not
enough to decide to use it. You have to know why a person prefers a particular frame-
work.6 In this book, I share with you my extensive knowledge of Seam and explain to
you why I find it to be a compelling technology choice. As you read along, I encourage
you to develop your own reason for choosing Seam.

 The key to agile development with Seam begins with the project generator, seam-
gen. In the next chapter, I show you how to use this tool to develop an entire applica-
tion from scratch, how to get the application set up in your IDE, and how to take
advantage of incremental hot deployment. While you must turn over some control
when you opt to go with seam-gen, you’ll quickly find that you don’t miss the work.

6 Scott Davis' talk, given during the No Fluff, Just Stuff 2007 tour, entitled "No, I Won’t Tell You Which Frame-
work to Use: or The Truth (With Jokes)" inspired this perspective.

Putting seam-gen to work
Learning a new framework can be challenging, risky, and time consuming. You
must leave the comfort of your current tool set and venture into unknown territory.
To justify your research, you seek out early victories in the form of trivial “Hello
World” examples. After completing one, you celebrate your accomplishment.
Sadly, few others will be so impressed.

 Thanks to seam-gen, Seam’s rapid development tool, you can skip the putt-putt
course and come out swinging on your first day with Seam. seam-gen creates for
you a functional, database-oriented application that is ready for show and tell with-
out requiring you to write a single line of code. The seam-gen tool first gathers
information about your application, such as the project name and database con-
nection properties. It then uses that information to put in place the scaffolding of a
Seam-based project. Finally, you point seam-gen at your database, which it reverse-
engineers to create artifacts that serve dynamic web pages used to create, read,

This chapter covers
■ Setting up a project with seam-gen
■ Reverse engineering a database schema
■ Hot-deploying incremental changes
■ Choosing an IDE for development
29

30 CHAPTER 2 Putting seam-gen to work
update, and delete (CRUD) records in the database tables. The result? An achieve-
ment that’s sure to impress even the toughest crowd. How’s that for in Action?

 In this chapter, I demonstrate how seam-gen can get you set up quickly to start devel-
oping with the Seam framework. By the end of this chapter, you’ll have a working golf
course directory application that you can deploy to various JBoss Application Server
environments. A cookie-cutter process is going to fall short in some areas, so I also show
you ways to customize the application that seam-gen kicks out, a process that’s carried
forth throughout the book. What you’re left with is an achievement that is far more func-
tional and rewarding than what a typical “Hello World” has to offer. Don’t you know? For
judging the merit of a web-oriented framework, CRUD is the new “Hello World.”

2.1 The Open 18 prototype
In this book, you’ll be developing an application named Open 18, a community site
oriented towards golf. Golf is a tremendously rich domain model and offers a nice
opportunity to demonstrate Seam’s features. You’ll start by reverse engineering an
existing database schema to create a prototype of the application. I chose this scenario
because it demonstrates how you can use seam-gen to escape the dreaded unproduc-
tive phase when starting a new project. You may also find these techniques useful for
producing applications that don’t aspire to be more than a CRUD front end for a data-
base. The remainder of the book takes a primarily free-formed approach when incor-
porating additional functionality. Some of the enhancements you’ll see later in the
book include a data entry wizard, side-by-side course comparison, score tracker, favor-
ite courses, registration emails, and PDF scorecards.

 If you want to follow along with the development of the project as you read, you’ll
need Seam and its prerequisites extracted on your hard drive. You can find instruc-
tions on how to set up your software in appendix A. I encourage you to scan this sup-
plementary material before continuing so that you can take a hands-on approach to
this tutorial.

 Let’s start by taking a look at the initial requirements for our prototype application
and see how seam-gen can help us fulfill them.

2.1.1 Consider yourself tasked

It’s 1:30 PM on Wednesday, two days before your summer vacation. Your boss taps you
on the shoulder just as you finish reserving tee times for your annual golf getaway in
“Golf Heaven.” You can’t wait. You’ve practiced all summer at the driving range so you
can top last year’s scores. Actually, let’s be honest. You seasoned your swing so that you
can look like a pro in front of your fans (*cough* friends).

 You look up and realize that your boss is still standing there, waiting for you to
break out of your daze and return to the real world. He looks serious. Obviously, this
conversation is not going to be spent reminiscing about golf. With a sobering tone, he
informs you that he just ducked out of a management meeting in which he was
reminded of a web application that was supposed to have been completed months
ago. The anxiety begins to build in you.

31The Open 18 prototype
 The sales team is expecting to present an application that provides access to the
company’s extensive database of golf courses at the biggest trade show of the year,
which happens to be this coming weekend. Without this application, they won’t have
anything new to demonstrate. Showing up empty-handed would hurt the company
image and jeopardize its credibility. In truth, your manager should be sacked for let-
ting the situation get to this point. The sad reality is that it won’t happen. Besides,
turnover isn’t going to help you now. The deed has been done; the promise has been
made. Someone is going to have to reach into the hat and yank the rabbit out by the
scruff of its neck. That someone is you.

 If this were any other week, these antics would barely register on your annoyance
meter. But this week is different. The mercury is rising. If things don’t go well, it may put
your much anticipated vacation at risk. The thought of not standing on the first tee at
the break of dawn, in complete Zen with the dew-laden landscape all around you, is just
killing you. But you also get a kick out of being a hero, so you decide to crank out a pro-
totype by the end of the week and save the company before seeking your leisure.

 The question is, do you have something in your toolbox that can get you out of this
time crunch? A solution that you can live with when you return? You’ve read about
how quickly you can create a functional Java EE 5–based application using seam-gen,
so you decide to put it to the test. For that, you need requirements; they come from
your boss in an email:

You must build a web-based directory for the company’s extensive database of golf facilities
and courses. The application’s users should be able to browse, paginate, sort, and filter all
of the entities in the schema. By selecting one of the facilities, they should be presented with
its details, as well as a list of its courses. From there, they should be able to drill down again
to see the holes and tee sets for each course. An administrative user should be able to modify
the database records. The marketing department also has some verbiage that you need to
place on the home page.

There you have it: the only task standing between you and 18 holes of serenity. The first
step in building the prototype is getting your hands on the database. You and the data-
base administrator (DBA) need to sit down and have a chat to settle the age-old debate
between developers and DBAs for this application: Which comes first, the entity or the schema?

2.1.2 Mapping entities to the database schema

In this book, you’ll encounter two development scenarios used by the sample applica-
tion: bottom-up and top-down. The difference is a matter of which one comes first: the
database schema or the Java entity classes.

 If the database schema arrives into the world first, that is bottom-up development.
The schema dictates, to a large degree, how the Java entity classes are formed. On the
other hand, if the Java entity classes show up first, that is top-down development. The
classes have free rein over how the database schema is designed. Object-relational
mapping (ORM) tools, such as Hibernate, give you some wiggle room in how the Java
entity classes are mapped to the database. For instance, it’s possible to change the

32 CHAPTER 2 Putting seam-gen to work
name of a column mapped to a property of a Java entity class without having to alter
the property’s name. However, there are limits to how much the schema and the
entity classes can deviate. The one that shows up first is the master and the follower
must adapt. As a developer, you have to be familiar with how to work in both cases.

NOTE Technically speaking, there is a third scenario, meet-in-the-middle, where
you have existing Java entity classes and an existing database. In this case,
you’re at the mercy of the mapping tool’s capabilities. If you have
stretched it to its limit and still can’t cover the mismatch, you have to
refactor the Java class or the database table, bringing you back to bottom-
up or top-down semantics.

seam-gen has tasks that support both bottom-up and top-down development. In this
chapter, we take the bottom-up approach by using seam-gen to reverse-engineer the
database schema. In chapter 4, we reverse the process, taking the top-down approach
to extend the schema to include golfer profiles.
BOTTOMS UP!
You’ll be performing bottom-up development to create the golf course directory outlined
earlier. Using bottom-up development, as illustrated in figure 2.1, you will convert the five

FACILITY

 id
 name
 type
 ...

COURSE

 id
 name
 ...
 facility _ id

HOLE

 id
 number
 m _ par
 ...
 course _ id

TEE_SET

 id
 name
 color
 pos
 ...
 course _ id

TEE

 distance
 hole _ id
 tee _ set _ id

Facility

Course

TeeSetHole

Tee
Bo

tto
m

-u
p

En
tit

ie
s

D
at

ab
as

e

Figure 2.1 Reverse
engineering entity classes from an
existing database schema, termed
bottom-up development

33The Open 18 prototype
tables in the golf course directory schema (FACILITY, COURSE, HOLE, TEE_SET, and
TEE) into the five Java entity classes (Facility, Course, Hole, TeeSet, and Tee)1 that
map to them. Mapping tables to Java classes sounds like it requires a lot of effort. Don’t
worry; working with existing database tables is where seam-gen really shines. Before run-
ning seam-gen, though, you need to get your hands on the schema and put the database
in place.

 You bug the DBA (perhaps yourself in another role) to prepare you a Hypersonic 2
(H2) database loaded with the golf course directory schema and some sample data. H2
bootstraps from a directory on the file system and thus the entire H2 database can be
handed to you as a compressed archive. You’ll use H2 in embedded mode, which
allows the database to be started with the application, linked to the application’s run-
time. The embedded mode of H2 is ideal for rapid prototyping since it requires no
installation and you don’t need to run a separate server. Having one less server to
worry about is a good thing, especially for the sales team.

 Section A.3 of appendix A introduces the H2 database further and explains where
to find the database archive used for creating the prototype. Once you have the data-
base in place, you can use the H2 administration console to poke around in the
schema. This step isn’t required to generate a CRUD application with seam-gen, but
it’s important for understanding the application you’re building.
INSPECTING THE SCHEMA

You can connect to the provided database using the H2 administration console that’s
included with the H2 JDBC driver JAR. Start the admin console by executing the Console
class from the H2 JAR file:

java -cp /home/twoputt/lib/h2.jar org.h2.tools.Console

This command instructs you to visit the H2 console URL in your browser, http://
localhost:8082. That URL brings up the database connection screen in figure 2.2.
Enter the connection URL and credentials shown in this figure and click Connect.

1 An introduction to the game of golf and the roles these entities play in it can be found in the beginning of
this book.

Figure 2.2 The database
connection screen for the
H2 admin console

http://localhost:8082
http://localhost:8082

34 CHAPTER 2 Putting seam-gen to work
TIP The connection screen lets you save your connection profiles, useful
when you are managing multiple databases. To create a new profile,
replace the setting name “Generic H2” with a name for your connection
and click Save. The H2 administration console is capable of connecting
to any database with JDBC support. To use another database, you must
add the appropriate JDBC driver (JAR file) to the classpath argument of
the java command that starts the console. Refer to the H2 manual for
more information.

Once the connection is established, a schema browser/query console appears, as shown
in figure 2.3. This database console should explain why I chose to use the H2 database
for the example application: it packs a lot of functionality in a surprisingly small JAR file.

Now that you know the database is set up properly, it’s time to turn the job over to
seam-gen. Let’s discover why I recommend using seam-gen to get started.

2.2 Letting seam-gen do the initial work
seam-gen gives you the opportunity to learn how the Seam creators prefer to organize
a Seam-based project. It’s also a great way to become familiar with Seam’s moving
parts so that you know what you’re doing when you take Seam out on the course. If
you are a do-it-yourselfer, you may be uneasy about letting seam-gen do the work. I
recommend that you leave your reservations at the door, step out of your “working”
environment if necessary, and observe Seam in its “natural” environment at least once.
From the words of Seam’s founder, Gavin King:

Figure 2.3 The H2 administration console, showing the database schema on the left and a query
console on the right. The result set viewer can be used to modify records.

35Letting seam-gen do the initial work
There really are a LOT of advantages to starting with the seam-gen structure. I did a lot of
work on things that will take you a while to reproduce if you try to do it all from scratch
(like, weeks of work!). However, there’s nothing magical about it, and other structures can
work just as well.

 —Gavin King, JBoss Seam Forums2

I, too, was hesitant to use seam-gen at first. I viewed the tool as handholding for
a novice developer. After spending a lot of time using Seam (like, months of time!)
I have found seam-gen to be a huge timesaver; I strongly encourage you to give it
a try.

2.2.1 seam-gen’s specialty

seam-gen is an application factory, as depicted in figure 2.4. At the very basic level it
creates a skeleton project, allowing you to focus on application development with lit-
tle time spent doing setup. From there, it can take you all the way to a functional
application using its code-generation tasks. The code that it lays down can also serve
as a demonstration for how to use several of Seam’s features.

 I’ll admit that I haven’t been a huge fan of code generation in the past, mainly
because it leaves behind lots of code that’s scary to touch. With seam-gen, I have come
to realize that creating the initial ORM mappings and CRUD screens is something I’m
willing to delegate, precisely the tasks that seam-gen handles. I find that the code
seam-gen produces is quite workable and likely equivalent to what I’d have written as a
first cut anyway. Don’t assume, though, that seam-gen is for “green-field” projects only.
You can generate code in a sandbox project and then steal the code for use in other
applications. In that regard, think of seam-gen as a tool that you can call upon when
needed. If you don’t like the output that seam-gen produces, you can even tailor it by
modifying its templates.

2 The forum post can be found at http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4030018.

seam-gen

Figure 2.4 The seam-gen application generator examines an existing database and
creates a CRUD application to manage the entities stored in the database tables.

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4030018

36 CHAPTER 2 Putting seam-gen to work
TIP seam-gen produces Java classes and Facelets view templates from Free-
Marker templates, which can be found in the seam-gen folder of the
Seam distribution. If you plan to customize the generated application,
you may want to consider making changes to these templates. This
approach allows you to customize the code without losing the ability to
reverse-engineer.

seam-gen has also proved to be immensely helpful in figuring out how to define the JPA
mappings for an existing database schema. Setting up the associations between entities
can be an extremely tedious task. Just the other day I got stumped trying to remember
how to map a complex table relationship. Is it one-to-many or many-to-one? Do I need
a composite key? To avoid wasting time, I pointed seam-gen at my database and
inspected the result. seam-gen bailed me out and helped get me back on the right page.
If you’ve spent any length of time poring through the JPA or Hibernate reference doc-
umentation in search of a solution to these questions, seam-gen can help.

 That’s just the beginning of what a seam-gen project is capable of. Let’s look at
what other features it sets up for you.

2.2.2 Features that seam-gen provides

In addition to producing CRUD applications from an existing database schema, seam-
gen can work from an existing set of entity classes. In that case, the database schema can
be created retroactively by Hibernate when the application starts, thus making seam-
gen attractive even when an existing database hasn’t been dropped on your desk.

 seam-gen goes far beyond creating a CRUD prototype application. It sets up an
extensive set of configurations and resources that are important as you begin custom-
izing the application. Here’s a combined list of features, many of which are covered in
this chapter:

■ Incremental hot deployment of static resources, view templates, and page
descriptors

■ Incremental hot deployment (dynamic reloading) of JavaBean and Groovy
components (excludes entity classes and EJB components)

■ Ready-made project files for quick import into Eclipse, NetBeans, and IntelliJ
IDEA

■ Facelets view templates (a JSF-centric view technology; alternative to JSP)
■ RichFaces or ICEfaces UI components (panels, tables, and menus)
■ A custom stylesheet that reinforces the look and feel of the rich UI components
■ Bookmark-friendly search and pagination of records on the entity listing pages
■ RESTful entity detail screens; includes tabs showing the parent and child

entities
■ A lookup routine for establishing a link to a related entity in the entity editor
■ Entity model validations enforced in the UI with instant feedback using Ajax

(Ajax4jsf)

37Kick off your project with seam-gen
■ Basic page-level authorization that requires users to authenticate before per-
forming write operations (the default authentication is a stub that accepts any
credentials)

■ A component debug page, developer-friendly error page, and user-friendly
error page

■ JCA data source, JPA persistence unit, and JPA entity manager configured for tar-
get database (Hibernate 3.2 is the default JPA provider)

■ Seeding of database from the import.sql script on classpath (Hibernate
feature)

While seam-gen does crank out a working application, by no means is it going to put
you out of a job. Although the CRUD application it creates is very capable, which you’ll
see later, it’s no replacement for hand-crafted work. You have to take it for what it is: a
prototype. It lacks the business knowledge necessary to properly categorize the entities,
instead treating every entity with equal significance. This limitation is especially
noticeable if you have a large schema with lots of lookup tables. seam-gen also falls
short on rendering binary data properly in the user interface because there’s no way
for seam-gen to know if that data represents an image, a document, or an encrypted
stream of data. But these shortcomings just give you room to add your personal
touch—and give you a job.

 The point to take away from this section is that seam-gen eliminates all the tedious
work that you don’t want to do anyway. It sets you up with a foundation and turns the
project over to you, letting you rapidly develop and customize the application as you
see fit. Let’s now follow Gavin’s advice and use seam-gen as the starting point for the
example application. At last, we put seam-gen to the test.

2.3 Kick off your project with seam-gen
There are two versions of seam-gen, a command-line script and an IDE plugin. The
command-line version, which is a wrapper around Ant, has the advantage that both it
and the project it produces can be driven from the command line or from an IDE.
The prominent IDE version of seam-gen is an Eclipse plug-in that’s part of the JBoss-
Tools suite. The JBossTools project hosts a variety of standalone Eclipse plug-ins that
support Java EE development. These plug-ins get bundled with the JBoss Developer
Studio (JBDS),3 a set of Eclipse-based development tools preconfigured for the JBoss
Enterprise Middleware Platform and Red Hat Enterprise Linux. This section primarily
focuses on the command-line version of seam-gen, with a brief discussion of the
Eclipse plug-in. I don’t go into much detail about the IDE version since user interfaces
tend to fall out of date quickly. You can find references to tutorials for using the
Eclipse plug-in on the book’s online companion resources.

 I begin by giving you an overview of the seam-gen command-line script; then we
plunge into executing the seam-gen commands.

3 http://www.jboss.com/products/devstudio

http://www.jboss.com/products/devstudio

38 CHAPTER 2 Putting seam-gen to work
2.3.1 A look at the seam-gen commands

You should have already downloaded the Seam distribution. If you haven’t, please
refer to appendix A, section A.2. You should also have the example H2 database pre-
pared as described in section 2.1.2. Once you have all of the prerequisites, change
into the directory where you extracted Seam. In that directory you’ll find two scripts,
seam and seam.bat. The former is used on Linux/Unix platforms and the latter on
the Windows platform. To perform seam-gen operations, you type seam followed by
the name of a command from the root directory of the Seam distribution.4

 Let’s begin by asking the seam script what it can do. The script’s capabilities are
provided by the help command. In your console, type seam help and press the Enter
key. The output of this command gives a brief description of seam-gen and a long list
of all the commands it supports. That description is shown here:

seam (aka seam-gen) - Execute seam code generation.

The seam.bat (Windows) and seam (Linux/Unix) scripts support
commands that use Ant build targets to set up a Seam project and
generate source code. Ant is not required to be on your path to
use this script.

JBoss AS must be installed to deploy the project. If you use EJB3
components, the JBoss server must have EJB 3 capabilities.
(JBoss AS 4.2 is strongly recommended)

The list of commands that the help command spits out can be divided into two cate-
gories. The first set of commands, shown in table 2.1, are used to set up, manage, and
deploy a seam-gen project.

4 If you’re using a Unix platform (Linux, Unix, Mac OSX), you need to make sure the seam script is executable.
You also need to prefix the seam command with dot-slash (./). See appendix A for more details.

Table 2.1 The setup, create, and deployment commands that can be provided to the
 seam-gen script

Command Description

setup Generates the seam-gen/build.properties used to create projects. The key-
value pairs are taken from the responses to the questionnaire conducted by
this command. Information gathered includes the project directory, Java pack-
age names, database connection information, and the location of JBoss AS.
You can hand-edit seam-gen/build.properties after completing the
questionnaire.

create-project Creates a Seam project complete with a build script, library dependencies, and
basic Seam component configurations. Uses the values in seam-gen/build.
properties to customize the project.

update-project Updates the generated project with the latest library dependencies.

delete-project Undeploys and deletes the generated project.

39Kick off your project with seam-gen
The second set of commands, shown in table 2.2, is used for generating code for a
project that seam-gen is currently managing.

deploy Deploys the project archive (packaged Web Archive [WAR] or Enterprise Archive
[EAR]) and data source to JBoss AS.

undeploy Undeploys the project archive and data source.

explode Deploys the project archive (exploded Web Archive [WAR] or Enterprise Archive
[EAR]) and data source to JBoss AS. Also performs incremental hot deploy-
ment of web artifacts and Java classes (excludes EJB 3 components and JPA
entity classes).

restart Restarts the project previously deployed as an exploded archive. Does not
restart JBoss AS.

unexplode Undeploys the exploded archive and data source.

archive Creates a project archive (packaged Web Archive [WAR] or Enterprise Archive
[EAR]) and puts it in the dist folder at the root of the project.

clean Removes all compiled files and staging directories in the generated project.

test Runs the tests in the generated project.

settings Displays the current settings as defined in seam-gen/build.properties.

reset Removes the seam-gen/build.properties to start the process over from
scratch.

Table 2.2 Code-generation commands that can be provided to the seam-gen script

Command Description

new-action Creates a new Java interface and stateless session bean with key
Seam/EJB3 annotations. Also creates a test case and TestNG launch
configuration for simulating a JSF request/response.

new-form Create a new Java interface and stateful session bean with key Seam/
EJB3 annotations. Also creates a test case and TestNG launch configu-
ration for simulating a JSF request/response.

new-conversation Creates a new Java interface and stateful session bean with key Seam/
EJB3 annotations. Adds annotations and stub methods for @Begin
and @End.

new-entity Creates a new entity bean with key Seam/EJB3 annotations.

new-query Creates a new class that extends EntityQuery to manage a custom JPA
query and a view template to display the results of the query.

generate Generates JPA entity classes from an existing database schema and a
CRUD user interface to view and manage them.

Table 2.1 The setup, create, and deployment commands that can be provided to the
 seam-gen script (continued)

Command Description

40 CHAPTER 2 Putting seam-gen to work
Don’t worry right now about understanding each and every command. You’re going
to get an opportunity to study most of the commands individually throughout the
course of the book. These two tables should give you a feel for the capabilities of seam-
gen before we take it into battle.

TIP If you’re super shell savvy, you can source the bash completion script in
seam-gen/contrib/seam-completion to get tab completion for the seam-
gen commands in Unix.

Table 2.3 lists the steps that you will take to create the Open 18 prototype application.

Once you’ve completed the steps in table 2.3 and started JBoss AS, you’ll be ready to
show the Open 18 prototype to your boss. If he asks for changes, you won’t be at a loss
for words. Customizing a seam-gen application is very straightforward. Later in the
chapter you learn how to get your hands dirty with the application by checking out
the “instant change” development environment that seam-gen sets up and by deploy-
ing to multiple environments. Before you can do any of that, you have to inform seam-
gen about your project so that it knows what to create for you.

2.3.2 A Q&A session with seam-gen

Enough watercooler talk. Let’s get to work! You begin by running the seam setup com-
mand. When you run this command, it launches a series of questions that allow seam-
gen to gather the information it needs to create your project. Each line consists of
three parts: the question, the current value, and a list of valid responses (if applica-
ble). For each question, enter a response and press the Enter key to continue to the

generate-ui Generates a CRUD user interface to view and manage an existing set of
JPA entity classes.

generate-model Generates JPA entity classes from an existing database schema.

Table 2.3 The steps to create and deploy a prototype application

Command Purpose

1. seam setup Enters information about the Open 18 prototype and the H2
database

2. seam create-project Instructs seam-gen to create the open18 project

3. seam generate Reverse-engineers the Open 18 database to create a CRUD
application to manage the tables

4. seam explode Deploys the application to JBoss AS as an exploded Java EE
archive

Table 2.2 Code-generation commands that can be provided to the seam-gen script (continued)

Command Description

41Kick off your project with seam-gen
next question. To create a working application, this is the only real work that you have
to do: seam-gen takes over once it has the information it needs.

 Listing 2.1 shows the full seam-gen setup questionnaire along with the responses
used for creating the Open 18 prototype in the WAR archive format. Anytime you see
/home/twoputt in a response, replace it with your development folder (according to
the layout explained in the README.txt file of the book’s source code).

NOTE If you’re using a Windows OS, use the forward slash (/) when entering
file paths (e.g., C:/twoputt) in the seam-gen interview, particularly when
entering the path to the H2 database. The default file separator in Win-
dows is the backslash, which in Java is the escape character. For Java to
accept a literal backslash, you have to escape it with another backslash
(\\). You can avoid this whole issue by always using forward slashes in file
paths, regardless of the operating system. Java is smart enough to convert
the forward slash to the correct file separator for the host platform.

Let’s start the interview by typing the following:

seam setup

 [echo] Welcome to seam-gen :-)
 [input] Enter your Java project workspace (the directory that contains

 ➥your Seam projects) [C:/Projects] [C:/Projects]
/home/twoputt/projects
 [input] Enter your JBoss home directory [C:/Program Files/jboss-4.2.2.GA]

 ➥[C:/Program Files/jboss-4.2.2.GA]
/home/twoputt/opt/jboss-as-4.2.2.GA
 [input] Enter the project name [myproject] [myproject]
open18
 [echo] Accepted project name as: open18
 [input] Do you want to use ICEfaces instead of RichFaces [n] (y, [n])
n
 [input] Select a RichFaces skin [blueSky] ([blueSky],

 ➥classic, ruby, wine, deepMarine, emeraldTown, japanCherry, DEFAULT)
emeraldTown
 [input] Is this project deployed as an EAR (with EJB

 ➥components) or a WAR (with no EJB support) [ear] ([ear], war)
war
 [input] Enter the Java package name for your session

 ➥beans [com.mydomain.open18] [com.mydomain.open18]
org.open18.action
 [input] Enter the Java package name for your entity beans

 ➥[org.open18.action] [org.open18.action]
org.open18.model
 [input] Enter the Java package name for your test cases

 ➥[org.open18.action.test] [org.open18.action.test]
org.open18.test
 [input] What kind of database are you using? [hsql] ([hsql], mysql,

 ➥oracle, postgres, mssql, db2, sybase, enterprisedb, h2)

Listing 2.1 Responding to the seam-gen setup questionnaire

Applies only to
RichFaces

Selects
Java EE
archive
type

Sets
package
of hot
deployed
classes

42 CHAPTER 2 Putting seam-gen to work
h2
 [input] Enter the Hibernate dialect for your database

 ➥[org.hibernate.dialect.H2Dialect] [org.hibernate.dialect.H2Dialect]
Hit Enter key
 [input] Enter the filesystem path to the JDBC driver jar [lib/h2.jar]

 ➥[lib/h2.jar]
/home/twoputt/lib/h2.jar
 [input] Enter JDBC driver class for your database [org.h2.Driver]

 ➥[org.h2.Driver]
Hit Enter key
 [input] Enter the JDBC URL for your database [jdbc:h2:.] [jdbc:h2:.]
jdbc:h2:file:/home/twoputt/databases/open18-db/h2
 [input] Enter database username [sa] [sa]
open18
 [input] Enter database password [] []
tiger
 [input] Enter the database schema name (it's OK to leave it blank) [] []
PUBLIC
 [input] Enter the database catalog name (it's OK to leave it blank) [] []
H2
 [input] Are you working with tables that already exist in the database?

 ➥[n] (y, [n])
y
 [input] Do you want to drop and re-create the database tables and data in

 ➥import.sql each time you deploy? [n] (y, [n])
n
[propertyfile] Creating new property file:

 ➥/home/twoputt/opt/jboss-seam-2.0.3.GA/seam-gen/build.properties
 [echo] Installing JDBC driver jar to JBoss server
 [copy] Copying 1 file to

 ➥/home/twoputt/opt/jboss-as-4.2.2.GA/server/default/lib

 [echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

The goal of the seam setup command is to populate seam-gen/build.proper-
ties—overwriting it if it already exists—with the settings used to create the seam-gen
project, which is the next step. The build.properties file stores your responses in the
typical Java properties file format, using key-value pairs separated by an equals sign (=).
If you mess up any of the questions, don’t fret—you can always run through the setup
again. Seam will remember the responses from your previous run through, as long as
you ran it to completion. You accept your previous response for a question by pressing
Enter. If you’d rather not use the setup wizard, you can just edit the seam-gen/
build.properties file manually. The wizard just makes the task more user-friendly.

 The responses in listing 2.1 prepare seam-gen to create a WAR project. You choose
the WAR format if you plan on developing JavaBean components rather than EJB 3
components and you want to take advantage of incremental hot deployment. If you
want to create EJB 3 components, the EAR format is the required choice. You’ll learn
about both of these archive formats, as well as incremental hot deployment, later in
the chapter.

Specifies file
location of H2
databaseSupplies custom

H2 credentials

Keeps values out of
@Table annotation

43Kick off your project with seam-gen
In addition to creating and populating the seam-gen/build.properties file, the setup
command copies the JDBC driver to JBoss AS to allow the database connection to be
defined as a JCA data source. In our case, the H2 JDBC driver, h2.jar, is copied to
${jboss.home}/server/default/lib. The JCA data source is registered in the Java Nam-
ing and Directory Interface (JNDI) upon deployment of the project, where the JPA
persistence unit can access it. The configuration of the data source and the persis-
tence unit are tasks handled by the create-project command, covered next.

2.3.3 Creating a basic project structure

The setup command merely prepares seam-gen to create a project. To actually have
Seam transform its templates into a newly forged project, you must execute

seam create-project

When you execute this command, Seam will create a new project in your Java work-
space directory and populate it with everything you need to start developing a Seam-
based project, complete with an Ant-based build for compiling, testing, packaging,
and deploying the application. Listing 2.2 shows the output of the create-project
command. You’ll see a lot of other output fly by, which you can ignore.

create-project:
 [echo] A new Seam project named 'open18' was created in the

 ➥/home/twoputt/projects directory
 [echo] Type 'seam explode' and go to http://localhost:8080/open18
 [echo] Eclipse Users: Add the project into Eclipse using File >

 ➥New > Project and select General > Project (not Java Project)

Listing 2.2 Creating a new project with seam-gen

Choosing ICEfaces over RichFaces
ICEfaces and RichFaces are JSF component libraries for building rich, Web 2.0 user
interfaces based on Ajax. seam-gen is capable of generating projects that use either
ICEfaces or RichFaces, made possible by two equivalent sets of view templates that
are maintained under the seam-gen folder of the Seam distribution. seam-gen selects
the appropriate template folder based on your response in the setup questionnaire
and caters the application to that JSF component library.

If you choose ICEfaces, seam-gen automatically uses the bundled version, thus
requiring no setup on your part. If you’d like to have seam-gen use the version of your
choosing, you specify the root folder of the ICEfaces binary distribution when you’re
prompted for it in the seam-gen setup.

Because RichFaces is a JBoss project, you can understand why RichFaces is the
default choice in seam-gen, but the ICEfaces contributors ensure that the generated
application works equally well in ICEfaces. I encourage you to give both a try and
decide for yourself.

44 CHAPTER 2 Putting seam-gen to work
 [echo] NetBeans Users: Open the project in NetBeans

BUILD SUCCESSFUL

The project is now ready. As you can see in this output, seam-gen provides instructions
to keep you moving right along. It tells you to run create-project after running the
setup command and seam explode after running the create-project command. How-
ever, you’ll likely agree that setting up a project, particularly filling out the questionnaire
shown here, is best suited for a windowing environment. If you’re turned off by the com-
mand-line interface, I have good news for you. The JBossTools plug-in for Eclipse wraps
these steps into the Seam project creation wizard, which allows you to create a seam-gen
project just like you would any other Eclipse project. One of the screens from this wizard
is shown in figure 2.5. This wizard provides a much more interactive experience and lets
you leverage existing servers, runtimes,
and database connection profiles that
you have set up in Eclipse.

 A step-by-step tutorial of the JBoss-
Tools plug-in won’t be covered here. If
you’re interested in using it, you should
be able to apply the foundation knowl-
edge that you have learned in this chapter
to that wizard. Be aware that the project
the JBossTools wizard creates is not
exactly the same as a project created by
the command-line script. It’s designed to
be used with an IDE (i.e., Eclipse) and
only an IDE—meaning it doesn’t have a
universal build script. My preference is to
stick with the the command-line script
(herein referred to as seam-gen) because
it allows me to use the generated project
from the command line or in the IDE of
my choice (any IDE that can drive an
Ant build). This flexibility is demon-
strated repeatedly throughout the rest of
this chapter.

2.3.4 Generating the CRUD

You now have a basic project scaffolding that’s ready to deployed. But let’s keep the code
generation going by doing some reverse engineering first. That is the function that the
seam generate command5 performs. This command generates JPA entity classes from

5 Prior to Seam 2.0.1.GA, this command was named generate-entities. Both names are supported as
of 2.0.1.GA.

Figure 2.5 The Seam project creation wizard that
is included with the JBossTools Eclipse plug-in.
This wizard performs the same work as the seam-
gen command-line tool but offers a more
interactive experience.

45Kick off your project with seam-gen
an existing database schema and a CRUD user interface to manage these entities ren-
dered from Facelets view templates and supported by JavaBean action classes.

NOTE By supplying values for the schema and catalog in seam setup, we ensure
that the @Table annotation placed on each JPA entity class remains agnostic
to these data-specific settings. The schema and the catalog are more likely
to change than the table and column names, so it’s best not to tie your
entity classes to these values. If necessary, the default schema and catalog
can be set in the Hibernate or JPA configuration using the properties
hibernate.default_schema and hibernate.default_catalog.

Next, kick off the reverse engineering:

seam generate

The output for the generate command is quite extensive as Hibernate feels the need
to keep us informed of its reverse-engineering progress every step of the way. A trun-
cated version of that output is shown in listing 2.3.

...
generate-model:

 [echo] Reverse engineering database using JDBC driver

 ➥/home/twoputt/lib/h2.jar
 [echo] project=/home/twoputt/projects/open18
 [echo] model=org.open18.model
[hibernate] Executing Hibernate Tool with a JDBC Configuration (for reverse

 ➥engineering)
[hibernate] 1. task: hbm2java (Generates a set of .java files)
...
[hibernate] INFO: Hibernate Tools 3.2.0.CR1
[javaformatter] Java formatting of 8 files completed. Skipped 0 files(s).

generate-ui:
 [echo] Building project 'open18' to generate views and controllers

...
[hibernate] Executing Hibernate Tool with a JPA Configuration
[hibernate] 1. task: generic exporter... view/list.xhtml.ftl
...
[hibernate] 2. task: generic exporter... view/view.xhtml.ftl
[hibernate] 3. task: generic exporter... view/view.page.xml.ftl
[hibernate] 4. task: generic exporter... view/edit.xhtml.ftl
[hibernate] 5. task: generic exporter... view/edit.page.xml.ftl
[hibernate] 6. task: generic exporter... src/EntityList.java.ftl
[hibernate] 7. task: generic exporter... view/list.page.xml.ftl
[hibernate] 8. task: generic exporter... src/EntityHome.java.ftl
[hibernate] 9. task: generic exporter... view/layout/menu.xhtml.ftl
[javaformatter] Java formatting of 15 files completed. Skipped 0 files(s).
 [echo] Type 'seam restart' and go to http://localhost:8080/open18

generate:

BUILD SUCCESSFUL

Listing 2.3 Reverse engineering the database to create entities and session beans

46 CHAPTER 2 Putting seam-gen to work
Believe it or not, that’s it! The prototype application is built. Ah, but we aren’t quite
ready for deployment. If you were to run seam restart now, as the generate com-
mand instructs, you would find that unless you already had JBoss AS running, the
request for the URL http://localhost:8080/open18 would simply give you a 404 error
page. To put the application in motion, you need to boot up JBoss AS. In the next sec-
tion, you learn about the two options you have for deploying the application, how it
affects development, and finally how to start JBoss AS so that you can see the applica-
tion that seam-gen has prepared for you.

2.4 Deploying the project to JBoss AS
As I mentioned earlier, seam-gen pro-
duces projects that are configured to
deploy to JBoss AS out of the box. For
now, let’s stick with the convention to
keep the effort of getting the applica-
tion running to a minimum. Once
you’re comfortable with that, you can
explore alternatives.

 You can take one of two paths when
deploying your application to JBoss AS.
You can either deploy it as a packaged
archive:

seam deploy

or you can deploy it as an exploded
archive:

seam explode

These two alternatives are illustrated in
figure 2.6.

NOTE Despite its alarming name, the explode command will not perform a destruc-
tive process on your project. It simply copies the deployable files to the applica-
tion server without packaging them. The name is meant to indicate that the
archive is broken open as if it had been “exploded.” A more reassuring name
for this command might have been “unfurl” (like a sail). But explode just sort
of stuck.

Let’s weigh the attributes of each command and decide which one is best to use.

2.4.1 To deploy…

If you use the deploy command, the build will create an archive that uses one of two stan-
dard Java EE package formats, Web Archive (WAR) or Enterprise Archive (EAR), depend-
ing on which one you chose during the seam-gen setup routine. If you plan to use only
JavaBean components, like the example application presented in this chapter, your best

Figure 2.6 The two deployment scenarios offered
by seam-gen. On the left, an exploded WAR (or EAR)
directory. On the right, a packaged WAR (or EAR)
file. Incremental hot deployment is not available
when using a packaged archive.

http://localhost:8080/open18

47Deploying the project to JBoss AS
choice is the WAR format. In this case, the deploy command packages the application
into the WAR file open18.war. If you intend to use EJB components in your application,
you must use the EAR format. In that case, the deploy command will create the EAR file
open18ee.ear for an application named open18ee. The sample code that accompanies
the book includes projects for both archive formats. Note, however, that once you make
a choice between WAR and EAR, you’re stuck with it. There is no built-in seam-gen com-
mand to toggle a project between the two archive formats.

Once the archive has been packaged, seam-gen moves it to the deployment directory
in the default domain of the JBoss server, located at ${jboss.home}/server/default/
deploy. The JBoss server monitors this directory for changes. When a new or changed
archive is detected, the application is “reloaded.” This feature is known as “hot
deploy,” but it’s not just about deployment. The server also recognizes when an
archive has been removed from this directory and subsequently unloads the applica-
tion. You can remove the deployed archive by running

seam undeploy

The downside to using a packaged archive is that every change you want to apply
requires a complete build, package, and deploy cycle. At the end of this cycle, a fresh
version of the archive is shipped off to the server, the old application is unloaded,
and finally, the new application is loaded. In this case, we’re talking about hot-
deploying the application as a whole rather than incremental changes, which is cov-
ered later. It’s all or nothing. During a reload, the JBoss server shuts down all the ser-
vices that were started by your application. These services include the database
connection, the JPA EntityManagerFactory (or Hibernate SessionFactory), the
Seam container, and perhaps others. When the new application is deployed, all of
these services are started again under the new deployment. This process can be very
time consuming—and that time increases as your project grows and more services
have to be stopped and started.

Packaging Java EE applications
There are three prominent archive types that can be used to deploy components to
a Java EE–compliant application server. A Web Archive (WAR) is the format with
which most people are familiar. A WAR bundles servlets, JSPs, the archive is static
resources, and supporting classes for the purpose of serving dynamic web pages.
EJBs are deployed in the pervasive Java Archive (JAR) format, except that the
archive is augmented with a special XML deployment descriptor that identifies it as
an EJB JAR. Both the WAR and JAR formats are Java EE modules that can be bun-
dled inside an Enterprise Archive (EAR), which deploys the containing modules
under the same classloader, presenting them as a single application. The EAR is
the standard packaging unit for a Java EE application. Basic servlet containers,
such as Tomcat, can only handle WAR packages.

48 CHAPTER 2 Putting seam-gen to work
 To make matters worse, reloading an application terminates all of its active HTTP
sessions. If the page you’re testing requires you to be authenticated, or otherwise
holds state, you’ll be forced to reestablish your place. Needless to say, the packaged
deployment isn’t recommended for development. The good news is that there’s a bet-
ter way.

2.4.2 …or to explode

The alternative to a packaged deployment is an exploded archive. An exploded
archive is a WAR or EAR that has been extracted into a directory that has the same
name as the archive. You can deploy the application as an exploded archive using the
seam explode command.

 The explode command is a slight variation on the deploy command. Like the
deploy command, the explode command assembles the deployable files into the struc-
ture of the archive in the build directory. But the explode command skips the bundling
step and just copies the build directory in its raw form to the server. Subsequent calls to
seam explode synchronize the changed files to the exploded archive directory on the
server, thus supporting incremental updates. How the application deals with its
changes is determined by its hot deployment capabilities. Section 2.5.1 examines incre-
mental hot deployment and what it means in terms of development.

 To force a reload of the application when using an exploded archive deployment,
mimicking the behavior that occurs when a package archive is dropped into the hot
deployment directory of JBoss AS, you use the restart command. As its name may
imply, this command doesn’t restart the JBoss AS—it just reloads the application.

 The restart command begins by mirroring the work done by the explode com-
mand. As a final step, it updates the timestamp of the application deployment descrip-
tor, which is application.xml, in the case of an EAR deployment, or web.xml, in the
case of a WAR deployment. When the application server detects that the timestamp of
the application deployment descriptor has changed, it triggers a reload. To remove an
exploded archive, and have it undeployed, you execute

seam unexplode

The explode command is best suited for development. With support for incremental
updates, it gives you the “instant change” capabilities that you may be familiar with if
you’ve ever developed in a scripting language like PHP. The degree to which a Seam
application supports instant change will be put to the test later.

 To summarize your options, you can use the deploy command to deploy a package
archive or you can use the explode command to deploy an exploded archive. The
undeploy and unexplode commands serve as their complements by removing the
archive from the server. That covers the deployment life cycle to a single environment.
seam-gen sets up your project with additional deployment profiles, which allow you to
tune the archive based on environment, possibly even deploying it to a different server
instance. Let’s take one more tangent to learn about deployment profiles before we
move on to starting JBoss AS.

49Deploying the project to JBoss AS
2.4.3 Switching between environments

The build that seam-gen creates for your project supports the concept of deployment
profiles. Profiles can be used to customize deployment descriptors and configuration
settings for different environments. To cite a common case, you may need to use a dif-
ferent database in production than the one used in development. You certainly don’t
want to be burdened with having to switch the database connection settings every time
you cut a production release. Instead, you can set up a profile for that environment,
which you can activate with a single flag when executing the production build. The
appropriate database settings, and any other settings specific to that environment, will
then be applied.

 Seam configures three profiles out of the box: dev, prod, and test. The test profile
is a special case, which we look at next. By default, Seam uses the dev profile when com-
mands are executed. You can enable a different profile by changing the value of the Ant
profile property. Adding the following key-value pair to the build.properties file in the
root of the project activates the prod profile, effectively deactivating the dev profile:

profile=prod

Having to change the build.properties file feels too manual for my taste. As another
option, you can set the profile property from the seam command:

seam clean deploy -Dprofile=prod

TIP When you switch profiles, it’s a good idea to run clean—and possibly
even undeploy or unexplode—prior to running deploy or explode to be
sure that settings from the previous profile do not linger.

As I mentioned, the test profile is handled as a special case. It’s not activated using the
profile property. Instead, there are special Ant targets for running tests that know to
use the test versions of the environment-specific files. Writing and executing tests will
be covered in chapter 4.

 Table 2.4 itemizes the files that are selected according to the active profile, indicat-
ing whether the file is used in the case of the test profile. These files contain settings
and configurations that you have control over between environments. You can intro-
duce your own profile, such as qa, by creating each of the files listed in table 2.4.
When naming the file, replace the token %PROFILE% with the name of the profile.
For instance, the build properties file for the qa profile would be build-qa.properties.

Table 2.4 Files that are selected based on the profile property value

File selected based on profile value Purpose of file
Used in test

profile?

build-%PROFILE%.properties Used to set Ant build proper-
ties, such as the location of
the JBoss AS deploy directory
and the debug mode flag

No

resources/META-INF/persistence-%PROFILE%-war.xml The JPA persistent unit config-
uration file

Yes

50 CHAPTER 2 Putting seam-gen to work
If you want to change the location of the JBoss AS deploy directory for a production
build, you can set the jboss.home property in build-prod.properties. You probably
want to disable debug mode as well, since it’s only desirable in development:

jboss.home=/opt/jboss-production
debug=false

You now know how to deploy and undeploy the application to the JBoss AS deploy-
ment directory, both as a packaged archive and an exploded directory structure. You
can also control the settings and configurations for the target environment, such as
development, QA, or production, by toggling the value of the profile property. With-
out further ado, let’s fire up JBoss AS and see what the application looks like.

2.4.4 Launching JBoss AS

Without any customization, JBoss AS runs on port 8080, so first ensure this port isn’t
already in use (be aware that Apache Tomcat also runs on port 8080 by default). In your
console, navigate to the JBoss AS installation directory, ${jboss.home}, and then descend
into the bin directory. If you’re using a Unix platform, execute the command:

/run.sh

If you’re on Windows, execute the command:

run

These scripts start the default domain of the JBoss AS server. As an alternative to using
the console, you may also choose to launch JBoss AS from your IDE. Eclipse, NetBeans,
and IntelliJ IDEA all support launching the JBoss Application Server.

 Keep an eye on the console while the server is starting to watch for any exceptions
that may occur. When the console output settles down, the final line should give you
the thumbs up that JBoss AS is running:

00:00:00,426 INFO [Server] JBoss (MX MicroKernel) [4.2.2.GA (build:
 [CA]SVNTag=JBoss_4_2_2_GA date=200710221139)] Started in 17s:14ms

If you’re using the Sun JVM, I can almost guarantee that when you start hot-deploying
applications to JBoss AS, you’re going to get out-of-memory errors using the default JVM

resources/import-%PROFILE%.sql A SQL script that will be used
to load seed data into the
database when the applica-
tion starts if the database is
being re-created each time

Yes

resources/open18-%PROFILE%-ds.xmla The data source configuration
file for JBoss AS

No

a. Named according to the application, which in this case is open18.

Table 2.4 Files that are selected based on the profile property value (continued)

File selected based on profile value Purpose of file
Used in test

profile?

51Show and tell, change, and repeat
options. I strongly urge you to follow the advice in the accompanying sidebar. These set-
tings can be applied to the JBoss AS runtime configuration either by adding them to the
${jboss.home}/bin/run.conf or by using the configuration screen in the IDE.

 If6 JBoss7 AS started cleanly, you can open your browser and point it to http://local-
host: 8080/open18 to see the result of your work. In the next section, I walk you
through the application and point out the work seam-gen has done for you. I then
demonstrate how you can continuously make changes to the application without hav-
ing to suffer the wait of restarting either the application or the server.

2.5 Show and tell, change, and repeat
You might recall the activity of “show and tell” from your school days. In today’s show
and tell, I will be demonstrating the Open 18 prototype application that you have

6 For more information on the design of the garbage collection mechanism in Sun’s JVM, please see http://
java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html or a more abbreviated list at http://
performance.netbeans.org/howto/jvmswitches/index.html.

7 If you would like to know more about these settings and why they were chosen, please see http://
my.opera.com/karmazilla/blog/2007/03/13/good-riddance-permgen-outofmemoryerror.

Sun JVM options when running JBoss AS
While you’re on the task of setting up the JBoss AS runtime, I recommend a set of
JVM options to use when running JBoss AS with the Sun JVM. The default memory
allocation settings in Java are extremely conservative. On top of that, Sun’s JVM has
a concept of PermGen space, a separate allocated memory region from the heap.6

Even though the JVM garbage collector frees up memory automatically, there are cer-
tain objects (such as class and method objects) that can evade removal because
they are in this isolated memory region. A flag must be provided that enables garbage
collection for the PermGen space. In addition, the garbage collector has trouble keep-
ing up when memory is tight. The limited resources quickly become a problem when
running a hefty application like JBoss AS that has high memory demands.

To avoid an untimely death of the JVM, and in turn, JBoss AS, you should supply the
following parameters in the VM options of the JBoss AS runtime configuration in your
IDE (or bin/run.conf in the JBoss AS home directory). I have never experienced an
out-of-memory error when using these settings.7

-Xms128m -Xmx512m -Dsun.rmi.dgc.client.gcInterval=3600000
 ➥-Dsun.rmi.dgc.server.gcInterval=3600000
 ➥-XX:+UseConcMarkSweepGC -XX:+CMSPermGenSweepingEnabled
 ➥-XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=512m
 ➥-Xverify:none

There are ramifications of using the Concurrent Mark Sweep (CMS) garbage collector,
such as a longer startup time, so I wouldn’t blindly apply these settings to production.
However, I have found them to be sufficient for development purposes. The other

http://localhost:8080/open18
http://localhost:8080/open18
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
http:// performance.netbeans.org/howto/jvmswitches/index.html
http:// performance.netbeans.org/howto/jvmswitches/index.html
http://my.opera.com/karmazilla/blog/2007/03/13/good-riddance-permgen-outofmemoryerror
http://my.opera.com/karmazilla/blog/2007/03/13/good-riddance-permgen-outofmemoryerror

52 CHAPTER 2 Putting seam-gen to work
created thus far using seam-gen, both from outside and the inside. This exercise is
important because it’s necessary to know how seam-gen assembled the application so
that you’re familiar with how to make modifications to it. In this section, you learn
how you can alter the application by controlling the reverse-engineering process. In
the next section, you learn how to make changes after the fact. Before we get to that,
it’s time for the unveiling.

 Ta-da! The opening screen of the Open 18 application is shown in figure 2.7.

I’ll admit, the home page isn’t all that interesting. At the very least, it’s clear that the
application has a nice look and feel, courtesy of RichFaces, which is typically rare for
starter applications. The folks on the floor of the trade show pavilion probably don’t
care to read about the benefits of seam-gen, though. Thankfully, there is an email
from the marketing team waiting for you in your inbox with flashier markup for this
page. You’ll soon learn how changes such as these can be deployed in real time during
development, as if you were editing the page live.

 Notice at the top of the page there are links for each of the entities in the data
model and another link encouraging you to authenticate. Clearly there is some sub-
stance behind this curtain. Let’s dig deeper to find out what’s inside.

2.5.1 Walking the course

From the top-level menu in figure 2.7, you can verify that seam-gen produced five
entities: Facility, Course, Hole, TeeSet, and Tee. The List suffix on each link indicates

Figure 2.7 The splash page of an application created by seam-gen. The links in the upper menu
bar represent each of the entities that seam-gen extracted from the database schema.

53Show and tell, change, and repeat
that these pages are listings. We’ll focus on these pages first and then see where else
they take us.
ENTITY LISTINGS

Clicking one of the entity links at the top of the page brings up the listing for that
entity. In this walkthrough, we’ll focus on the course listing, shown in figure 2.8. How-
ever, the tour I am about to give applies to the other entities as well.

 The listing screen has two parts. The featured content is a table of all the courses
found in the database, seen in the bottom half of the screen. This table has two key
features. It can be sorted and paginated. The result set is broken into pages, truncated
at a page size of 25 by default. Links at the bottom of the screen allow you to flip
through the pages in the result set. The columns of the table are also sortable. The
heading of each column is rendered as a link, allowing you to sort the table by that
column. Now, tell me, how much time have you burned implementing sortable and
paginated tables in an application in your career? If you winced at that question, you
should be happy to see that seam-gen takes care of all that for you. So go ahead and
revel in it by clicking on a couple of the column headers and flipping through the
pages. You should notice that the sort is not lost when you paginate, the offset is not
lost when you sort, and every page can be bookmarked. Another seam-gen special.

Figure 2.8 The Course List screen as created by seam-gen. This page includes a collapsible
search form in the top half and a pageable, sortable result set of courses in the bottom half.

54 CHAPTER 2 Putting seam-gen to work
The page also includes a search feature. The search form, shown in the top half of fig-
ure 2.8, includes an input field for every string property of the Course entity class. You
can type text in any of the fields that appear above the table and Seam will use that
text to perform a search to filter the rows displayed in the table. The best part is that
when you sort and paginate, your search filter is not reset. In the next chapter you
learn the technique that powers this functionality.

 From the course list page, you can either create a course or you can view the details
of a particular course. Let’s drill down to see the details of one of the courses.
DRILL-DOWNS

In the last column of the course listing is a link to view the course. When you click this
link, it brings up a page showing the details of the course, shown in figure 2.9.

 The course detail screen shows all the properties of the course at the top of the screen
and each of the course’s related entities at the bottom. Since each course has 18 holes,

Figure 2.9 The course detail screen as generated by seam-gen. This page displays all the data for a
given course and also uses a tabbed pane to show the associated facility, tee sets, and holes.

55Show and tell, change, and repeat
there are 18 rows in the table in the holes tab pane. The teeSets tab pane shows a table
with rows for each set of tees (the colored markers at the start of each hole). Each course
is also associated with a golf facility, the details of which are shown in the facility tab pane.
You can continue to drill down further by clicking the View link in the row of any related
entity. But the application really gets interesting when you add a new record or edit an
existing one.
ENTITY EDITORS

There are buttons for both editing and adding entities. However, pages that alter the
state of the database require you to be logged in. When you click one of these buttons,
you’ll be directed to the login screen, shown in figure 2.10. The login requirement is
enforced in the page descriptor that coincides with the JSF page. For the Course
entity, the editor page is CourseEdit.xhtml and its page descriptor is CourseEdit.
page.xml. You’ll learn about page descriptors in chapter 3.

 Any credentials will do since the authentication module is just a stub. You learn how
to tie authentication to the database and how to further lock down pages in chapter 11.

 Once you authenticate, you’re taken to the course editor, shown in figure 2.11. If
you’re updating an existing record, Seam will apply the changes to it when you click
Save. Otherwise, a new record will be inserted into the database.

 At first glance, the forms for editing an entity appear straightforward, perhaps even
a bit dull. A closer look reveals that they are enriched with subtle features that would be
very time consuming to prepare. The * in figure 2.11 indicates a required field or rela-
tionship. At the bottom half of the page is a button that lets you select a facility to satisfy

Figure 2.10 The login screen of an application created by seam-gen. The authentication provider
is just a stub, so any username/password combination is accepted in the default configuration.

56 CHAPTER 2 Putting seam-gen to work
the foreign key relationship. If you delete a record, it will cascade, deleting child records
as well. All of these features are a direct reflection of the database constraints. Let’s take
a closer look at how the column constraints are translated into form requirements,
which happens when seam-gen reverse-engineers the database schema.
DATABASE COLUMN TO FORM FIELD

The seam generate command delegates most of its work to Hibernate’s reverse-engi-
neering tool. In that step, the database tables are translated into entity classes and the
columns become properties on the respective classes. The properties on the entity
class manifest as form fields in the entity’s editor during the creation of the CRUD
screens. To get from the database to the UI, the database column names are converted
into entity property names, which become the form field labels in the UI.

 seam-gen is fairly intelligent about creating form fields that adapt to the type
accepted by the corresponding database columns. To start, the Java type chosen for

Figure 2.11 The course editor screen as generated by seam-gen. Not only does this form allow
you to edit the basic properties of a course, but it also allows you to associate it with a facility.

57Show and tell, change, and repeat
each property is derived from the SQL type of the corresponding column. If the col-
umn type is numeric, the editor will only accept numbers in the input field. Even bet-
ter, the validation is performed in real time using Ajax. If you try entering letters into
the yearBuilt field on the course editor, then click somewhere else on the page, you’ll
see that you get a validation error, as shown in figure 2.12. You’ll learn how to config-
ure the form field to enforce validations in the next chapter. Chapter 5 shows you
how to customize messages in Seam, since clearly this error message could stand to
be improved.

 seam-gen also picks up on non-nullable column constraints in the database and
enforces them as required fields in the editor as indicated by the star (*) after the
field label in figure 2.11. Where appropriate, the property on the entity class is
defined using a primitive type in this case. If a primitive type can’t be used, such as
when the column type is a string, then the @NotNull annotation from the Hibernate
Validator library is added to the property on the entity class. If the column allows null
values, then a nullable Java type is used for the property and the field isn’t required in
the UI. There are a number of other Hibernate Validator annotations that seam-gen
applies to the entity classes and in turn enforces in real time in the UI. One such
example is maximum character length, defined using the @Length annotation and
reflecting the constraint on the database column.

 seam-gen can also identify foreign key relationships between tables and use them to
establish associations between the corresponding entities. On the one hand, these rela-
tionships are used to display child collections on the detail screens, such as the set of
holes associated with a course. The entity editor also supports the selection of a parent
entity when adding or updating a record. For instance, the Course entity has a foreign
key relationship to the Facility entity. At the bottom of the editor screen is a tab pane
that shows the current facility selection—if one has been selected—and provides a but-
ton to allow you to select a different facility. Clicking this button takes you to the facility
listing page. In the table of facilities, the action in the last column has changed from View
to Select. Clicking one of these links takes you back to the course editor, which now
reflects your selection. Being able to satisfy the entity relationships in the editor is crit-
ical. Without this feature, the edit functionality would be severely crippled.

 I don’t know about you, but I’m pretty impressed. This application satisfies just
about every requirement for the golf course directory and you haven’t touched a line
of code. With all of the extra time, you may be tempted to start daydreaming about your
golf weekend again or head out for one last round at the range. Well, don’t head out
just yet. You have some work to do to clean up the application so that it’s presentable.
The reverse engineering does a pretty good job, but it isn’t always perfect. To take the
prototype the last mile, you’re going to customize seam-gen so that it produces an appli-
cation that is ready for the sales team to start gawking over.

Figure 2.12 The course editor enforcing a number value for the yearBuilt field. Validations occur in
real time using Ajax.

58 CHAPTER 2 Putting seam-gen to work
2.5.2 Guiding the reverse-engineering process

Hibernate’s reverse-engineering tool is very capable of interpreting what the database
schema has to say about the entity relationships. But it can’t read what is not there and
it can’t do much about poorly named columns. For example, the property for men’s
par on the Hole entity is mPar, which is a rather cryptic name. The relative position of
a tee set is represented by the pos property on the TeeSet entity, another name lack-
ing clarity. These names are a reflection of abbreviated column names. As the saying
goes, “garbage in, garbage out.” What’s worse is the situation where the information
isn’t in the database at all. If a foreign key is missing in the table, seam-gen can’t make
the leap that the table is related to another. Thus, the corresponding entities won’t be
linked and that means you won’t get any of the support in the UI that you observed
during the walkthrough.

 Both of the shortcomings just cited can be corrected by tuning the Hibernate
reverse-engineering configuration. Despite its long, foreboding name, the configura-
tion is quite straightforward. Its purpose is to tweak the decisions made by seam-gen
when generating the entity classes. These adjustments then affect all the downstream
UI code generation. Using the reverse-engineering configuration, you can make any
of the following adjustments:

■ Customize a property name on an entity class
■ Customize the Java type of a property on an entity class
■ Change the mapping between SQL column type and Java property type globally
■ Exclude tables from participating in code generation
■ Establish an entity relationship that isn’t represented by a foreign key
■ Exclude the reverse mapping of an entity relationship
■ Enable generation of the toString() and hashCode() methods
■ Add extra code and imports to the generated class

Let’s apply customization to clean up the prototype application using the <table> ele-
ment. This element can be used to fix the problematic property names as well as add
some convenience methods to the entity classes that will be useful later on. The
reverse-engineering configuration file that seam-gen uses is resources/seam-
gen.reveng.xml inside the generated project. Listing 2.4 shows the contents of this file
populated with the customizations just mentioned.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-reverse-engineering SYSTEM
 "http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd">
<hibernate-reverse-engineering>
 <table name="HOLE">
 <column name="M_PAR" property="mensPar"/>
 <column name="L_PAR" property="ladiesPar"/>
 <column name="M_HANDICAP" property="mensHandicap"/>
 <column name="L_HANDICAP" property="ladiesHandicap"/>
 </table>

Listing 2.4 Customizes property names of entity classes and adds extra methods

Customizes the HOLE table mapping

Maps
nonabbreviated
property name

59Show and tell, change, and repeat
 <table name="TEE_SET">
 <meta attribute="extra-import">
 javax.persistence.Transient
 </meta>
 <meta attribute="class-code">
@Transient
public int getFrontNineDistance() {
 int distance = 0;
 for (Tee tee : tees) {
 if (tee.getHole().getNumber() <= 9) {
 distance += tee.getDistance();
 }
 }
 return distance;
}

@Transient
public int getBackNineDistance() {
 int distance = 0;
 for (Tee tee : tees) {
 if (tee.getHole().getNumber() > 9) {
 distance += tee.getDistance();
 }
 }
 return distance;
}
 </meta>
 <column name="POS" property="position"/>
 <column name="M_SLOPE_RATING" property="mensSlopeRating"/>
 <column name="M_COURSE_RATING" property="mensCourseRating"/>
 <column name="L_SLOPE_RATING" property="ladiesSlopeRating"/>
 <column name="L_COURSE_RATING" property="ladiesCourseRating"/>
 </table>
</hibernate-reverse-engineering>

When you’re done customizing, you can run seam generate restart to apply the
changes. Please note that running generate will clobber any changes you previously
made to the generated files. Thus, you need to be cautious about enhancing the appli-
cation if you plan on executing the reverse engineering again. One way to avoid losing
the customizations to entity classes is to define the extra class code in the reverse-engi-
neering configuration, as shown in listing 2.4. You also have the option of tweaking
the seam-gen templates to achieve the output you desire.

 Instead of running the code generation full scale, you can split the code generation
into two steps. As of Seam 2.0.1.GA, the generate command is a combination of the
generate-model and generate-ui commands. You can run generate-model to incre-
mentally develop the JPA entity classes and then run generate-ui once you’ve tweaked
the domain model to your liking. You can even skip generate-model altogether and
simply use generate-ui to build a CRUD user interface from an existing set of JPA entity
classes8 that reside under the src/model tree.

8 If you’re working without an existing database schema, you can set the Hibernate flag hibernate.
hbm2ddl.auto to create-drop, create, or update to have the database schema autogenerated when the
application starts.The first two options will also execute custom SQL in the import.sql file.

Adds imports to
support custom code

Appends custom code
to generated class

60 CHAPTER 2 Putting seam-gen to work
DEALING WITH LEGACY DATABASES

Code generation customization is useful when you find yourself having to reverse-
engineer a much larger, perhaps more loosely defined database than the one prepared
for the Open 18 prototype application. Faced with this task, you may need to use only
portions of the schema or simply exclude temporary tables. The reverse-engineering
tool offers the <table-filter> element to satisfy this requirement. The <table-
filter> accepts a schema name and a table name, which it uses in a LIKE clause to
locate tables in the database. You can use the string .* in the name, which is replaced
with % when the lookup is executed to allow for a fuzzy search. If you set the exclude
attribute on <table-filter> to false, then the filter works by including tables from an
empty set. Otherwise, the table filter excludes tables from the full set of tables.

 Legacy databases tend to lack consistent naming. For instance, you may encounter
the need to specify a name for the generated entity class if the table name is abbrevi-
ated or includes an unnecessary prefix. It’s also possible that the database is missing
foreign keys, in which case you must specify the entity relationship explicitly. These
two changes can be made using additional elements within the <table> node.

 The configuration in listing 2.5 presents an example of how to work around the
challenges just described for a hypothetical golf equipment database.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-reverse-engineering SYSTEM
 "http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd">
<hibernate-reverse-engineering>

 <table-filter
 match-schema="EQUIPMENT" match-name="PRDCT" exclude="false"/>
 <table-filter
 match-schema="EQUIPMENT" match-name="MFR" exclude="false"/>
 <table-filter
 match-schema="EQUIPMENT" match-name="EQ_TYP" exclude="false"/>

 <table name="EQ_TYP" class="org.open18.model.EquipmentType"/>

 <table name="PRDCT" class="org.open18.model.Product">
 <foreign-key foreign-table="MFR">
 <column-ref local-column="MFR_ID" foreign-column="ID"/>
 </foreign-key>
 <foreign-key foreign-table="EQ_TYP">
 <column-ref local-column="EQ_TYP_ID" foreign-column="ID"/>
 </foreign-key>
 </table>

 <table name="MFR" class="org.open18.model.Manufacturer"/>

</hibernate-reverse-engineering>

The goal of this section was not to cover the reverse engineering exhaustively, but to
introduce you to it and inform you of the fact that it can help you fine-tune your
application. There are a handful of features that were not highlighted here, so I
encourage you to do some more digging, starting with the Hibernate tools reference

Listing 2.5 Filters tables and establishes missing relationships

61Show and tell, change, and repeat
documentation.9 Even then, there are still some areas where the reverse engineering
comes up short when handling advanced mappings such as embeddable entities,
enums, and entity inheritance.

 If you’re still not pleased with the classes that the reverse-engineering tool creates,
you can further customize them by modifying the FreeMarker templates used to con-
struct them. Hibernate includes an entire reverse-engineering API that you can tap
into during this process. The templates it uses reside in the seam-gen/pojo directory.
There, you’ll find a small set of customizations to support the seam-gen tasks. Hiber-
nate falls back on its own default template if the one it’s looking for is not present in
this directory. Chapter 2 of Java Persistence with Hibernate has an excellent section
covering reverse engineering customizations.

 Once you’re satisfied with the entity model that seam-gen creates, you’re ready to
move into the development phase. Because you don’t know anything about the struc-
ture of the project that seam-gen has created, you may feel uneasy about this task. Rest
assured that seam-gen has prepared a well-organized source tree for you. I’ll now help
you become acquainted with that structure.

2.5.3 Exploring the structure of the generated project

One of the difficult parts of starting with a project-generation tool is becoming famil-
iar with the layout that it leaves behind. A period of adjustment is to be expected. It’s
akin to inheriting someone else’s code. In this section, we explore the code that seam-
gen leaves you with and how the generated project can stand on its own without seam-
gen’s reigns.
PROJECT LAYOUT

The layout of a seam-gen project isn’t what you might consider standard, nor does it
follow the popular Maven 2 structure. However, the structure does strike a nice bal-
ance between the multiple masters that it serves. It is capable of

■ Building from the command line
■ Hooking into the IDE build cycle
■ Running integration tests in an embedded Java EE environment
■ Performing incremental hot deployment to the application server

A select set of files and directories in a seam-gen WAR project are shown in table 2.5.
This table will help you become better acquainted with the project structure that
seam-gen creates for you, but there’s still much to learn, so don’t get caught up trying
to understand every file and directory right now. Note that several of the paths use a
wildcard (*) to indicate the presence of multiple files of the same type.

 I want to draw your attention to the persistence-*-war.xml and open18-*-ds.xml
file sets, because they will be most relevant in the early stages of working with the
project. There’s an instance of each file per deployment profile. At build time, the
file from the persistence-*-war.xml set that matches the current deployment profile is

9 http://www.hibernate.org/hib_docs/tools/reference/en/html/reverseengineering.html

http://www.hibernate.org/hib_docs/tools/reference/en/html/reverseengineering.html

62 CHAPTER 2 Putting seam-gen to work
renamed to persistence.xml and moved to the classpath of the exploded archive.
This file is the JPA persistence unit descriptor, but also hosts various Hibernate set-
tings since Hibernate is the default JPA provider used in seam-gen projects. You’ll
learn about Java persistence in chapter 8. Accordingly, the file from the open18-*-
ds.xml set that matches the current deployment profile is renamed to open18-ds.xml
and moved to the JBoss AS deployment folder. This file is the JCA DataSource

Table 2.5 Select files and directories in a seam-gen WAR project

File or directory in project Purpose

bootstrap/ Embedded JBoss configuration for tests

deployed-jars.list Specifies which JAR files to package in the archive

exploded-archives/ Exploded Java EE archive assembly area

lib/ Library dependencies for build and deployment

lib/test Embedded JBoss libraries for tests

nbproject/ NetBeans project files

resources/META-INF/persistence-*-war.xml JPA persistence unit descriptors

resources/WEB-INF/components.xml Seam component descriptor

resources/WEB-INF/pages.xml Seam page descriptor

resources/components.properties Replacement properties for Ant-style tokens

resources/import-*.sql Database build scripts and seed data

resources/messages_*.properties Internationalization messages

resources/open18-*-ds.xml JBoss data source descriptor (database connection)

resources/seam-gen.reveng.xml Hibernate reverse-engineering configuration

resources/seam.properties Component configuration properties

resources/security.drl Drools security rules

src/action/ Classes that can be hot-deployed at runtime

src/model/ Classes that cannot be hot-deployed at runtime

src/test/ Test classes and test suite configurations

view/*.page.xml Fine-grained Seam page descriptors

view/*.xhtml Facelets composition templates (JSF views)

.classpath | explode.launch | .project | .settings/ Eclipse project files

build.properties, build-*.properties Ant build properties and overrides per profile

build.xml Ant build file

hibernate-console.properties | open18.launch JBossTools Hibernate Console configuration

63Show and tell, change, and repeat
descriptor and is where the database connection profiles for the various deployment
environments are specified.

 An EAR project differs from the WAR structure by only a couple of files. The most
notable differences appear in the exploded-archives directory during packaging of
the archive, which is not evident by looking at the project structure alone. To aid in
the packaging of an EAR, the following four additional files appear in an EAR project:

■ resources/META-INF/application.xml
■ resources/META-INF/ejb-jar.xml
■ deployed-jars-war.list (used in place of deployed-jars.list)
■ deployed-jars-ear.list (used in place of deployed-jars.list)

The second file is important to Seam because it registers the Seam interceptor on
EJB 3 components. You may also notice that the JBoss AS descriptor for a web appli-
cation, resources/WEB-INF/jboss-web.xml, is replaced with the equivalent descriptor
for an enterprise application, resources/WEB-INF/jboss-app.xml.

 Although the WAR and EAR project structures are nearly identical, the logic in the
build script that packages the archives varies widely. Thus, once you choose a Java
EE archive type for a seam-gen project, there’s no automated step to switch. If it
were necessary for you to perform this migration, you’d have to replace the build.xml
with the build.xml from the other project type and add or remove the extra files
just described.
BOOTSTRAPPING THE DATABASE

Before moving on, I want to mention an important Hibernate configuration setting,
hibernate.hbm2ddl.auto, which controls whether Hibernate will attempt to create or
modify the database schema when initialized. The default value is validate. Table 2.6
shows all the possible values for this property. If the database is slated to be created when
Hibernate initializes, the seed data in the import.sql at the root of the classpath is loaded
into the database automatically. The import.sql file is derived from the import-<pro-
file>.sql file according to the build profile. The Open 18 application works with an exist-
ing database, so we want to be sure not to destroy it. In our scenario, the best choice is
update since it allows the database to evolve as we add new entities to the application.

Table 2.6 Possible values for hibernate.hbm2ddl.auto, set in the persistence-*.xml files

Value Affect on startup Affect on shutdown
Imports seed data
from import.sql?

create Creates database (destroys it if it exists) None Yes

create-drop Creates database (destroys it if it exists) Destroys database Yes

update Updates database to reflect changes to
mappings

None No

validate Validates database from mappings None No

none None None No

64 CHAPTER 2 Putting seam-gen to work
Getting to know the project structure is going to take some time, but don’t worry. You
have the whole book to become familiar with how to use and enhance a seam-gen project.
Regardless of whether you use an EAR project or a WAR project, the project is built and
deployed the same way. That brings us to our next topic: how seam-gen projects are built.
ANT BUILD TARGETS

Ant has been mentioned throughout this chapter, but I haven’t provided definitive
information on how it is being used. The seam command operates using Ant. Projects
that seam-gen creates are also built using Ant. Once the project is generated, seam-
gen remotely controls the project’s build script to compile, test, and deploy the appli-
cation. Two Ant scripts are at work here: the one used by the seam-gen script and the
one in the root of the project directory.

 Project-specific seam-gen commands are passed down to the project’s Ant build,
where they are executed, as shown in the left side of figure 2.13. This arrangement
works as long as seam-gen is still “connected” to the project—meaning the settings in
seam-gen/build.properties haven’t been modified since the project was generated.
seam-gen becomes “disconnected” from the project the minute you use it to create a
different project. When you do, it switches its control to the new project. Once you
alter the seam-gen settings, the path on the left side can no longer be used.

 As it turns out, the Ant build script in the root of the project can stand on its own.
It supports all the same project-specific commands as seam-gen. Thus, you can call the
build script directly, as shown in the right side of figure 2.13.

 You must have Ant available on your path in order to execute the project’s Ant tar-
gets without the assistance of the seam script. Appendix A has information about how
to install Ant. By moving to the project’s build, you can execute all of the build-related
targets that were available with the seam script. These targets include test, deploy,
undeploy, explode, restart, unexplode, clean, and archive. The only change in how
you run these targets is that you prefix the command with ant rather than seam. For
instance, to deploy the application as an exploded archive, you run ant explode. You
cannot, however, run any of the code-generation commands. You have to complete all

seam-gen script project Ant build

project
Ant target

project
Ant target

seam-gen
Ant target

./seam
 explode

ant
explode

explode

explodeexplode

project directory
Seam directory

Figure 2.13 The seam-gen script
invokes Ant targets in the project’s
build. This image shows the
difference between executing the
explode command from seam-gen
and executing the explode target
directly from the project.

65Rapidly developing a seam-gen project
of that work using the seam script before you remove its reigns on your project. Just
remember, you use seam when you’re in the Seam distribution directory and ant when
you’re in the project directory.

2.6 Rapidly developing a seam-gen project
One of the best features of seam-gen is that sets up a build that supports a continuous
development cycle. By that, I mean that you can make changes to the application and
have them immediately swept away to the server. If you choose the exploded archive
format, you can take advantage of seam-gen’s incremental hot deployment to JBoss AS.
This feature publishes the changes to the project source files so they take effect imme-
diately in the application, which is the focus of this section.

This section begins by clarifying what is meant by incremental hot deployment, how it
can speed up development, and how to get the IDE to handle the last remaining bit of
manual work necessary to make development truly continuous.

2.6.1 Incremental hot deployment

The term incremental hot deployment means that the deployed application can be
updated while it’s running with the latest changes from development. However, what
this term doesn’t tell you is what types of files can be redeployed and what effect they
will have on the application—meaning, what really qualifies for “instant change”?

 The reason that support for incremental hot deployment is so different from one
application server to the next is because the Java EE specification doesn’t address this
feature, resulting in no real standard. Essentially, it’s an extension to Java EE; even
then it only applies to development. Unfortunately, that’s what is most important to us
developers. What I find most frustrating is that because there are no clear bounds on
what can be called incremental hot deployment, the term is often thrown around as
marketing jargon to draw you to a vendor. Let’s expose the frauds and see if seam-gen
deploying to JBoss AS can meet our agile development demands.

 This section clarifies which files participate in incremental hot deployment in a
seam-gen project, when and under what conditions, and what happens when the files
get deployed. We’re looking for the answers to two questions: How hot is “hot”? and
Does Seam deliver the promise of “instant change”?

What about other application servers?
Out of the box, seam-gen is set up to deploy incrementally to JBoss AS. Other application
servers feature incremental hot deployment to an exploded archive as well, and there
is nothing preventing you from modifying the build script to support those servers. In
fact, several initiatives are under way to improve seam-gen’s application server support.
You can find instructions on how to use seam-gen with alternative application servers
in the Seam reference documentation and on the Seam community site.

66 CHAPTER 2 Putting seam-gen to work
SYNCHRONIZING STATIC RESOURCES

Anytime you’re working with an exploded archive, regardless of whether you’re using
the EAR or WAR package format, you can push out changes made to static resources
—stylesheets, graphics, and JavaScript—by running seam explode. The Ant build
properly detects which files have been added or modified since the last run and copies
them to the exploded archive directory on the server.

 When working with static resources, the application server is merely acting as a
web server. It reads the contents of the static resource from the file system and serves
it to the browser in response to an incoming request for the resource. The application
doesn’t have to reload to serve a static resource that has changed. If the server sup-
ports runtime JSP compilation, which JBoss AS enables by default, the server will also
recompile JSP files that have changed without causing the application to reload.

 While synchronization of static resources and JSP files is certainly nice, I don’t con-
sider it enough to warrant the label incremental hot deployment as some application
server vendors like to think. To me, it’s just a baseline. If a build cannot, at the very
least, handle this scenario, then it isn’t much of a build. The absence of this feature
puts an exploded archive on par with a packaged archive.

 Let’s take it a step further and look at two additional web resources that can be hot
deployed in seam-gen projects.
INSTANT JSF
A majority of your time working in the view will be spent developing JSF pages. You
certainly want those changes to be picked up as well. If you’re using JSP for your JSF
pages, you’re already covered. However, projects created by seam-gen use Facelets as
the JSF view technology. Facelets will not read a view template more than one time
unless it’s running in development mode. This mode is the complement to runtime
JSP compilation. To enable development mode, you just need to ensure that the build-
<profile>.properties file for your profile has the debug property set to true:

debug=true

When the build is run, this property will be applied to the web.xml descriptor, setting
the facelets.DEVELOPMENT servlet context parameter in the web.xml descriptor to
true:

<context-param>
 <param-name>facelets.DEVELOPMENT</param-name>
 <param-value>true</param-value>
</context-param>

To test that this works, use your file explorer to locate the project directory. Open
the view/home.xhtml page in a text editor. With the file open, replace the bulleted
list of Seam benefits with a description of the Open 18 application (you can make it
up). When you’re done, run seam explode, and confirm that the change was picked
up by refreshing the home page. You should also be able to verify that the server
log is silent and doesn’t report a reload of the application. Feel free to try out
other changes.

67Rapidly developing a seam-gen project
 The debug property has another affect. It controls whether Seam is running in
debug mode. When debug mode is active, Seam will detect changes to the page
descriptor files (pages.xml and *.page.xml) and reload their definitions while the
application is still running. Page descriptors are a substitute for most of faces-
config.xml. They provide navigation, page-oriented actions, exception handling, secu-
rity, and conversation controls for JSF requests. Since they are capable of being hot
deployed, all of the aforementioned features can be modified without having to
restart the application. You’ll learn about page descriptors in chapter 3.

 Even with the incremental hot deployment of static resources, Facelets view tem-
plates, and page descriptors, an important piece is still missing: Java classes.
THE HOLY GRAIL: HOT REDEPLOYMENT OF JAVA CLASSES

Seam doesn’t draw the line at web resources. The Seam developers recognized that it’s
highly unlikely that you’ll make a change to a JSF page without also needing to make a
change to the Java class or classes used by the page. There is a strong bond between
the two. Thus, only being able to deploy web resources offers a false promise of
“instant change.”

 Seam goes the extra mile to enable live development by using an isolated develop-
ment classloader that supports incremental hot deployment of JavaBean components.
This classloader is used if the following conditions are satisfied:

■ Seam is running in debug mode.
■ jboss-seam-debug.jar is on the runtime classpath.
■ SeamFilter is registered in web.xml.
■ The application is using the WAR archive format.

The first two conditions are controlled by the debug flag just covered. You learn how
the SeamFilter gets registered in the next chapter. Java classes eligible for hot deploy-
ment must reside in the src/action directory of the project. The classes in the src/
model directory don’t participate in this classloader and thus can’t be hot deployed.
Seam supports hot deployment of both Java and Groovy classes, though with a slightly
different approach.

 The seam explode command compiles Java classes in the src/action directory of
the project and moves them to WEB-INF/dev in the exploded WAR archive, the root of
the development classloader. Seam leverages the Groovy classloader to load Groovy
scripts dynamically, so the explode command copies Groovy scripts in src/action to
the development classpath directly, without compiling them. When Seam detects that
a file has been changed or added to WEB-INF/dev, it initiates a new component scan
on this directory. During the scan, components that were previously loaded from this
directory are removed and the new components are instantiated. Any component
properties defined in components.xml or seam.properties are then applied to the
new components, which you learn about in chapter 5.

 Seeing is believing, so let’s give this feature a try. Referring back to the course
listing screen, notice that the courses are listed in the order that they are fetched
from the database, which isn’t very intuitive. How about we change the default sort

68 CHAPTER 2 Putting seam-gen to work
property? To do that, we need to add an order clause to the query that’s used to
back this table.

 Once again, use your file explorer to navigate to the project directory. Open src/
action/org/open18/action/CourseList.java in your editor and add the getOrder()
method shown in listing 2.6. This method contributes the order clause to the Java
Persistence Query Language (JPQL) query that’s constructed by this class. If an order
hasn’t been specified explicitly, we instruct the query to sort the courses by name, in
ascending order. CourseList inherits from EntityQuery, a parent class in the Seam
Application Framework that acts as a data provider. You’ll learn more about the
Seam Application Framework in chapter 10.

public String getOrder() {
 if (super.getOrder() == null) {
 setOrder("name asc");
 }
 return super.getOrder();
}

Save the CourseList class file and run seam explode to migrate your changes to JBoss
AS. Reload the page in your browser and you should see that the list is sorted based on
the name of the course. If you take a look at your JBoss AS server log, you should see
messages appearing similar to listing 2.7. Note that JBoss AS doesn’t reload the appli-
cation. What you see here is Seam dumping the classes in the development classloader
and rereading the components into memory.

00:00:00,385 INFO [Initialization] redeploying
00:00:00,395 INFO [Scanner] scanning:
/home/twoputt/opt/jboss-as-4.2.2.GA/server/default/deploy

 ➥/open18.war/WEB-INF/dev
00:00:00,424 INFO [Initialization] Installing components...
...
00:00:00,720 INFO [Component] Component: courseList, scope: EVENT,
type: JAVA_BEAN, class: org.open18.action.CourseList
...
00:00:00,491 INFO [Initialization] done redeploying

Pretty cool, huh? The best part is that the application experiences minimal disrup-
tion. Your HTTP session remains intact and therefore you should be able to continue
testing the interface without starting over from the beginning.

 I’ll agree that we still haven’t quite achieved “instant change,” if you count from
the time you saved the file, because it’s still necessary to run the command seam
explode. You’ll soon learn how to get the IDE to handle this task for you. Assuming
we have the IDE integration setup, the development classloader delivers on the
promise of instant change for Java files to complement the instant change already

Listing 2.6 Method that sets the sort order for the course list

Listing 2.7 Incremental redeployment as reported by the development classloader

69Rapidly developing a seam-gen project
available for non-Java resources. Few Java web frameworks offer such comprehensive
incremental hot deployment capabilities. It is by far one of the coolest, and competi-
tive, features of Seam. (Grails is an alternative framework that offers incremental
hot deployment.)

 There are some limits to the hot deployment feature. Seam cannot hot-deploy any
of the following:

■ Classes outside of the src/action directory
■ JPA entity classes
■ EJB session bean components
■ Seam components defined in components.xml

After making changes to any of the files just listed, you must run the following com-
mand to see the changes take effect:

seam restart

In addition, hot deployable components can’t be used by classes outside of the devel-
opment classloader, nor can they be referenced in the components.xml descriptor.

 The incremental hot deployment features discussed in this section are summa-
rized in table 2.7. This table lists the conditions that must be true for the resource to
be eligible for redeployment.

Seam developers are working on expanding the capability of the development class-
loader to be able to handle all Java types. It’s just a matter of time before all changes in
the Java code can be seen immediately in the running application. But even without
these improvements, the incremental hot deployment feature puts the productivity of
Seam development on a par with PHP and Ruby development.

 The multitude of command-line tasks that you have to perform are likely taking
their toll on you. Having to navigate the file system in order to edit the project files
hasn’t been fun either. The goal of the next section is to show how to bring the project

Table 2.7 Incremental hot deployment resources when using an exploded archive

Resource
Available
with WAR

Available
with EAR

Debug mode
required?

Images, CSS, JavaScript, static HTML, JSP No

Facelets view templates, page descriptors (pages.xml or
*.page.xml)

Yes

Java classes in src/action Yes

Groovy scripts in src/action Yes

Java classes or Groovy script in src/model or components
defined in component descriptors (components.xml or
*.component.xml)

No No N/A

70 CHAPTER 2 Putting seam-gen to work
into an IDE so that you can leverage the IDE to customize your application without
having the burden of executing the seam-gen commands manually.

2.6.2 Accelerating development by using an IDE

Importing a preexisting project into an IDE can be like trying to force a square peg
into a round hole. It takes time to enlighten the IDE about the structure of the proj-
ect. seam-gen removes this hurdle by generating ready-made project files for the two
most popular open source Java IDEs: Eclipse and NetBeans. As a result, importing the
project becomes an effortless task.

 Although seam-gen generates the IDE project files automatically, the Ant build is
the key to IDE portability. seam-gen hooks the Ant targets into the build life cycle of
the IDE to leverage the auto-build feature to make the instant change feature even
more instant. Let’s start by importing the project into Eclipse and exploring how the
Ant targets are hooked into Eclipse’s build.
IMPORTING THE PROJECT INTO ECLIPSE

seam-gen lays down the very same project files that Eclipse creates when you use the
New Project wizard, as well as a handful of additional configurations, shown here:

When you point Eclipse at the project folder, Eclipse immediately recognizes it as
one of its own projects. Eclipse is blissfully unaware of that fact that it was not the
originator.

 If you’ve explored the contents of a project managed by Eclipse, you should recog-
nize the main Eclipse project file B and the classpath definition file C. The explode
launch configuration D hooks the execution of Ant targets into the Eclipse build cycle,
thus allowing Eclipse to assume all responsibility of executing the Ant targets as part of
its automatic, continuous compilation cycle. You see this integration in action once you
pull the project into your Eclipse workspace. A launch configuration for attaching the
debugger to an external instance of JBoss AS E and a launch configuration for using
the Hibernate Console from the JBossTools Eclipse plug-in F are also created. I don’t
cover these last two configurations here, but you can find additional information about
them in the Hibernate Tools reference documentation.10

 To perform the import, start Eclipse and choose File > Import. When the Import
dialog box appears, select the Existing Projects into Workspace option, which you can
quickly find if you filter the options by typing the first few characters of the option
name into the Select an Import Source field. Click Next to begin the import process.

B .project

C .classpath

D explode.launch

E debug-jboss.launch

F open18.launch

10 http://www.hibernate.org/hib_docs/tools/reference/en/html_single/

http://www.hibernate.org/hib_docs/tools/reference/en/html_single/

71Rapidly developing a seam-gen project
In the dialog box that appears, click the Browse button adjacent to the Select Root
Directory radio button. When the native file selection window appears, locate the
project directory. If you’re following along with the example, the location of the proj-
ect is /home/twoputt/projects. Figure 2.14 shows the Import dialog box acknowledg-
ing open18 as a valid project. To edit the project in place, ensure that the Copy
Projects into Workspace check box remains unselected. If you were to enable this
option, Eclipse would make a copy of the project and put it in the Eclipse workspace
directory—typically ${user.home}/.eclipse/workspace.

When you click Finish, Eclipse incorporates the project into your Eclipse workspace
and lists it in the Project Navigator view. In the console, you should notice a flurry of
activity as the project builds for the first time. If you don’t, then you likely have the
auto-build feature disabled and you’ll need to run the build manually.

 That’s it! You have the project running in Eclipse. Now you can get serious about
developing the source code. To aid in development, the Seam source code has been
attached to the Seam library in the Eclipse project. That means for any class in the
Seam API you get context-sensitive JavaDoc, you can view the class source, and you can
step into the class during a debug session. The other benefit of having the project in
Eclipse is the integration between the Ant build script and Eclipse’s build life cycle.
Let’s explore how that works and what it means for development.
HOOKING INTO ECLIPSE’S AUTO-BUILD

Before launching into a technical discussion, I want to give you a feel for how Eclipse
lightens the development load by initiating the project’s incremental hot deployment
facility. In the process, we’ll add some color to the application.

Figure 2.14 The Eclipse
import wizard identifying the
seam-gen project as an existing
Eclipse project and a candidate
for import

72 CHAPTER 2 Putting seam-gen to work
 Golf scorecards are filled with color. In particular, each tee set has a color associated
with it. Yet our golf course directory is looking pretty monotone. It’s time to give it some
flair. In the tee sets table on the course detail page, shown back in figure 2.9, the color
column simply displays the name of the color. A nice improvement would be to have this
column render a colored boxed instead.

 In Eclipse, navigate to the view/Course.xhtml file and open it. You can also get there
by using the Ctrl+Shift+R key combination and typing in the name of the file in the input
box. When the file opens, look for the component tag <rich:tab label="teeSets">.
Next, find the <h:outputText> component tag that uses the #{teeSet.color} expres-
sion. You should expect to find this tag in the third <h:column> of the <rich:dataTable>
that is contained in that teeSets tab. You’re going to change this column to render a col-
orized box rather than the name of the color, but still use the color in the title attribute
for Section 508 compliance:

<rich:tab label="teeSets">
...
 <rich:dataTable id="teeSetsTable" var="teeSet"
 value="#{courseHome.teeSets}"
 rendered="#{not empty courseHome.teeSets}"
 rowClasses="rvgRowOne,rvgRowTwo">
 ...
 <h:column>
 <f:facet name="header">color</f:facet>
 <div title="#{teeSet.color}"
 style="background-color: #{teeSet.color}; height: 1em;

 ➥width: 1em; outline: 1px solid black; margin: 0 auto;"/>
 </h:column>
 ...
 </rich:dataTable>
...
</rich:tab>

NOTE A better approach is to create CSS for the colorized box and then refer-
ence the class in the template, but that goes beyond the point of this
exercise.

When you save the file, you should be able to immediately check it in your browser,
thanks to incremental hot deployment. You don’t even have to refresh the page for
the change to take effect. Just click the facility tab and then the teeSets tab again. The
contents of the tab are retrieved from the server using an Ajax request. Ladies and
gentlemen, we have color! The colorized tee boxes are shown in figure 2.15.

 Notice that you did not have to execute ant explode for your change to take
effect. How is it that Eclipse knows to run this Ant target? As mentioned earlier, seam-
gen configures Eclipse to fire Ant targets during various stages in the Eclipse build life
cycle. The configuration of Eclipse’s build is shown in figure 2.16.

 The screen on the left confirms that the Ant launch configuration, identified by
the Ant icon next to the name, is activated after Eclipse’s native Java Builder. The
screen on the right shows the details of the Ant launch configuration. The Targets tab

73Rapidly developing a seam-gen project
shows the Ant targets that are executed during each stage of the Eclipse build life
cycle. You can use this screen to change the targets as you see fit.

 Notice that the combination of explode and buildtest is executed whenever
Eclipse issues an auto-build—also referred to as an incremental build. When the
Eclipse auto-build runs, it performs the equivalent work of running ant explode
buildtest from the command line in the project directory. The auto-build runs
whenever a file in the editor is saved. All you have to do is save the file to have your
changes carried to the exploded archive on the JBoss server. Eclipse won’t slack off
while you’re editing. When you really get going, you can keep Eclipse in a constant
build loop. I’m sure you’ll agree that keeping Eclipse busy is better than having to
switch to the command line and repeatedly type ant explode.

Figure 2.15 The list of tee sets for a course. The value of the color property is being used to display
a colorized box.

Figure 2.16 The external tool build configuration for Eclipse that seam-gen installs to execute Ant
targets during the Eclipse build process. On the left is the list of Eclipse builders. The right screen
shows the details of the Ant builder.

74 CHAPTER 2 Putting seam-gen to work
Earlier, I promised to relieve you of your command-line duties and fully deliver on the
promise of instant change. There you have it! Eclipse is doing your dirty work.
Change, save, view in browser, and repeat. That goes for web resources and JavaBean
components. No marketing jargon here. The only thing you need now is for Eclipse
and seam-gen to write the business logic for you. Of course, if that were true, we’d be
out of a job.

 Eclipse isn’t the only way to achieve instant build. NetBeans works just as well, if
not better. Let’s give NetBeans a try to contrast it with Eclipse and help you decide
which environment you prefer.
IMPORTING THE PROJECT INTO NETBEANS

seam-gen also generates project files for NetBeans. The steps for importing the proj-
ect into NetBeans do not differ all that much from Eclipse, though the way the project
build is integrated is quite different. NetBeans has native Ant integration, which
means that the Ant build is the NetBeans build. You’ll witness the benefits of this as
you step through this section. The screenshots in this section were taken using Net-
Beans 6, but NetBeans 5.5 will work just as well.

 The NetBeans project files that get put into the nbfolder of the project are as follows:

The file project.xml B is the main NetBeans project file. It manages the classpath and
the mapping between NetBeans build targets and Ant targets from the project build.
The other two files, C and D, augment the build with a target to connect a debug ses-
sion to a running JBoss server.

 To begin the import, start NetBeans and choose File > Open Project. When the file
browser appears, navigate to the /home/twoputt/projects directory. You’ll notice
either an emblem or a different colored icon (depending on the version of Net-
Beans), indicating that NetBeans recognizes this folder as a valid NetBeans project.
Select the folder and click Open Project, as shown in figure 2.17. There are added

B project.xml

C ide-file-targets.xml

D debug-jboss.properties

Figure 2.17 Opening a seam-
gen project in NetBeans. The
icon color indicates that
NetBeans recognizes the folder
as a valid project.

75Rapidly developing a seam-gen project
benefits if you make this the main project, so go ahead and leave the Open as Main
Project option checked.

 Notice that I’ve avoided using the word “import” when describing how to bring
the project into NetBeans. Unlike Eclipse, NetBeans does not maintain a “workspace”
of projects. Therefore, opening a project is similar to opening a document in a
word processor.

The NetBeans strategy for opening projects makes more sense to me.
The Eclipse workspace quickly becomes littered with projects and I feel
like a bad owner when I have to kick them out. Closing a project folder in
NetBeans just seems more humane, making me feel comfortable with
keeping my project navigator in order.

You can now work with the project in NetBeans.
LEVERAGING NETBEANS’ NATIVE ANT INTEGRATION

As I mentioned, NetBeans uses the Ant build script as its build life cycle. NetBeans is
just a UI wrapper that can execute the build targets. Thus, the project created by
seam-gen is right at home in the NetBeans environment.

 To dig into the extensiveness of this integration, begin by right-clicking on the
open18 node in the Project view and selecting Properties. The Build Script property
in the Java Source pane, shown in figure 2.18, acknowledges that the Ant build script is
a first-class citizen in the NetBeans project. The Build and Run pane, also shown in
figure 2.18, reveals how the Ant targets are mapped to each stage of the build cycle in
NetBeans. Contrast this approach with the custom builder that’s required to tie Ant into
the Eclipse build cycle. My feeling is that the NetBeans integration makes managing a
seam-gen project more straightforward.

 The integration goes one level deeper. The Ant targets that are configured in the
Build and Run pane in figure 2.18 are included directly in the context menu, shown in

AUTHOR
NOTE

Figure 2.18 The
NetBeans Project
Properties screens
showing the direct
integration of the Ant
targets from the seam-
gen project build

76 CHAPTER 2 Putting seam-gen to work
figure 2.19. In the same figure, you see the
targets of the build.xml file are shown as
child elements of the file node. Although
build.xml is not a directory, NetBeans under-
stands the parent-child relationship between
the Ant script and its targets.

 Notice the Debug item on the context
menu. If you have the JBoss server running in
debug mode, this target allows you to attach
the NetBeans debugger to it. This is interest-
ing because NetBeans uses the same target to
debug a remote JBoss server as it does to de-
bug one started from within NetBeans.
Eclipse requires two different configura-
tions to accomplish the same set of scenarios.

 There’s an important difference between
Eclipse and NetBeans in how the two inte-
grate with Ant. Eclipse ties Ant into its auto-
build life cycle, so it fires off the Ant build
every time you save any file (assuming you have
auto-build enabled). If you have an idle computer, Eclipse can give it plenty to chew
on while operating in this mode. NetBeans, on the other hand, waits for your instruction
to run the Ant targets. I prefer the NetBeans approach. Eclipse, in its auto-build
configuration, is just wasting processor cycles with its constant build activity. Watch out
when you start Eclipse too, since it will immediately deploy all of your seam-gen projects
to JBoss AS. You can remedy these problems in Eclipse by disabling auto-build, but
that goes too far because it eliminates all automatic build tasks, including incremental
Java compilation.

 In NetBeans, if the project is set as the main project, you can build and rebuild
using either the build buttons on the main build toolbar or the build keybindings.
You’ll likely find the keybinding to be the fastest because it avoids use of the mouse.
Then it’s just a matter of hitting the build key when you’re ready to send your changes
off to the application server.

TIP The default keybinding for building the main project is F11. On Linux,
this keybinding is reserved by the GNOME desktop for toggling full-
screen mode. Therefore, you need to remap the Build Main Project
action to an alternative key, such as F10.

Let’s make a change to the application to see what it is like to develop with this setup.
Look back to figure 2.15. Notice that the list of holes and tee sets at the bottom of the
course detail screen have one major flaw: they are out of order. For holes, the number
property dictates the order, while the tee set uses the position property to maintain
order. We need to honor those values when rendering the respective tables.

Figure 2.19 The context menu of a project in
NetBeans, which includes items that map
directly to Ant targets in the build file created
by seam-gen. The build.xml node can also be
expanded to reveal all of the available Ant
targets.

77Rapidly developing a seam-gen project
 You can track down the backing value expression of these two tables in view/
Course.xhtml. The list of holes is provided by #{courseHome.teeSet} and the list of
tee sets is provided by #{courseHome.holes}. Both of these collections, which reside
on the CourseHome class, are converted from a java.util.Set to a java.util.List
and then returned. This conversion is necessary since UIData components, such as
<h:dataTable>, can’t iterate over a java.util.Set. These methods provide a good
opportunity to use a Comparator to sort the collections before they are returned.

 Fortunately, CourseHome is a Seam component in the src/action directory, which
means that it can be hot deployed. Listing 2.8 shows the modified version of the prop-
erty getter methods that sort the collections before returning them.

public List<Hole> getHoles() {
 if (getInstance() == null) {
 return null;
 }

 List<Hole> holes =
 new ArrayList<Hole>(getInstance().getHoles());
 Collections.sort(holes, new Comparator<Hole>() {
 public int compare(Hole a, Hole b) {
 return Integer.valueOf(a.getNumber())
 .compareTo(Integer.valueOf(b.getNumber()));
 }
 });

 return holes;
}

public List<TeeSet> getTeeSets() {
 if (getInstance() == null) {
 return null;
 }

 List<TeeSet> teeSets =
 new ArrayList<TeeSet>(getInstance().getTeeSets());
 Collections.sort(teeSets, new Comparator<TeeSet>() {

 public int compare(TeeSet a, TeeSet b) {
 return a.getPosition() == null ||
 b.getPosition() == null ? 0 :
 a.getPosition().compareTo(b.getPosition());
 }

 });

 return teeSets;
}

NOTE A better solution is to specify the sort order globally by adding the @OrderBy
JPA annotation to the collection property on the parent entity, Course. The
@OrderBy annotation instruments the sort as part of the query so that when
the collection is retrieved from the database, it’s already sorted. The
modification of CourseHome is simply to demonstrate the hot-redeploy
feature. A change to an entity class would require an application restart.

Listing 2.8 TeeSet and Hole collections ordered according to golf regulation

78 CHAPTER 2 Putting seam-gen to work
Once you’ve made those changes, hit the build keybinding or right-click on the proj-
ect’s root node and select Build. Behind the scenes, NetBeans will run the explode
Ant target. To give you a taste of the fruits of your labor, figure 2.20 shows the course
detail page with the teeSets tab selected.

Having the project set up in both Eclipse and NetBeans allows it to stand on its own
and puts you right where you need to be to start developing significant enhancements
to the application and applying refactorings to the code. I chose these two IDEs
because seam-gen generates their respective project files, allowing you to import the
project into either IDE without having to apply any force. To take a different
approach, you could have used the JBossTools plug-in for Eclipse to create a seam-gen
project from within the IDE. Unfortunately for NetBeans users, the equivalent plug-in
for NetBeans has fallen quite a bit out of date and lacks the true depth of what JBoss-
Tools offers. That may make you wonder which IDE is best for you.
CHOOSING AN IDE
You may find it helpful to know which IDE I recommend. As you observed in this sec-
tion, you can get started using either IDE very quickly. But, if you’re on the fence, I
find NetBeans easier to get into if you’re a new user. It has less clutter and it is geared
specifically toward Java EE development out of the box. However, if you’re a power
user who wants to take advantage of the JBossTools plug-in, you’re not afraid to spend
time installing various other plug-ins for the better part of a day, and you want every
feature under the sun, then Eclipse is the IDE for you. It was once true that Eclipse
had much better refactoring support than NetBeans, but even that gap is closing as of
NetBeans 6.

 There is nothing limiting you from using another IDE to develop a seam-gen proj-
ect, such as IntelliJ IDEA. You can use IDEA’s Eclipse project importer to get started.
From there, the knowledge that you gained in this chapter about the Ant-based build
will allow you to make the leap to this alternative IDE environment, as well as others.

 If you had started from scratch, it could have taken a week or more to get the
application to where it is now. Instead, you can start a prototype in the second half of
the week and have it done in time to hit the road for your weekend getaway!

Figure 2.20 The list of tee sets for a course sorted according to the value of the position property

79Summary
2.7 Summary
The Open 18 prototype developed in this chapter is the start of the example applica-
tion used throughout this book. At the beginning of this chapter, you had an overdue
project dropped on your lap just before your vacation. You decided to transfer the
burden to seam-gen because of its ability to quickly produce Seam projects, helping
you out the door in time for your vacation. This decision paid off, as seam-gen was
able to build a working prototype from an existing database schema, complete with
JPA entities and a UI capable of listing, sorting, paginating, filtering, persisting, updat-
ing, and deleting these entities, in just a couple of hours. It’s also good that the inter-
face has a nice look and feel. Even better, you discovered that the project scaffolding
and build script are suitable to be used as the foundation of the project long term,
most notably because of the instant change feature and its ability to prepare the appli-
cation for multiple environments. In chapter 4, you’ll continue using seam-gen to
build new modules from scratch, starting with golfer registration.

 This chapter also gave you an overview of the standard Java EE archive formats and
how the two options offered by seam-gen affect development. The most compelling
feature of the generated project is the incremental hot deployment of static web
resources, JSF views (JSP or Facelets) and page descriptors, and JavaBean components.
Java development can be as productive as any scripting environment. While taking a
look around the Open 18 prototype, you saw that not only is it able to read and write
database records, it can also display entity relationships. You also learned that valida-
tions are interpreted from the database schema and enforced in real time.

 Having felt out the prototype, we took a look under the hood to see how it is laid
out. We demystified the seam script, revealing that it’s actually a branded Ant build.
You learned that the Ant build is the key to IDE portability. You had the opportunity to
import the project into both Eclipse and NetBeans, contrasting the approach that
each takes to managing the project.

 By far, the best part of seam-gen is not what it creates, but what it enables you to
create: a project that you can use to learn about Seam in action. While seam-gen pre-
pares you to start developing in Seam, it cannot teach you how to use Seam itself,
other than by providing a few examples. You are now ready to begin your journey into
the core of Seam: its components, contexts, declarative services, and life cycle.

Part 2

Seam fundamentals

Golf is challenging to players of all skill levels, but it’s especially unforgiv-
ing to beginners. If you expect to stop by the sporting goods store to pick up a
set of clubs, a bag, and a collared shirt, then ride up to the first tee in your golf
cart to begin your golfing career, you are in for a big surprise. So are the worms
whose heads you try to take off on your first shot, which in golf lingo we call a
“worm burner.” After barely breaching the boundaries of the tee box, you still
have 300-plus yards to travel minus the benefit of using that little wooden tee.

 To have a fighting chance at making it to the target, it’s essential that you
learn the fundamentals of golf. Getting started with a new framework, like Seam,
must be handled in the same manner. The prototype application you built in
chapter 2 made you look good, but seam-gen carried you most of the way. With-
out a deeper knowledge of how Seam functions, you aren’t going to travel far
from the starting point, nor will your application make it off the ground. It’s
time to step back and take some lessons.

 This part gives you a firm understanding of how Seam works. Chapter 3 pro-
vides insight into how Seam participates in each request and what Seam does to
enhance the JSF life cycle. Seam’s essential offering, though, is its contextual
component model, which you are introduced to in chapter 4. You learn how a
component is born, what it means for a component to be contextual, and how
you instantiate and access component instances. Seam encourages the use of
annotations to define components, but also allows you to define them in XML,
which is covered in chapter 5. You’ll discover how to initialize the properties of a
component once it’s instantiated. With components and contexts down, chapter
6 explains how components interact and communicate through Seam’s two

inversion of control mechanisms: bijection and events. After reading this part of the
book, you’ll be perfectly comfortable extending a Seam application. You’ll feel
empowered by the ease with which you can quickly define components, wire them
together, bind them to JSF views, and have complete control over page requests.

The Seam life cycle
There is a stark difference between hitting balls at the driving range and taking
your shot out on a golf course. The driving range offers a nice, level surface that’s
perfect for making square contact with the ball. The golf course surfaces are rarely
so ideal. Surface variations include the tee box, the fairway, the rough, the sand
trap, from behind a tree, in a creek, and—if you are my brother—on top of a ware-
house. The point is, the real world is not as manageable as the practice area.

 The JavaServer Faces (JSF) specification lives in the ideal world with driving
ranges, where everything works by design. As long as your application doesn’t need
to pass data across redirects, call EJB 3 session beans from a JSF page, execute
actions on an initial request, or execute contextual navigation—to cite several
problem cases—JSF appears to be a pro. The JSF component model and event-
driven design conveniently mask the underlying HTTP communication between
the browser and the server-side logic. Where JSF comes up short is in catering to

This chapter covers
■ Using Seam to improve JSF
■ Navigating between JSF views
■ Mapping requests to page actions
■ Handling exceptions
83

84 CHAPTER 3 The Seam life cycle
nonconforming use cases. Unfortunately, the real world is full of nonconformity. To
adapt JSF to these less-than-ideal situations, Seam taps into the extension points in the
JSF life cycle, putting shape to a more sophisticated request-handling facility known as
the Seam life cycle. Seam provides a front controller, advanced page navigation, sup-
port for RESTful URLs, and exception handling, which are so integrated with JSF that
it’s hard to know where JSF ends and where Seam begins.

 This chapter sorts out which aspects of JSF Seam keeps and which parts are tossed
to the side. By the end of the chapter, you’ll have an understanding of the difference
between an initial JSF request and a subsequent postback and how Seam weaves its
enhancements into both styles of request to form the Seam life cycle. You’ll then be
ready to learn about Seam components—those are beans for you Spring fans—which
are used to control the user interface and respond to actions triggered from it.

NOTE If you aren’t familiar with JSF, you may be concerned that you can’t use
Seam without JSF experience. Seam doesn’t depend on JSF, but you
aren’t going to appreciate Seam’s JSF enhancements, which is the focus
of this chapter, without a basic understanding of how JSF works. After all,
Seam was developed to provide integration between JSF and EJB 3, and
happened to solve shortcomings in JSF along the way. If you aren’t famil-
iar with JSF, or its problems, I recommend that you read through the JSF
introduction provided in the front of this book before continuing. If
you’re a quick learner, or have spent enough time in the Java enterprise
landscape, you should pick up on JSF in no time. Given that Seam
extends beyond the user interface, you can boldly skip this chapter and
advance to learning about Seam components and contexts in chapter 4.

Since this chapter focuses on the Seam life cycle, let’s begin by looking at how Seam
registers itself to participate in both JSF and basic servlet requests.

3.1 Exploring how Seam participates in a request
For us to use Seam in an application server environment, it must be hooked into the
life cycle of the servlet container. When the application starts, the servlet container
bootstraps Seam, at which time Seam loads its contextual container, scans for compo-
nents, and begins serving out component instances. Once running, the servlet con-
tainer also notifies Seam when HTTP sessions are opened and closed. Seam also
enrolls itself in servlet requests by registering a servlet filter, a servlet, and a JSF phase
listener. It is through these servlet and JSF phase events that Seam manages its con-
tainer and enhances the default JSF life cycle.

 Before getting knee-deep into configurations, I want to provide context to the phrase
life cycle, as it’s being thrown around quite casually. I’ve referred to a servlet context life
cycle, a request life cycle, a JSF life cycle, and a Seam life cycle. Let’s sort them out.

 The servlet context life cycle represents the entire lifespan of the web application. It is
used to bootstrap services, such as the Seam container. The request life cycle, on the
other hand, is the overarching life cycle for a single request. It envelops the JSF and
Seam life cycles. It lasts from the time the browser requests a URL handled by the

85Exploring how Seam participates in a request
application to the time the server finishes sending the request to the browser. The JSF
life cycle is fairly limited in scope. It’s confined to the service() method of the JSF serv-
let and doesn’t concern itself with non-JSF requests. The Seam life cycle is broader. On
the one hand, it works alongside the JSF life cycle, weaving in extra services at strategic
extension points. On the other hand, it extends beyond the JSF life cycle, both verti-
cally, capturing events that occur outside the scope of the JSF servlet, and horizontally,
by participating in non-JSF requests. You can think of the Seam life cycle as an evolu-
tion of the JSF life cycle.

 In this section, you learn how to register Seam to participate in servlet requests.
The configurations covered here are simply a review of what seam-gen has already pre-
pared for you. However, if you’re starting an application from scratch without seam-
gen, you’ll have to perform these steps in order to use Seam. Let’s begin by learning
how to “turn on” Seam.

3.1.1 Flipping Seam’s switch

A servlet life cycle listener is notified as soon as the application with which it is regis-
tered is initialized. Seam uses this life-cycle event to bootstrap itself. You register the
SeamListener by adding the following XML stanza to the application’s web.xml
descriptor, located in the WEB-INF directory:

<listener>
 <listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

As soon as Seam is called into action, it begins scanning the classpath for components.
The component scanner places the definition for components that it locates into the
Seam container. Any components marked as application-scoped startup components
(i.e., annotated with both @Startup and @Scope(ScopeType.APPLICATION)) are auto-
matically instantiated by Seam at this time. Startup components are ideal for perform-
ing “bootstrap” logic, such as updating the database or registering modules.

 The SeamListener also captures notifications when new HTTP sessions are started,
at which time it instantiates startup components that reside in the session scope (i.e.,
annotated with both @Startup and @Scope(ScopeType.SESSION)). All other compo-
nents are instantiated on demand during the processing of an HTTP request. You’ll
learn all about components and how Seam locates, starts, and manages them in the
next chapter.

 Once Seam is running, it’s ready to lend a hand with incoming requests. A majority
of that work is done in the JSF servlet, so let’s see how Seam ties in with JSF.

3.1.2 The JSF servlet, the workhorse of Seam

Given that Seam is so deeply invested in JSF (though not tied to JSF), it should come as
no surprise to you that the main servlet in a Seam application is the JSF servlet. This
servlet could easily be named the Seam servlet because of how much Seam-related
activity occurs within it. If you’re using JSF in your project, or you started with seam-gen,
then your web.xml descriptor already has the necessary servlet configuration. If not,

86 CHAPTER 3 The Seam life cycle
add the following two XML stanzas to your application’s web.xml descriptor to enable
the JSF servlet:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.seam</url-pattern>
</servlet-mapping>

Notice that the mapping pattern is defined as *.seam rather than the default for JSF
requests, *.jsf. Applications created by seam-gen are configured to this Seam-branded
extension for the JSF servlet mapping. You are free to use the extension of your choos-
ing. The change to the servlet pattern is, for the most part, cosmetic. However, the
choice of which view technology to use with JSF is far more significant.
A COMMITMENT TO FACELETS

There is an important change that you should consider making to your JSF technology
stack if you haven’t done so already. Seam developers strongly recommend using Facelets
as the JSF view handler in place of JavaServer Pages (JSP). JSF and JSP have an inherant
mismatch that causes a great deal of pain for the developer. The purpose of JSP is to pro-
duce dynamic output, while JSF component tags are intended to produce a UI compo-
nent model capable of rendering itself. These vastly different goals clash at runtime.

 Facelets is a lightweight, XML-based view technology that parses valid XML docu-
ments with the sole intent of producing the JSF UI component tree. It provides com-
ponent tags that are translated natively into UI components and dually wraps non-JSF
markup, including inline EL, into JSF text components (meaning you no longer need
<f:verbatim>1 for outputting HTML or <h:outputText> for outputting a value
expression). As a result, the need for the JSP tag layer, as well as the entire overhead of
JSP compilation, is eliminated.

 Facelets accommodates the same familiar XML-based tags as JSP, making its adoption
very easy, but it purges the problems that seek to complicate JSP, such as its pseudo, non-
validating XML syntax and the permitted use of Java scriptlets. Originally, Facelets was
attractive because it delivered JSF 1.2 features before the JSF 1.2 implementations were
ready and capable of being run on servlet containers such as Tomcat. The value of Face-
lets extends beyond its early utility because it removes the coupling between JSF and JSP
and, more importantly, the variance of JSP versions across containers.

 Facelets is more than just a view parser. It offers an extensible templating system
akin to Struts Tiles. You create templates, known in Facelets as compositions, to
define page layouts. A page inherits the template’s layout by extending it and con-
tributing unique content to specially marked regions. Compositions can also serve as
reusable page fragments. In fact, a composition can act as a UI component itself.

1 This tag is necessary in JSP to wrap plain HTML markup as a JSF UI component or else it is skipped.

87Exploring how Seam participates in a request
Using this feature, you can build new JSF components without having to write a line
of Java.

 To use Facelets, you have to register the Facelets view handler in the faces-
config.xml descriptor, which is located in the WEB-INF directory:

<faces-config>
 <application>
 <view-handler>com.sun.facelets.FaceletViewHandler</view-handler>
 </application>
</faces-config>

Next, you need to get JSF to look for Facelets templates rather than JSPs, the default.

Examining the project tree created by seam-gen, you should
recognize an abundance of files ending in .xhtml in the view
directory. The .xhtml extension is the default suffix for Face-
lets view templates. However, the default behavior of JSF is to
map the incoming request for a JSF view identifier, or view ID
for short, to a JSP file with the file extension .jsp. To get JSF to
look for a Facelets template instead, you must register the
.xhtml extension as the default suffix for JSF views in the
web.xml descriptor using a servlet context parameter:

<context-param>
 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>
 <param-value>.xhtml</param-value>
</context-param>

Figure 3.1 illustrates how an incoming JSF request is processed
and translated into a UI component tree. The JSF servlet map-
ping extension (e.g., .seam) tells the servlet container to direct
the request to the JSF servlet, FacesServlet. The servlet map-
ping extension is stripped and replaced with the javax.
faces.DEFAULT_SUFFIX value to build the view ID. The JSF serv-
let then hands the view ID to the registered view handler,
FaceletViewHandler. Facelets uses the view ID to locate the
template. It then parses the document and builds the UI com-
ponent tree.

Using Facelets with Ajax4jsf/RichFaces
At one time the Facelets view handler had to be registered using a web.xml context
parameter, org.ajax4jsf.VIEW_HANDLERS, when Facelets was used in combination
with Ajax4jsf/RichFaces. This requirement is no longer necessary. You only need this
context parameter if you’re using more than one view handler and you want to set the
order in which they are called. Otherwise, you can simply register the Facelets view
handler in the faces-config.xml descriptor.

FacesS ervle t

Face le tV iew H andler

C ourseL ist.xh tm l

/C ourseL ist.seam

Figure 3.1 Translation
from servlet path to UI
component tree, which
is built by Facelets

88 CHAPTER 3 The Seam life cycle
NOTE One of the pitfalls of JSF is that the file extension of the view template is
hard-coded as part of the view ID. The view ID not only determines what
template is to be processed, but is also used to match against navigation
rules. Therefore, a change to javax.faces.DEFAULT_SUFFIX affects all
places where the view ID is referenced.

Seam goes beyond just swapping in the Facelets view handler—it leverages Facelets
compositions to keep the JSF views DRY (Don’t Repeat Yourself).
FACELETS COMPOSITIONS

JSF is clumsy when it comes to including dynamic markup in a page, something Facelets
addresses as a primary feature. Facelets is founded on the idea of compositions. A com-
position is a branch of a UI component tree, defined using the <ui:composition> tag.
Unlike JSF subviews, a composition fuses the branch into the component tree without
leaving a trace of itself. A composition tag also has templating abilities, which means that
it can accept markup as a parameter and incorporate that markup into the fused branch.

 Seam’s UI component library (see the accompanying sidebar) includes the tag
<s:decorate> that extends the functionality of <ui:composition>, adding to it pre-
defined template facets and features that cater to the rendering of form input fields.
Let’s consider an example of how the <s:decorate> tag helps minimize redundant
markup in a form-based JSF view.

As you’d expect, every form has fields and those fields must have labels. But to do it
right, you also need to have a marker to indicate required fields (often represented as
a “*”) and a place for an error message when validation fails. To round things off, you
want to centralize the HTML used to lay out the label and input for each field so that
the look is consistent and can be easily changed. Listing 3.1 shows typical markup that
you need for each field. It’s certainly a lot of typing (or will lead to a lot of copy-paste).

<div class="prop">
 <h:outputLabel for="name" styleClass="name">
 Name: *
 </h:outputLabel>

Listing 3.1 A field in a JSF form using standard markup

Seam’s UI component library for JSF
Seam bundles a UI component library for JSF (in the jboss-seam-ui.jar file). The com-
ponent tags fall under the http://jboss.com/products/seam/taglib name-
space and are usually written with the prefix “s”. The aim of this component set is
to further extend JSF in areas where it is deficient, serving as controls rather than
rich widgets. There are tags for creating RESTful command links and buttons, tem-
plating, custom validators and converters, and page fragment caching, to cite sev-
eral examples. Note that several of these tags may only be used in conjunction with
Facelets (not JSP).

B
C

89Exploring how Seam participates in a request
 <h:inputText id="name" required="true"
 value="#{courseHome.instance.name}">
 <f:validateLength minimum="3" maximum="40"/>
 </h:inputText>

 <h:message for="name" styleClass="errors"/>

</div>

The main problem with this markup is not so much that it is verbose, but that there’s
a lot of repetition. And this is just a single field! The identifier (id) of the field appears
three times: at B, D, and F. The required symbol C has to be consistent with the
required attribute on the field D. There’s no easy way to add an error icon that’s ren-
dered only if an error occurs on the field F because JSF doesn’t make that flag available
on a per-field basis. Each field must be validated explicitly using nested validation
tags E. Finally, the layout and associated CSS classes are hard-coded into each field,
which makes them difficult to change or augment later on a page-wide or site-wide basis.

 In contrast, you’ll find the form field declaration in listing 3.2 to be far more rea-
sonable. This substitute markup uses <s:decorate> to push most of the aforemen-
tioned work to the Facelets composition template view/layout/edit.xhtml, shown in
listing 3.3. Now, instead of laying out and formatting the field, the focus of the
markup is on providing the template with what it needs to do this work. Every charac-
ter typed is providing vital information with minimal repetitive elements. In addition,
a change to the template is propagated to all fields.

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:s="http://jboss.com/products/seam/taglib"
 xmlns:a="http://richfaces.org/a4j">
 ...
 <s:decorate id="nameField" template="layout/edit.xhtml">
 <ui:define name="label">Name:</ui:define>
 <h:inputText id="name" size="50" required="true"
 value="#{courseHome.instance.name}">
 <a:support event="onblur" reRender="nameField"
 ajaxSingle="true" bypassUpdates="true"/>
 </h:inputText>
 </s:decorate>
 ...
</ui:composition>

Although not a feature provided by the template, the input field has been augmented
to perform instant validation upon losing focus, instrumented by the Ajax4jsf
<a:support> tag. But what about the <f:validateLength> tag? Its absence doesn’t
mean that the validation requirement has been lifted. Instead, this common bit of func-
tionality has been pushed into the input field template, shown in listing 3.3. There, the
validations are applied to the input component automatically using another custom

Listing 3.2 A JSF form field decorated by the layout/edit.xhtml composition template

D

E

F

Imports Seam UI
component set

Defines named
template
parameter

Defines unnamed
template
parameter

90 CHAPTER 3 The Seam life cycle
Seam UI component, <s:validateAll>, which enforces validation rules declared using
Hibernate Validator annotations on the corresponding entity class property.

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:s="http://jboss.com/products/seam/taglib">

 <div class="prop">
 <s:label styleClass="name #{invalid ? 'errors' : ''}">
 <ui:insert name="label"/>
 <s:span styleClass="required" rendered="#{required}">*</s:span>
 </s:label>

 <s:validateAll>
 <ui:insert/>
 </s:validateAll>

 <h:graphicImage value="/img/error.gif"
 rendered="#{invalid}" styleClass="errors"/>
 <s:message styleClass="errors"/>

 </div>

</ui:composition>

Although this template appears complex, it isolates all of that complexity into a sin-
gle document. The root of the template is <ui:composition> B, which indicates
that the markup should be fused into the parent JSF tree. Tag libraries are declared
as XML namespaces on the root element, similar to the XML-based JSP syntax. The
composition accepts two insertions. The first is a named insertion for supplying a
label C, and the second is an unnamed insertion for supplying any number of input
fields E. The <s:decorate> tag sets two implicit variables, required and invalid,
which indicate if the input field is required and whether it has an outstanding valida-
tion error, respectively.

 You may notice that this template doesn’t use standard JSF component tags for
the field label and error message. Instead, they are replaced with equivalent Seam
component tags, <s:label> and <s:message>. The benefit of using the Seam tags is
that they are automatically correlated with the adjacent input component, a feature
of <s:decorate>.

 The <s:validateAll> tag D enveloping the unnamed insertion activates the Hiber-
nate Validator for any input components it passes in. The Hibernate Validator can also
be registered by nesting <s:validate> within the component tag. For the field in listing
3.2, the following annotation on the name property of the Course entity would ensure
that the number of characters entered is greater than 3 but doesn’t exceed 40:

@Length(min = 3, max = 40)
public String getName() { return this.name; }

Listing 3.3 The layout/edit.xhtml composition template for input fields

B

C

D
E

91Exploring how Seam participates in a request
The Hibernate Validator validations are applied twice, once in the UI to provide the
user feedback, thanks to the Hibernate Validator-JSF validator bridge registered by the
<s:validateAll> component tag, and once before the entity is persisted to ensure no
bad data ends up in the database. The model validations are applied alongside other
validators registered with the input component.

 seam-gen includes a similar template for displaying field values, view/layout/
display.xhtml, and a master composition template, view/layout/template.xhtml, that
provides the layout for each page. The master template accepts a single named inser-
tion, body, which injects primary page content into the template. Any markup outside
of the <ui:define> tag is ignored. This example page uses the master template:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 template="layout/template.xhtml">
 {this text is ignored}
 <ui:define name="body">
 main context goes here
 </ui:define>
 {this text is ignored}
</ui:composition>

Facelets offers additional features that you may find helpful for defining your JSF
views. One of the most enticing features is the ability to create JSF components purely
using XHTML markup (no Java code). Given that the task of creating a JSF component
in the standard way is so involved, this can save you a lot of time. It’s also a great way to
prototype a JSF component before you commit to creating it. To learn more about
what Facelets has to offer, consult the Facelets reference documentation.2

 Most of the calls in a JSF application go through the JSF servlet. However, in some
cases you need to send other types of resources to the browser that are not managed
by the JSF life cycle. Seam uses a custom servlet to handle this task.

3.1.3 Serving collateral resources via the Seam resource servlet

The JSF specification doesn’t provide guidance on how to push supporting resources,
such as images, Cascading Style Sheets (CSS), and JavaScript files, to the browser. The
most common solution is to serve them from a custom JSF phase listener that traps
requests matching designated path names. Rather than getting mixed up in the JSF life
cycle, Seam uses a custom servlet to serve such resources, sidestepping the life cycle and
thus avoiding the unnecessary overhead. Using a separate servlet is justifiable since the
steps involved in serving a resource are inherently different from those of processing an
application page, eliminating the need for a comprehensive life cycle.

 To configure the resource servlet, place the following servlet stanzas above or
below the JSF servlet configured earlier. The URL pattern for this servlet must be dif-
ferent than the pattern used for the JSF servlet:

2 https://facelets.dev.java.net/nonav/docs/dev/docbook.html

92 CHAPTER 3 The Seam life cycle
<servlet>
 <servlet-name>Seam Resource Servlet</servlet-name>
 <servlet-class>
 org.jboss.seam.servlet.SeamResourceServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Seam Resource Servlet</servlet-name>
 <url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

The SeamResourceServlet uses a chaining model to minimize the configuration you
perform in the web.xml descriptor. Seam uses this servlet to

■ Serve JavaScript files for the Ajax Remoting library
■ Handle Ajax Remoting requests
■ Serve CAPTCHA images (visual-based challenges to circumvent bots)
■ Serve dynamic images
■ Integrate with Google Web Toolkit (GWT) (and other RPC view technologies)

Keep in mind that Seam operates just fine without this servlet, but these extra features
listed won’t be available. Seam may use this servlet for other purposes in the future. If
you have it installed, you won’t have to worry about changing your configuration to
take advantage of new features that rely on it.

 In addition to the resource servlet, which allows Seam to process non-JSF requests,
Seam offers a servlet filter, which it uses to operate beyond the reach of both the JSF
servlet and the custom resource servlet. Let’s see how the servlet filter is registered
and what it can do for you.

3.1.4 Seam’s chain of servlet filters

Servlet filters wrap around the entire request, executing logic before and after the
servlet handling the request. Seam uses a single filter to wrap the JSF servlet in order
to trap scenarios that fall outside of the JSF life cycle—or that JSF fails to capture. But
Seam’s filter isn’t limited to JSF requests. It canvases all requests, allowing non-JSF
requests to access the Seam container as well. Seam can function without relying on
filters, but the services it adds are worth the small effort of getting them installed.

 The Seam filter must be positioned as the first filter in the web.xml descriptor.
By not putting this filter first, you run the risk of some features not functioning prop-
erly. To register it, place the following two stanzas above all other filters in the web.xml
descriptor:

<filter>
 <filter-name>Seam Filter</filter-name>
 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>Seam Filter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

93Exploring how Seam participates in a request
Although there’s only a single filter definition shown here, I’ve alluded to the existence
of more than one filter. Seam uses a chaining model, trapping all requests and delegat-
ing to any filter registered with the Seam container. This delegation model3 minimizes
the configuration that you need in web.xml descriptor. Once the SeamFilter is
installed, the remaining configuration of Seam-controlled filters occurs in the Seam
component descriptor.
SEAM’S BUILT-IN FILTERS

Filters registered in the Seam component descriptor (e.g., /WEB-INF/compo-
nents.xml) are managed by the master SeamFilter using a chain delegation model.
Every filter supports two properties, url-pattern and disabled, to control which
incoming requests are trapped. By default, Seam applies all of the filters in the chain
to all requests captured by the filter. You can reduce the matched set of requests by
providing an override pattern in the url-pattern attribute of the servlet configura-
tion. It’s also possible to disable a filter outright by setting the disabled attribute to
true. The component configuration syntax used to configure these filters is covered in
section 5.3.3 of chapter 5.

 The filters that are included with Seam at the time of writing are summarized in
table 3.1. The table explains the purpose of each filter, lists the additional configura-
tion properties, and indicates under what conditions they are installed.

3 The article “Follow the Chain of Responsibility” (http://www.javaworld.com/javaworld/jw-08-2003/jw-0829-
designpatterns.html) gives a nice explanation of the chain of responsibility pattern that is employed by the
SeamFilter.

Table 3.1 The built-in Seam filters

Component/Purpose Additional configuration Installed?

ExceptionFilter

Handles exceptions generated in
the JSF life cycle; performs trans-
action rollbacks.

None Yes

RedirectFilter

Propagates conversations and
page parameters across redirects
for navigations defined in faces-
config.xml.

None Yes

MultipartFilter

Processes file uploads from the
Seam upload UI component.

create-temp-files

Controls whether a temporary
file is used instead of holding
the file in memory

max-request-size

Aborts request if file is used
being uploaded is larger than
this limit (in bytes)

Yes

http://www.javaworld.com/javaworld/jw-08-2003/jw-0829-designpatterns.html
http://www.javaworld.com/javaworld/jw-08-2003/jw-0829-designpatterns.html

94 CHAPTER 3 The Seam life cycle
These filters each offer specific features that contribute to enhancing the narrowly
scoped JSF life cycle. For instance, the ExceptionFilter allows Seam to capture all
exceptions that are thrown during request processing, something that servlets alone
cannot encompass. I cover exception handling in Seam near the end of this chapter. As
fine-grained as the JSF life cycle is, its scope is limited to the JSF servlet alone. The
ContextFilter opens access to the Seam container and its context variables to non-JSF
servlets, such as Struts, Spring MVC, and Direct Web Remoting (DWR). Although a

LoggingFilter

Binds the username of the authen-
ticated user to the Log4j Mapped
Diagnostic Context (MDC),a refer-
enced using the literal pattern
%X{username}.

none Yes, if Log4j is on the class-
path; uses the Seam identity
component

CharacterEncodingFilter

Sets the character encoding for
submitted form data.

encoding

The output encoding (i.e., UTF-8)

override-client

Ignores client preference

No

Ajax4jsfFilter

Configures the Ajax4jsf filter that
ships with the Ajax4jsf library.
Eliminates the need to have to set
up this filter individually in the
web.xml descriptor.

force-parser

Applies XML syntax checker to all
requests, not just Ajax ones

enable-cache

Caches generated resources

Yes, if Ajax4jsf is on the
classpath

ContextFilter

Enables Seam container and con-
texts for non-JSF requests. Should
not be applied to JSF requests as
it causes duplicate logic to be per-
formed, leading to undefined
results.

None No

AuthenticationFilter

Provides HTTP Basic and Digest
authentication.

realm

The authentication realm

auth-type

Basic or digest

key

Used as a salt for the digest

nonce-validity-seconds

Length of time the security token
is valid, helping to prevent replay
attacks

No

a.The MDC is a thread-bound map that allows third-party libraries to contribute to the log message. The MDC is described
in this wiki page: http://wiki.apache.org/logging-log4j/NDCvsMDC.

Table 3.1 The built-in Seam filters (continued)

Component/Purpose Additional configuration Installed?

http://wiki.apache.org/logging-log4j/NDCvsMDC

95Exploring how Seam participates in a request
majority of Seam’s work is done in the JSF servlet, these additional filters allow Seam to
extend the boundaries of its life cycle above and beyond the reach of the JSF servlet.

 That covers the configurations necessary to hook Seam into the servlet life cycle.
But wait a minute; aren’t we missing the JSF phase listener configuration? After all,
that’s how Seam is able to tap into the JSF life cycle.

3.1.5 The Seam phase listener

Considering that many of Seam’s enhancements to JSF are performed in a JSF phase
listener, SeamPhaseListener, it would appear as if there’s one more configuration to
put in place. But there isn’t—at least, it isn’t necessary. Seam leverages a design fea-
ture of JSF that allows for any faces-config.xml descriptor available on the classpath to
be loaded automatically. In Seam 2.0, the Seam phase listener is declared in a faces-
config.xml descriptor that’s included in the core Seam JAR file, jboss-seam.jar. Thus,
the phase listener is available as soon as you include this JAR file in your application.
The stanza that registers the Seam phase listener is as follows:

<lifecycle>
 <phase-listener>
 org.jboss.seam.jsf.SeamPhaseListener
 </phase-listener>
</lifecycle>

Although you aren’t required to add this declaration to your faces-config.xml descrip-
tor, that doesn’t mean you can’t adjust how it operates. Configuration settings that
affect this phase listener are adjusted in the Seam component descriptor (using
<core:init>). You can control such things as transaction management, debug mode,
and the JNDI pattern used to locate EJB components. I explain component configura-
tion in chapter 5.

 If the Seam debug JAR file, jboss-seam-debug.jar, is included on the classpath, and
Seam is running in debug mode, Seam registers an additional JSF phase listener, Seam-
DebugPhaseListener. The sole purpose of this phase listener is to trap requests for the
servlet path /debug.seam (assuming the JSF servlet extension mapping .seam) and ren-
der a developer debug page. This debug page introspects various Seam contexts (con-
versation, session, application, business process) and lets you browse the objects stored
in them. Information about the long-running conversations in the current session is dis-
played and conversations can be selected to reveal the objects stored in them. The
debug page is also used to display the exception summary when the application faults.

 That wraps up the configuration necessary to allow Seam to partake in requests.
From here on, I’ll refer to the combination of the Seam servlet filter and the JSF life
cycle, which Seam now has a hand in, as the Seam life cycle. Figure 3.2 illustrates the two
paths that a request can take as it enters the Seam life cycle. The SeamFilter can also
wrap additional servlets such as Struts, Spring MVC, or DWR, allowing you to tap into
the Seam container from these third-party frameworks as needed.

 With the configuration of Seam out of the way, let’s take a step back and consider
what the JSF life cycle is like without Seam. The goal of this exercise is to gain an
appreciation for the assumptions made by the JSF specification and where those

96 CHAPTER 3 The Seam life cycle
assumptions come up short. Contrasting the native JSF life cycle with the version
enhanced by Seam helps you understand why Seam is relevant and clarifies when you
should choose the Seam facilities over the JSF equivalents that they replace. I’ll start by
reviewing the general principles of JSF and then walk you through the JSF life cycle.

3.2 The JSF life cycle sans Seam
It’s certainly possible to learn how to develop a JSF application while remaining naive
of the fact that there’s an underlying life cycle that processes each request. Figure 3.3
shows the leap the JSF designers want you to make between the click of a command
button (e.g., <h:commandButton>) and the invocation of an action method on a
server-side component that’s registered with the command button using an EL
method binding expression.

 This event-driven relationship is one of the fundamental ways that JSF is supposed to
make web development easy. The direct binding between the command button and
the server-side component weeds out most, if not all, of the low-level details of the
HTTP request that you would otherwise have to address, instead getting you right
down to the business logic. There is no HttpServletRequest, HttpServletResponse,
or ActionForm (for you Struts developers) to have to concern yourself with. It’s per-
fect… too perfect.

 JSF developers often fall victim to the leaky abstraction.4 When the use case fits, life
is grand and you don’t need to know how the request is handled by JSF. You just know
that your action method is executed when a certain button is clicked. However, when

4 http://www.joelonsoftware.com/articles/LeakyAbstractions.html: According to Joel Spolsky, all nontrivial
abstractions are, to some degree, leaky.

S eam R esource S ervle t
/seam /resource /*

JS F S ervle t
*.seam

S eam F ilte r /*

S
ea

m
 P

ha
se

 L
is

te
ne

r

Figure 3.2 Requests are
preprocessed by the Seam filter,
proceeding to the JSF servlet or
the Seam resource servlet.

<h:commandButton
action="#{registerAction.register}"
value="Register"/>

@Name("registerAction")
RegisterAction {

public void register() {
...

}
}

Figure 3.3 A rudimentary
look at event-driven behavior
in JSF. Method-binding
expressions on command
buttons trigger methods on
server-side components—
in this case a Seam
component—when activated.

http://www.joelonsoftware.com/articles/LeakyAbstractions.html

97The JSF life cycle sans Seam
things get messy, as they often do in the real world in which our applications live, you
need to know what’s going on inside. That means it’s time to hit the books and learn
the phases of the JSF life cycle. Since this book focuses on Seam, we’re only looking at
the life-cycle phases as a means to better understand what Seam does to improve on
them. To study the JSF life cycle in greater depth, consult the JSF resources recom-
mended in the introduction of this book (The JSF for Nonbelievers series published by
IBM developerWorks, JavaServer Faces in Action [Manning, 2005], and Pro JSF and Ajax
[Apress, 2006]).

3.2.1 The JSF life-cycle phases

The JSF life cycle decomposes a single servlet request—typically sent over
HTTP—into six distinct phases. Each phase focuses on one task in a progressive
chain that ultimately results in sending a response back to the browser. By executing
these steps incrementally, it gives frameworks, such as Seam, the ability to get inti-
mately involved in the life cycle (in contrast to servlet filters, which only get the
before and after picture). Each phase raises an event both before and after it exe-
cutes. Classes that want to be notified of these phase transition events, perhaps to
execute arbitrary logic or weave in additional services, are called phase listeners.
Phase listeners must implement the PhaseListener interface and be registered with
the JSF application, just like the SeamPhaseListener. The phase listener serves as the
backbone of Seam’s life cycle.

 The six phases of the JSF life cycle are shown in figure 3.4. Execution occurs in a
clockwise manner. We have not yet activated the life cycle, which is why there are no
arrows in this initial diagram. In the next two sections, you’ll discover the path that a
request takes through this life cycle as we put it into motion.

 The JSF life cycle phases perform their work on a component hierarchy. This
tree of components is similar to the Document Object Model (DOM) that’s built for an
HTML page (typically exposed
through JavaScript). Each node of the
component tree is responsible for an
element in the rendered page. JSF
uses this tree to keep track of events
that are triggered from those compo-
nents. Having an object representa-
tion of the rendered view makes it easy
to apply partial page updates using
Ajax (Ajax4jsf is one library that pro-
vides this feature).

 JSF can handle two types of
requests: an initial request and a post-
back. Let’s start by looking at how an
initial request is processed.

JS F S erv le t

R estore
V iew

Invoke
A pplica tion

R ender
R esponse

U pdate M odel
V a lues

A pply R equest
V a lues

P rocess
V alida tions

Figure 3.4 The six phases of the JSF life cycle are
executed in a clockwise manner.

98 CHAPTER 3 The Seam life cycle
3.2.2 The initial request

Every user interaction in a web appli-
cation starts with an initial request for
a URL. The source may be a bookmark,
a link in an email or on another web
page, or as a result of the user typing in
the URL directly. However it occurs,
there is no prior saved state. That
means there are no actions and thus
no form data to process. Initial
requests to the JSF servlet use an abbre-
viated life cycle of only two phases, as
shown in figure 3.5.

 In the first phase, Restore View, the
only activity that occurs is the cre-
ation of an empty component tree.
The request then proceeds immedi-
ately to the Render Response phase,
skipping most of the life cycle. It does
not pass Go, it does not collect the proverbial $200.5 An initial request isn’t designed
to handle any events or process form data.6

 The main activity on an initial request happens in the Render Response phase. In this
phase, the request URL is examined to determine the value of the view ID. Next, the
template associated with this view ID is passed to the view handler, parsed, and con-
verted into a UI component tree, which was illustrated in figure 3.1.

 While the template is being read, two things happen. The component hierarchy is
built and the response to the client is prepared by “encoding” each component.
Encoding is a way of saying that the component spits out generated markup, typically
XHTML, though JSF can accommodate any type of output. The generated response
includes elements that are “bound” to server-side components. Input and output ele-
ments bind to properties on backing bean components, while links and buttons bind to
methods on action bean components. A single component can serve in both roles. In
the absence of Seam, components must be defined in the faces-config.xml descriptor
as managed beans. When an event is triggered on the page, it launches JSF into a post-
back, which we’ll get to next.

 Once the entire response has been rendered, the UI component tree is serial-
ized and either stuffed into the response sent to the client or saved in the HTTP ses-
sion under a unique key. The state of the UI component tree is stored so that on a

5 This reference is to the game of Monopoly by Parker Brothers. When you get sent to Jail, you pass by the pay-
day square on the board.

6 It’s possible to implement a phase listener to perform this work, but as you’ll see, Seam handles these tasks
without any work on your part.

C lien t B row ser

JS F S erv le t

R estore
V iew

Invoke
A pplica tion

R ender
R esponse

U pdate M odel
V a lues

A pply R equest
V a lues

P rocess
V alida tions

Figure 3.5 The life cycle phases used on an initial
request for a JSF page

99The JSF life cycle sans Seam
subsequent postback, changes to the form input values can be applied to the proper-
ties bound to7 them and any events can be enqueued and subsequently invoked.

7 http://wiki.glassfish.java.net/Wiki.jsp?page=JavaServerFacesRI

Server-side vs. client-side state saving in JSF
No technology platform would be complete without a vanilla versus chocolate debate.
For JSF, that debate is whether to store the UI component tree on the server or on
the client. Let’s consider the two options.

In server-side state saving, the UI component tree is stored in the user’s HTTP ses-
sion. A token is sent along with the response and stored in a hidden form field. The
token value is used to retrieve the component tree from the session on a postback.
Server-side state saving is good for the client but bad for the server (because it
increases the size of the HTTP session).

In client-side state saving, the UI component tree is serialized (using the standard
Java serialization mechanism), compressed, encoded, and sent along with the
response. The whole process is reversed on a postback to reinstate the component
tree. Client-side state saving is bad for the client (because it increases the size of
the exchanged data) but good for the server.

So which should you choose? In my opinion, the choice is clear. Never make your cus-
tomer or your web server suffer. If you have an opportunity to reduce bandwidth
usage, take it. The connection to the client is often unpredictable. While some cus-
tomers may be able to take the large pages in stride, others may experience signifi-
cant lag. There is an even more compelling reason to use server-side state saving.
JSF-based Ajax requests must reinstate the component tree, so if you use client-side
state saving, what was once a trickle of information going from the browser to the
server on an Ajax request is now a massive exchange. Server-side state saving limits
the extra overhead to the value of the token. The one benefit to client-side state sav-
ing is that it’s not affected by session expiration. However, if the session expires,
there could be a deeper impact.

The state-saving method is set using a top-level context parameter named javax.
faces.STATE_SAVING_METHOD in the web.xml descriptor. The web.xml descriptor
installed by seam-gen doesn’t include this context parameter, so the setting falls
back to the JSF default, which is server-side state saving.

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
</context-param>

Each JSF implementation offers ways to tune the memory settings for state saving.
seam-gen projects use Sun’s JSF implementation (code-named Mojarra), so consult
the Mojarra FAQ7 to learn about the available settings.

http://wiki.glassfish.java.net/Wiki.jsp?page=JavaServerFacesRI

100 CHAPTER 3 The Seam life cycle
Before moving on to postback, let’s consider a couple of the assumptions made by this
abbreviated life cycle. The initial request assumes that

■ No logic needs to happen before the response is generated
■ The user has permission to view this page
■ The page requested is an appropriate place to begin within the application flow

 I’m sure you can think of a handful of situations from the applications that you
have developed in which these assumptions don’t hold true. The initial request is the
Achilles’ heel of JSF. You’ll soon discover that, thanks to Seam, there’s a better way.

 As bad as JSF is at handling the initial request, it does a pretty good job of handling
a postback. After all, that’s what JSF was primarily designed to do. Let’s check it out!

3.2.3 The postback

Unless a condition occurs that short-circuits the process, a postback exercises the full JSF
life cycle, illustrated in figure 3.6. The ultimate goal of a postback is to invoke an action
method during the Invoke Application phase, though various ancillary logic may accom-
pany this primary activity. During a postback, a short-circuit may happen as the result of
a validation or conversation error, an event designated as “immediate,” or a call to the
renderResponse() method on the FacesContext. In the event of a short-circuit, control
is passed to the Render Response phase to prepare the output to be sent to the browser.
If a call is made to the responseComplete() method on the FacesContext at some point
during the life cycle, even the Render Response phase is skipped.

 The Restore View phase of a postback restores the component hierarchy from the state
information stored in the client or server, rather than just creating an empty shell. In
the Apply Request Values phase, each
input component retrieves its value
from the submitted form data and
any events (such as a button click or
a notification of a changed value)
are queued. The next two phases
deal with massaging the submitted
values and, if all validations and con-
versions are successful, assigning the
values to the properties on the
object (or objects) to which the form
inputs are bound (the Update Model
Values phase).

 The life cycle hands control
back over to the application during
the Invoke Application phase, which
triggers the method bound to the
action of the command component
that initiated the postback. If any

C lien t B row ser

JS F S erv le t

R estore
V iew

Invoke
A pplica tion

R ender
R esponse

U pdate M odel
V a lues

A pply R equest
V a lues

P rocess
V alida tions

Figure 3.6 During a postback, the full JSF life cycle is
used unless short-circuited by an error.

101The JSF life cycle sans Seam
action listeners have been registered with the command component, they are exe-
cuted first. However, only the action method affects navigation.

 Following the execution of the action method, the navigation rules defined in faces-
config.xml are consulted to decide where to go next. If the return value of the action
method is null or the method return type is void, and there are no rules that match the
EL signature of the method (the method-binding expression), then the same view is
rendered again. If the return value of the action method is a non-null string value, or
there is a rule that matches the method’s EL signature, then the rule dictates the next
view to be rendered. The presence of the <redirect/> element in the rule indicates
that a redirect should be issued prior to rendering the next view, rather than rendering
the view immediately in the same request, which is the default. A redirect results in a
new initial request. An example of a navigation rule is shown here:

<navigation-rule>
 <from-view-id>/register.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{registerAction.register}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/welcome.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

That concludes your crash course in JSF. Let’s reflect on what you just learned and
address several holes in the aforementioned life cycle. This discussion will lead us into
Seam’s most targeted improvement to JSF: advanced page orchestration.

3.2.4 Shortcomings of the JSF life cycle

As I’ve mentioned a number of times in this chapter, JSF is well designed, but there’s no
denying that it has some quirks. In this section I want to enumerate them so that it’s
clear what problem Seam is attempting to solve. I am hard on JSF in this section, per-
haps unnecessarily so, because I want to emphasize that Seam addresses the concerns
people have with JSF so that the Seam/JSF combination is an attractive choice as a web
framework. The weaknesses in JSF begin with the initial request. So, let’s start there.
LIFE BEFORE THE FIRST ACTION

The two styles of request in JSF are very lopsided. On the one hand, you have an ane-
mic initial request that hardly does more than serve the page. On the other, you have
a robust and sophisticated postback that exercises the entire life cycle and triggers all
sorts of activity. There are times when you need the services of a postback on an ini-
tial request.

 Frameworks like Struts allow you to invoke an action as soon as a page is requested.
JSF, in contrast, assumes that the first activity will come after a page has been rendered.
Lack of a front controller makes it difficult to implement functionality such as RESTful
URLs, security checks, and prerender navigation routing (unless you’re willing to
place this logic in a phase listener or at the top of the view template). It also makes it
tough for other frameworks to interact with a JSF application since JSF doesn’t expose

102 CHAPTER 3 The Seam life cycle
a mechanism for invoking action methods from a regular link. You’ll see in the next
section that Seam allows page actions, and navigation events that result from them, to
occur on an initial request.

NOTE Savvy JSF readers may point out that a custom PhaseListener can be
used to execute code prior to the Render Response phase. However, doing
so requires a lot of redundant work on your part to achieve what Seam
gives you right out of the box. Not only do you have to instrument a lot of
boilerplate code, you end up hard-coding the view IDs—easily the most
irresolute component of the application—into your compiled Java code.
Seam allows you to externalize these mappings in a configuration file.

The back-loaded design of JSF leads us into the next problem: the postback becomes
the predominate means of navigation in JSF.
EVERYTHING IS A POST
The critics of JSF often point to its reliance on POST requests (i.e., submitting a form)
as its biggest downfall. On the surface, this may appear to be just a cosmetic problem,
but in fact it is more severe. The browser is very boorish when dealing with POST
requests. If users click the browser Refresh button after invoking a JSF action, the
browser might prompt them to make a decision about whether to allow the form to be
resubmitted. That might not be frightening to you and me, but it may cause custom-
ers a great deal of stress and paranoia. Consider the fact that the customer just submit-
ted a large order and the browser is now asking them if they want to resubmit the
form. If I were a paranoid customer, I’d just force-quit my browser at that point to pre-
vent any damage from being done. How would I know that the developer was smart
enough to check for a duplicate response (and that the QA team confirmed that the
logic works)?

 Here’s an example of a navigation rule, as defined in the faces-config.xml descrip-
tor, that would direct users back to the course detail page once they click the save but-
ton on the course editor page:

<navigation-rule>
 <from-view-id>/CourseEdit.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{courseHome.update}</from-action>
 <to-view-id>/Course.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

Submitting the editor form issues a POST request. When the browser comes to rest
after rendering the Course.xhtml, the location bar will still end in /CourseEdit.seam,
appearing as if it is behind by one page. This situation happens because JSF posts back
to the same URL that rendered the form and then selects a different template to ren-
der. If this navigation rule were changed to perform a redirect instead of a render by
adding a nested <redirect/> tag with the <navigation-case> element, the URL bar
would reflect the new page. However, in the process, all of the request parameters and
attributes would get dropped.

103Seam’s page-oriented life-cycle additives
 If keeping the state of the browser location bar in sync with the current page is a
requirement, then JSF’s behavior puts the developer in a difficult place. One work-
around is to make heavy use of the session, to avoid lost data, and perform a redirect
on every navigation event, to keep the location bar updated and make bookmarking
pages possible. However, using the session precariously is dangerous because it can
lead to memory leaks, concurrency problems, multiwindow complications, and over-
eager state retention.
RUDIMENTARY NAVIGATION RULES

The other problem with the JSF life cycle is that the navigation model is rudimentary.
Navigation rules defined in the faces-config.xml descriptor assume the use of a con-
troller layer whose methods are capable of returning declarative navigation outcomes.
The rules match against an originating view ID, the outcome of the action method
(i.e., its return value), and the action method’s EL signature. The rule dictates the nav-
igation event that should take place, but the rule itself has no access to the general
context, such as the value of other scoped variables. You end up having to mix applica-
tion logic with UI logic in your component. You find that many applications struggle
with this model.
AN OVERLY COMPLEX LIFE CYCLE

Some people consider the JSF life cycle to be overly complex. This issue I will actually
defend in JSF’s favor. I don’t believe the problem is being accurately represented. The
JSF life cycle is a good decomposition of the logical phases that occur in just about any
web request, written in any programming language, and run on any platform. The
problem is that the life cycle is missing some areas of coverage. The lack of an action-
based front controller, like Struts, is a perfect example. As a result of these oversights,
developers have been forced to use the framework in ways for which it wasn’t intended
or to bolt on haphazard solutions that seek to fill these voids.8 Having to constantly
compensate for these problems is where the pretense of complexity manifests itself.

 The vast majority of JSF’s limitations come down to the fact that JSF fails to provide
strong page-oriented support, coming up short on features such as page-level security,
prerender actions, intelligent navigation, and RESTful URLs. Seam focuses heavily on
strengthening these weak areas by adding advanced page controls to the JSF life cycle,
remedying the shortcomings just mentioned and stretching JSF’s capabilities beyond
these expectations. Let’s explore these page-oriented enhancements.

3.3 Seam’s page-oriented life-cycle additives
In this section, you discover the page orchestration that Seam weaves into the JSF life
cycle, saving you from having to patch JSF with the missing page-related functional-
ity yourself. This section introduces Seam’s page descriptor, pages.xml, which gives
you a way to configure Seam’s page-oriented enhancements, namely, more advanced

8 The On-Load module of the jsf-comp project (http://jsf-comp.sourceforge.net/components/onload/
index.html) is a perfect example of a haphazard solution to JSF’s lack of a front controller.

http://jsf-comp.sourceforge.net/components/onload/index.html
http://jsf-comp.sourceforge.net/components/onload/index.html

104 CHAPTER 3 The Seam life cycle
navigation and page actions. By the end of this section, you’ll have all but forgotten
about faces-config.xml and the pain it may have caused you.

3.3.1 Advanced orchestration with pages.xml

For as much control as the JSF life cycle gives to Seam, the JSF descriptor, faces-
config.xml, offers no support for extended elements. For that reason, Seam intro-
duces a new configuration descriptor to support its advanced page orchestration.

 Seam’s page descriptor offers a much wider range of navigation controls than what
the faces-config.xml descriptor is capable of supporting. Describing the page descrip-
tor as a navigation configuration, though, doesn’t do it justice. It’s really about the
page and everything that happens around it—hence the term page orchestration. The
page descriptor can be used to

■ Define contextual navigation rules
■ Generate messages and pass parameters on a redirect
■ Invoke actions before rendering a view
■ Enforce security restrictions and other prerequisites
■ Control conversation boundaries
■ Control page flow boundaries
■ Control business process and task boundaries
■ Map request parameters to EL value bindings
■ Bind context variables to EL value bindings and vice versa
■ Raise events
■ Handle exceptions

The default global page descriptor is /WEB-INF/pages.xml, though its location can be
changed, as shown in section 5.3.3 of chapter 5. This descriptor is used to configure
an unbounded set of pages, each represented by a <page> element, as well as a hand-
ful of non-page-specific configurations. The page-oriented configuration can also be
divided into fine-grained configuration files. These individual files serve a single JSF
page. They are named by replacing the suffix of the JSF view ID with .page.xml. For
example, the fine-grained configuration file for Facility.xhtml is Facility.page.xml.

The same page cannot be configured in both the global page descriptor
and the fine-grained descriptor. In fact, there can be only be a single
page configuration per view ID.

In seam-gen projects, a fine-grained page descriptor accompanies each page that’s
generated by the seam generate command. Given that Seam boasts about avoiding
the use of XML, the abundance of page descriptor files in a seam-gen CRUD applica-
tion may seem contradictory to this goal. The fine-grained configurations could have
been crammed into one file using multiple <page> elements. Even then, you may won-
der why you need XML at all. The reason is that seam-gen projects are designed to sup-
port RESTful behavior, which is best implemented through the use of page

WARNING

105Seam’s page-oriented life-cycle additives
descriptors. It’s certainly possible to design a Seam application that works without
these page-oriented features. What you’ll discover, though, is that the page descriptors
give you the best control over the incoming request and are worth the XML you have
to endure to get that control.

Seam’s page descriptor offers a plethora of additional features beyond what the faces-
config.xml descriptor has to offer. While the added palette of XML tags is important,
the real benefit is its awareness of context, emphasized in the first bullet point. Con-
text—the current state of the system—is a common thread in Seam. By leveraging
context, navigation rules defined in Seam’s page descriptor are cognizant of the big
picture. In other words, they are intelligent.

3.3.2 Intelligent navigation

Seam gives you an intelligent mechanism for orchestrating the transition between
pages, more so than what is available with faces-config.xml. When defining navigation
rules, you can take advantage of the following extra page descriptor controls:

■ Use an arbitrary value binding to determine the outcome of an action rather
than using the return value of the action method

■ Make navigation cases conditional using a value-binding expression
■ Indicate how the conversation should be propagated through the transition
■ Control page flows and business processes through the transition
■ Add JSF messages before rendering or redirecting
■ Add parameters to a redirect
■ Raise an event at a transition

The rules defined in Seam’s page descriptor make decisions not just based on where
the request is coming from, or what action was executed, but on what the objects in
context—or scope—have to tell.
NEGOTIATING WHERE TO GO NEXT

Let’s consider a hypothetical conversation that may occur between the navigation
handler and the navigation rules when taking the user through a basic wizard for add-
ing a new golf facility to the directory (if only code could speak):

Making the switch to Seam’s navigation rules
Seam’s page descriptor is a stand-in replacement for the navigation rules defined in
the faces-config.xml file. The main difference is that the <navigation-rule> node
from faces-config.xml becomes <navigation> in the Seam page descriptor and the
nested <navigation-case> nodes become <rule> nodes. The page descriptor sup-
ports additional navigation conditions that extend beyond what faces-config.xml
offers. Seam also uses its own navigation handler that is capable of folding Seam-
specific functionality into the execution of the navigation rule. For instance, it will
append the conversation id to the redirect URL to ensure that the conversation prop-
agates across a redirect.

106 CHAPTER 3 The Seam life cycle
■ Navigation handler: The user wants to register a new facility.
■ Navigation rule: Take the user to the /FacilityEdit.xhtml page.
■ Navigation handler: The #{facilityHome.persist} method was called from the

/FacilityEdit.xhtml page and it returned an outcome of “persisted.”
■ Navigation rule: Does the user want to enter a course?
■ Context variable #{facilityHome.enterCourse}: Yes.
■ Navigation rule: Take the user to the /CourseEdit.xhtml page.
■ Navigation handler: The #{courseHome.persist} method was called from the

/CourseEdit.xhtml page and it returned an outcome of “persisted.”
■ Navigation rule: Does the user want to enter a tee set?
■ Context variable #{courseHome.enterTeeSet}: No.
■ Navigation rule: Is there somewhere that we need to return the user?
■ Context variable #{courseFrom}: Facility.
■ Navigation rule: Take the user to the /Facility.xhtml page and display a message to the

effect that the user has finished registering the facility.

The critical piece of this negotiation consists of the context variables. They are used to
make the navigation rules conditional. You’ll learn about context variables in the next
chapter. For now, you can attribute them to the request- and session-scoped attributes
with which you are familiar, though they go well beyond the limits of these two scopes.
Using context variables in conjunction with the extensive set of controls in the
pages.xml descriptor gives you fine-grained control of page-specific handling and
transitions between pages.
PUTTING WORDS INTO ACTION

Let’s attempt to translate some of the previous example into JSF navigation rules.
Unfortunately, using rules defined in faces-config.xml, we can only make a decision
based on the EL signature of the action method and the outcome of that method:

<navigation-rule>
 <from-view-id>/FacilityEdit.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{facilityHome.persist}</from-action>
 <from-outcome>persisted</from-outcome>
 <to-view-id>/Facility.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

The trouble with this rule is that it can’t make a complex decision as to where to go next,
such as whether to return to the Facility.xhtml or move on to the CourseEdit.xhtml
page. It’s blind to the larger context. You could have the action method return finer-
grained outcomes, but that forces it to be more specialized merely to accommodate nav-
igation. These rules also require that action methods return string outcomes, making
them less business-like (they are tied to the requirements of the framework).

 Seam’s page descriptor uses a similar, yet abbreviated syntax for defining naviga-
tion rules than does the faces-config.xml descriptor. The <rule> node in Seam’s page

Matches action
method and
return value

Issues redirect
before rendering

107Seam’s page-oriented life-cycle additives
descriptor, which is the equivalent of the <navigation-case> node from faces-
config.xml, can draw on the larger context. In listing 3.4, the negotiation with the nav-
igation handler presented earlier has been translated into page descriptor configura-
tion. The value of the #{facilityHome.enterCourse} expression is consulted to
determine the next page, assuming this value is captured by a checkbox in the facility
editor. The user is also kept informed about why the redirect is occurring through the
use of a JSF message.

<page view-id="/FacilityEdit.xhtml">
 <navigation from-action="#{facilityHome.persist}">
 <rule if-outcome="persisted"
 if="#{facilityHome.enterCourse}">
 <redirect view-id="/CourseEdit.xhtml"/>
 <param name="courseFrom" value="Facility"/>
 <message severity="INFO">
 Enter course information for #{facilityHome.instance.name}.
 </message>
 </redirect>
 </rule>
 <rule if-outcome="persisted" if="#{!facilityHome.enterCourse}">
 <redirect view-id="/Facility.xhtml"/>
 </rule>
 </navigation>
</page>

During a redirect, Seam can add both request parameters and JSF messages. The
courseFrom parameter is added explicitly to track how we arrived at the course editor.
Seam adds additional request parameters based on page parameter configuration.
One such parameter is facilityId, which is added to the redirect for the purpose of
associating the facility just entered with the new course about to be entered. You’ll
learn about page parameters in the next section. In the JSF message that’s added, you
can see that it’s possible to use an EL value expression. In this case, the message
includes the name of the facility, read from the component named facilityHome.
The EL is commonly used to reference Seam components, which you’ll learn about in
the next chapter.

 A similar set of navigation rules is added for the /CourseEdit.xhtml page to con-
tinue the progression. The navigation rules decide whether to return the user to the
course editor or to the facility detail page after saving a course according to the value
of the #{courseFrom} context variable. Notice that EL notion is being used in the
view-id attribute:

<page view-id="/CourseEdit.xhtml">
 <navigation from-action="#{courseHome.persist}">
 <rule if-outcome="persisted" if="#{courseFrom != null}">
 <redirect view-id="/#{courseFrom}.xhtml">
 <message severity="INFO">
 The data entry for #{courseFrom} is complete.

Listing 3.4 Contextual navigation rule consulted after persisting a facility

Matches request
to add course

Tracks where
user came from

108 CHAPTER 3 The Seam life cycle
 </message>
 </redirect>
 </rule>
 <rule if-outcome="persisted" if="#{courseFrom == null}">
 <redirect view-id="/Course.xhtml"/>
 </rule>
 </navigation>
</page>

If you’re getting the sense that the navigation rules in this example could be better
written as a page flow, you are right. In addition to declarative navigation rules dem-
onstrated here, Seam supports stateful page flows. Page flows are tied closely with con-
versations. You’ll study both in chapter 7. The purpose of this example is to show that
you can consult EL value expressions to determine which navigation rule to apply. You
might want to direct users to a special page if they entered a private golf facility versus
a public facility. The actual use case is going to depend heavily on the requirements
for your application.
FINDING THE OUTCOME ANOTHER WAY

Up to this point, you have relied on the action method to return a logical outcome
value. There are two problems with this approach, depending on how you look at it.
For rapid prototyping, this level of indirection is inconvenient since it forces you to a
define navigation rule even if you don’t require the flexibility yet. To simplify matters,
Seam lets you specify the target view ID in the return value of the action method. If the
return value begins with a forward slash (/), Seam assumes it’s a valid view ID and
immediately issues a redirect to the view ID:

public String goToCourse() {
 return "/Course.xhtml";
}

At the other extreme, using the action method return value as the navigation out-
come imposes a requirement on business methods to assist with navigation decisions.
The declarative return value likely won’t make sense in the context of the business
logic. This coupling becomes especially noticeable when you start attaching EJBs to
your JSF pages. EJB components are supposed to be business components. Using
return values for the purpose of driving navigation is just wrong. A far better way is to
expect the business object to maintain state that can be consulted by the navigation
rule to determine the appropriate maneuver.

Catchall navigation rules in the page descriptor
Instead of matching against a specific outcome (action method return value), you
can define a generic navigation rule to match against either a non-null or null out-
come. A <rule> node without any attributes will match any non-null outcome (includ-
ing a void return value). A null outcome is matched by placing either a <redirect>
or <render> node as a direct child of the <navigation> node. In Seam, null is often
considered an “exceptional” outcome, canceling the normal behavior, such as begin-
ning a conversation.

109Seam’s page-oriented life-cycle additives
Let’s ignore the return value of the persist() method, assuming that it doesn’t tell us
anything particular about navigation. Instead, the entity state (persisted, deleted,
updated) will be exposed via the property lastStateChange. The evaluate attribute
on the <navigation> element, which is an EL value expression, is consulted to obtain
an outcome value rather than the return value of the action method. The resolved
expression is matched against the if-outcome attribute on the <rule> nodes to select
the navigation to follow:

<page view-id="/FacilityEdit.xhtml">
 <navigation from-action="#{facilityHome.persist}"
 evaluate="#{facilityHome.lastStateChange}">
 <rule if-outcome="persisted" if="#{facilityHome.enterCourse}">
 ...
 </rule>
 <rule if-outcome="persisted" if="#{!facilityHome.enterCourse}">
 ...
 </rule>
 </navigation>
</page>

In simple terms, the pages.xml steps the navigation capabilities of JSF up a notch.
Before we get into the other features of the page descriptor, I want to briefly mention
two UI components that Seam introduces that complement the page-oriented controls.

3.3.3 Seam UI command components

I mentioned earlier that one of the main criticisms of JSF is that “everything is a POST.”
This means that any link or button slated to execute an action method when activated
does so by submitting a POST request (i.e., a form post). While this design is suitable
for accepting form data, it’s not so ideal for creating bookmarkable links. Seam offers
two UI command components, one for creating links, <s:link>, and one for creating
buttons, <s:button>, that stand in for the corresponding command components,
<h:commandLink> and <h:commandButton>, from the standard JSF component set.
The Seam UI command components can perform all the same functions as the stan-
dard command components, with one exception: they can’t submit form data. But
then again, if you’re submitting form data, you likely aren’t concerned with the fact
that a POST request is being issued; in fact, that’s what you want.

 You’re going to see <s:link> and <s:button> used a lot in this book. Of the two,
<s:link> is probably the most attractive because it allows a user to right-click and
open the link in a new tab or window, something that isn’t possible with JSF command
links. In addition to being able to execute an action method, the Seam UI command
components can navigate directly to a specific view ID, eliminating the need for a nav-
igation rule:

<s:link view="/CourseList.xhtml" value="Course List"/>

The value of the view attribute can either use the servlet extension (.seam) or the
view ID suffix (.xhtml) to reference the view ID (the real secret is that the extension
doesn’t matter at all). What <s:link> has over <h:outputLink> in this case is that

110 CHAPTER 3 The Seam life cycle
Seam will prepare page parameters associated with the target view ID as part of the
URL, which you’ll learn about next. As you move to the next section, pay attention to
how Seam frees JSF from the grips of postbacks and allows it to behave more like an
action-based framework.

3.3.4 Page parameters

In the native JSF life cycle, value-binding expressions are only passed to the underlying
model during the Update Model Values phase on a JSF postback. Seam brings this fea-
ture to initial requests by introducing a feature known as page parameters.

 Page parameters are a truly unique feature in Seam. They’re used to bind request
parameters to model properties through the use of value expressions. The request
parameter can either be form POST data or a query-string parameter. The “model”
can be any Seam component (or JSF managed bean), whether it be a presentation
model or a business domain model. Again, Seam doesn’t force your hand. When a
request for a given JSF view is received, as identified by its view ID, each page parame-
ter associated with that view ID is evaluated upon entering the page—just prior to the
Render Response phase. That value is then assigned to the model property using its Java-
Bean setter method as mapped by the value expression.

 Let’s consider the course detail page, Course.xhtml, from the Open 18 directory
application generated in the previous chapter. Assume there’s an incoming request
for the Course entity with an identifier of 1:

http://localhost:8080/open18/Course.seam?courseId=1

The component responsible for providing data for the course page is named course-
Home. (A component is the Seam equivalent of a JSF managed bean.) Prior to the ren-
dering of the Course.xhtml page, the value of the courseId query string parameter must
be assigned to the courseId property on the courseHome component. That assignment
occurs as a result of the following page parameter assignment in pages.xml:

<page view-id="/Course.xhtml">
 <param name="courseId" value="#{courseHome.courseId}"/>
</page>

The name attribute specifies the name of the request parameter and the value attri-
bute specifies the value expression to which the value of the request parameter gets
bound. The courseHome component then retrieves the instance from the database to
be rendered. Alternatively, you could specify this mapping in the fine-grained configu-
ration file, Course.page.xml, which sits adjacent to the Course.xhtml view template.
The fine-grained configuration file is intended to serve only a single view ID. There-
fore, the view-id attribute can be excluded in the declaration:

<page>
 <param name="courseId" value="#{courseHome.courseId}"/>
</page>

For the remainder of the chapter, I’ll always include the view-id attribute for clarity.

111Seam’s page-oriented life-cycle additives
 The <page> node is used to designate which pages the configurations apply to. In a
global page descriptor, the view-id attribute can either be an exact match or it can
match multiple view IDs by using a wildcard character (*).

Page parameters aren’t limited to accepting values—they are bidirectional. In addi-
tion to taking request parameters, they’re used to rewrite links by reading the value of
the mapped value bindings and appending name-value pairs to the query string. In
this way, page parameters automatically take care of decomposing server-side objects
into string values, passing them along with the request, and then reconstructing the
objects on the other side by mapping the parameters to value binding expressions.
For instance, the course editor page includes a link to cancel and return to the course
detail page, <s:link view="/CourseList.xhtml" value="Cancel"/>. The courseId
parameter is automatically appended to the page by reversing the page parameter
declaration shown earlier:

/Course.seam?courseId=1

This rewriting happens in the following cases:

■ The URL generated by Seam command components (<s:link> and <s:button>)
■ JSF postbacks from UICommand components (i.e., <h:commandLink>)
■ Navigation redirects defined in the page descriptor (pages.xml or *.page.xml)

For links and redirects, the parameters that are applied to the URL are read from the
configuration for the target view ID. JSF forms post back to the same page, so the target
view ID is the same as the page that rendered the form. It’s a bit trickier with <s:link>
and <s:button> since the target page can be different than the current page. For
example, consider the following link:

<s:link view="/Course.xhtml" value="View course"/>

The page parameters will be read from the Course.page.xml page descriptor, even if
this link is included on the CourseList.xhtml page.

 Let’s explore how the page parameters and the Seam UI component exchange
request parameters.

Home and Query components
Throughout this chapter, you have seen a lot of references to components that end
in either Home (e.g., courseHome) or List (e.g., facilityList). Components ending in
Home extend from the EntityHome class and components ending in List extend from
the EntityQuery class, both of which are part of the Seam Application Framework.
The EntityHome class is used for managing the persistent state of a single entity
instance, while the EntityQuery component manages a JPQL query result set. Chap-
ter 10 provides comprehensive coverage of the Seam Application Framework and
explains how to take advantage of these two components.

112 CHAPTER 3 The Seam life cycle
THE SEARCH FORM PARADOX

When would you want to use page parameters to pass on values? Consider the paradox
of providing both search capabilities and sorting for a data set. I can almost guarantee
you have been in this seat before. When the user searches, you need to retain the sort
and pagination, and when the user sorts or paginates, you have to retain the search.
This leads to heavy use of hidden form elements within a form that wraps the entire
page or a liberal use of JavaScript to move values between forms. One way or another,
it becomes a tangled mess and leads to many headaches.

 Page parameters in Seam make this situation trivial. Consider the golf course facility
listing page in the same application. The facilityList component is the action class
that manages the collection of courses. The page parameters are defined as follows:

<page view-id="/FacilityList.xhtml">
 <param name="firstResult" value="#{facilityList.firstResult}"/>
 <param name="order" value="#{facilityList.order}"/>
 <param name="from"/>
 <param name="name" value="#{facilityList.facility.name}"/>
 <param name="type" value="#{facilityList.facility.type}"/>
 <param name="address" value="#{facilityList.facility.address}"/>
 <param name="city" value="#{facilityList.facility.city}"/>
 <param name="state" value="#{facilityList.facility.state}"/>
 <param name="zip" value="#{facilityList.facility.zip}"/>
</page>

For any Seam command component on the page (<s:link> or <s:button>), the
expressions are evaluated during page rendering and the resolved value and corre-
sponding parameter name are combined and added to the query string of the link. If
you searched for PUBLIC facilities and then sorted on the name of the facility, the URL
would look like this:

/FacilityList.seam?zip=&phone=&state=&type=PUBLIC&uri=&cid=25&country=

 ➥&city=&order=name+asc&county=&address=&description=&name=

The sort link is built using the link component tag from the Seam UI component set
(trimmed down for clarity):

<s:link value="name">
 <f:param name="order"
 value="#{facilityList.order=='name asc' ? 'name desc' : 'name asc'}"/>
</s:link>

Note that the <s:link> tag automatically targets the current view ID if one is not
explicitly provided. Both the type and order request parameters are maintained in
the URL generated by this link. The order clause is divided into property name and
sort direction and both clauses are sanitized by the FacilityList component to pro-
tected against SQL query injection vulnerabilities. When you submit the search form,
you don’t see these parameters in the browser’s location bar because they’re passed
through the UI component tree instead. Since page parameters transcend
forms—propagated because of their association with a given view ID—it doesn’t mat-
ter where the links that use them are located. When a search is executed, the sort

113Seam’s page-oriented life-cycle additives
order is maintained; when a sort is issued, the search parameters are maintained. All
of this happens without any custom URL rewriting on your part. Another place page
parameters are extremely valuable is on a navigation redirect.
SURVIVING REDIRECTS

As I pointed out earlier, JSF normally drops request-scoped data when issuing a redi-
rect. Page parameters offer a way to retain these values across the redirect. When the
redirect is prepared, the data mapped to the view ID using page parameters is auto-
matically appended to the redirect URL. You’ll learn in chapter 7 that Seam automati-
cally carries conversation-scoped data over a redirect as well, even in the absence of a
long-running conversation.
PARAMETER PEACE OF MIND

By now you are probably getting excited about these page parameters. But here’s the
real kicker: page parameters can also register converters and validators. That means
you aren’t blindly stuffing request parameters into properties on your model. You
get the peace of mind of the JSF conversion and validation process just as you would
on a postback.

 In JSF, validators and converters operate at the field level. A validator is a class that
implements the javax.faces.validator.Validator interface and a converter is a
class that implements the javax.faces.convert.Converter interface. Validators and
converters can be defined as managed beans (or Seam components) or they can be
registered under a lookup id in faces-config.xml. If defined as a managed bean, the
class instance is referenced using a value expression. When the lookup id is used, JSF
is responsible for instantiating the class.

 Let’s assume that we need to perform some conversions and validations for our
facility search to give the user a better chance of locating a facility without getting
tripped up over errant symbols or confused when no results are found because of an
invalid parameter value. In the following excerpt, the phone number parameter is con-
verted to the storage format used in the database using a custom converter registered
under the id org.open18.PhoneConverter. The value of the state parameter is checked
using a custom validator registered under the id org.open18.StateValidator. (You
declare validators and convertors in faces-config.xml or by adding @Validator and
@Converter annotations to a Seam component, respectively.) The validator for the
facility type is retrieved from a value expression, #{facilityTypeValidator}, which
resolves to a JSF managed bean or Seam component implementing the javax.
faces.Validator interface:

<page view-id="/FacilityList.xhtml">
 <param name="phone" value="#{facilityList.facility.phone}"
 converterId="org.open18.PhoneConverter"/>
 <param name="state" value="#{facilityList.facility.state}"
 validatorId="org.open18.StateValidator"/>
 <param name="type" value="#{facilityList.facility.type}"
 validator="#{facilityTypeValidator}"/>
</page>

114 CHAPTER 3 The Seam life cycle
What about model validations defined using Hibernate Validator? Good news. Seam
enforces model validations on any property referenced by a page parameter as long as
the parameter value is non-null. Speaking of null values, it’s possible to declare a page
parameter as required. Though not the friendliest approach, such a feature does
comes in handy for enforcing the presence of a request parameter. For instance, an
error can be thrown if the user attempts to request for the facility detail page without
the facilityId parameter:

<page view-id="/Facility.xhtml">
 <param name="facilityId" value="#{facilityHome.facilityId}"
 required="true"/>
</page>

The downside of adding the required flag is that Seam throws a ValidatorException
when the parameter is missing or empty rather than directing the user to a proper
page. There are other ways to handle this problem, which are explored later.

 Page parameters essentially emulate a form submission on an initial request. But
what makes them especially valuable is that they are also propagated transparently
through a JSF postback, making them bidirectional.
FROM QUERY STRING TO PAGE SCOPE AND BACK

Here’s something easy to overlook the first time you encounter page parameters: they
don’t necessarily have to refer to a value-binding expression. When the value is left
off the declaration, the request parameter is simply placed into the page scope under
the same name. Valueless page parameters are useful when you just need to carry val-
ues around but don’t want to map them into a model object or use hidden form
fields. You can sort of think of them as JSF hidden fields. For instance, you can track
the page from where the user came using the following valueless page parameter:

<page>
 <param name="returnTo"/>
</page>

You can then make a decision based on this value when creating navigation buttons:

<s:button value="Cancel"
 view="/#{empty returnTo ? 'FacilityList' : returnTo}.xhtml"/>

Please note that this example is conceptual. You probably want to filter the returnTo
variable through a preprocessor to ensure that its value is legitimate given the context.

 What about when you need to execute an action on an initial request, not just
apply request parameters to the model? Executing code prior to rendering a page is
the forte of Seam’s page actions.

3.3.5 Page actions: execute me first!

Page actions are what drew me to Seam and encouraged me to stick with JSF. In my
mind, they are the saving grace of JSF. More times than not, information is retrieved
by pulling up a URL in the browser, or following a link from another site, not from
clicking a button in the application. However, the JSF specification focuses heavily on

115Seam’s page-oriented life-cycle additives
the latter use case. Seam adds the ability for JSF to accommodate RESTful URLs (i.e.
"bookmarkable" links).
RESTFUL URLS

Without page actions, you have to think about the world in terms of form submissions.
That is a stark contrast with the direction the world is actually taking, which is to rely
on a REST architecture style—or the more pertinent term, RESTful URLs. 9 Once you
have the power of page actions at your fingertips, any request can be made to perform
prerender logic to retrieve and prepare data before the component tree of the next
view is built and ultimately rendered. You may even decide to serve a different view
than what was requested by the browser. In this case, there isn’t an automatic mapping
between the URL that’s requested and the page template that’s to be rendered, like
the default behavior of JSF.

In essence, page actions tack a front controller onto the JSF life cycle. Page actions behave
similarly to Struts actions. In either framework, the action is selected by the controller
based on a URL-to-action mapping and subsequently invoked prior to any view process-
ing or page rendering. The front controller is the design pattern used by action-based
frameworks, including Struts, WebWork (Struts 2), and Spring MVC. You can take com-
fort in the fact that, with Seam at the helm, you don’t have to abandon your action-based
way of thinking or the ability to serve RESTful URLs when you make the move to JSF.10

 Page actions are specified using method-binding expressions. There are two ways to
associate a page action with a view ID. The action can be defined on a page node in
Seam’s page orchestration descriptor, pages.xml, either in the action attribute on the
<page> node or in a nested <execute> node. The action can also be specified in the
action attribute on a Seam UI command component, <s:button> or <s:link>. You
may wonder how the latter can be considered a page action since it’s triggered by a user
action, just as the UICommand components work. It’s because the Seam command com-
ponents construct URLs that issue an initial request (not a postback) and therefore

9 Admittedly, I am using the term RESTful URL with great liberty in this section. I cannot claim that a GET
request is enough to qualify it as a RESTful URL. However, the point here is that prerender page actions are
a prerequisite to implementing a complete REST solution.

10 http://www.xfront.com/REST-Web-Services.html

What is a RESTful URL?
A RESTful URL is one that permanently represents a resource that is returned by the
server when that URL is requested by a client, typically a browser. A resource is any
item of interest, such as information about a golf course or a golfer’s profile. The URL
contains all the information necessary to pull up a unique resource (citing the read
operation). REST is an acronym for Representational State Transfer. The state is the
resource (the golf course information or golfer’s profile) as it exists on the server, typ-
ically stored in a database. The representation of that state is the document returned.
When the URL is requested, the state is transferred from the server to the client.10

http://www.xfront.com/REST-Web-Services.html

116 CHAPTER 3 The Seam life cycle
contain all the information necessary to trigger an action method. If the URL created
by one of these components is bookmarked, the action is executed just as if the user
had activated the component.

 One of the most common use cases for page actions is preloading data prior to
rendering a view. To satisfy this use case, it’s most appropriate to use the pages.xml
descriptor to associate the action method with the view ID since the idea is to handle
all requests for the resource, even invalid ones.
PRELOADING DATA

Suppose you wanted to preload the list of golf courses before rendering the directory
listing. Doing so would allow you to trap possible errors that might occur when retriev-
ing the results from the database before the page begins rendering.

 To execute an action before rendering, you specify a method-binding expression
in the action attribute of the <page> node in any page descriptor. The page parame-
ters are applied to the model before the page action executes. So, just as form ele-
ment bindings are used to populate the model for actions executing in the Invoke
Application phase of a JSF postback, page parameters are used to populate the model
for page actions. Here, the Facility result list is fetched in the page action, perhaps
eagerly fetching lazy associations on the Facility entity as part of the query:

<page view-id="/FacilityList.xhtml"
 action="#{facilityList.preloadFacilities}">
 ...
</page>

Now let’s assume that you want to bring up the list of facilities that are in the home
state of the user, if the user is authenticated. You’ll learn how to implement authenti-
cation with Seam in chapter 11. Assuming that there’s a mechanism available to access
the current user’s information, the #{facilityList.applyRegionalFilter} method
will apply it to the search parameters, but only if an active search isn’t detected (to
avoid interfering with it). The facilities will then be preloaded as before since the
actions are executed in the order they appear in the page node. To apply multiple
page actions to a single page node, you use nested <action> nodes:

<page view-id="/FacilityList.xhtml">
 <action execute="#{facilityList.applyRegionalFilter}"
 if="#{identity.loggedIn and !facilityList.searchActive}"/>
 <action execute="#{facilityList.preloadFacilities}"/>
 ...
</page>

Having the ability to execute a method prior to rendering is only half the benefit. The
true value of page actions is their ability to trigger declarative navigation. This is one
feature you don’t get by putting the prerender logic in the beforePhase() method of
a JSF PhaseListener.

3.4 Combining page actions with navigation
The navigation that follows a page action works just like the navigation used after
the Invoke Application phase on a JSF postback. Thus, Seam’s page actions can be

117Combining page actions with navigation
combined with its intelligent navigation capabilities in order to make decisions
about how to direct the user in the event that a page action needs to divert the user
from the requested page. If you perform a redirect—not a <render>—in the naviga-
tion rule, then the ensuing page may also use a page action. Thus, chaining actions
prior to rendering a page is possible. A view ID that participates in this chain does
not need to correspond to an view template (i.e., it’s a pseudo-page).

 The most obvious use for combining a page action with navigation is to validate that
the URL being requested is legitimate and that the page can be rendered successfully.

3.4.1 Sanity checking a request

Consider what happens when a user requests the course detail screen directly, per-
haps from a bookmark. The course is looked up by id using the value supplied in the
courseId request parameter. What happens when the requested courseId is empty
or no such id exists in the course table? JSF is notoriously awful at handling this situa-
tion. Because the JSF controller works in a passive manner, it doesn’t figure out that
the request is missing information until halfway through the rendering process. Once
the page begins rendering, you can’t reroute the user to a more appropriate page,
even when it becomes apparent that the target data is absent—unless you throw an
exception. You end up displaying a page with blank values and other potential ren-
dering glitches.

 Page actions to the rescue! Let’s implement a method validateEntityFound()
that verifies that a course can be found before rendering begins:

public String validateEntityFound() {
 try {
 this.getInstance();
 }
 catch (EntityNotFoundException e) {
 return "invalid";
 }

 return this.isManaged() ? "valid" : "invalid";
}

Behind the scenes, the getInstance() method is using the courseId value that’s
assigned to the courseHome component by the page parameter to look up the corre-
sponding entity instance in the database. The isManaged() method tells us whether the
entity was found in the database, as opposed to a new, transient instance being created.

 Of course, if things don’t go well, and the outcome value is “invalid,” then we need
to perform navigation. Navigation rules are invoked after executing a page action just
as they are when an action is invoked on a JSF postback. Here, we redirect users to the
/CourseList.xhtml JSF view if the course cannot be successfully loaded, letting them
know with a warning message why they were redirected:

<page view-id="/Course.xhtml" action="#{courseHome.validateEntityFound}">
 <navigation from-action="#{courseHome.validateEntityFound}">
 <rule if-outcome="invalid">
 <redirect view-id="/CourseList.xhtml">

118 CHAPTER 3 The Seam life cycle
 <message severity="WARN">
 The course you requested does not exist.
 </message>
 </redirect>
 </rule>
 </navigation>
</page>

Your Course.xhtml page is now protected from bogus requests. You may be wondering
about the CourseEdit.xhtml page, which also needs to be protected. You could apply
the same logic to that page as well by registering equivalent configuration with the
/CourseEdit.xhtml view ID. However, just to demonstrate additional capabilities of
the <page> node, let’s combine the two view IDs together and use a complex condi-
tional expression to determine when the validation should be applied. First, a <page>
node is defined that matches all view IDs that begin with /Course. Then, by consulting
the implicit JSF expression #{view.viewId}, which resolves to the current view ID, the
validation can be applied to the detail page and, if the courseId property on course-
Home is non-null, the editor page:

<page view-id="/Course*">
 <action execute="#{courseHome.validateEntityFound}"
 if="#{view.viewId == '/Course.xhtml' or
 (view.viewId == '/CourseEdit.xhtml' and
 courseHome.courseId != null)}"/>
 <navigation from-action="#{courseHome.validateEntityFound}">
 <rule if-outcome="invalid">
 <redirect view-id="/CourseList.xhtml">
 <message severity="WARN">
 The course you requested does not exist.
 </message>
 </redirect>
 </rule>
 </navigation>
</page>

Note that the navigation rules are consulted after each action is executed. If the
outcome of a page action matches a navigation rule, the remaining page actions
will be short-circuited. So for all page actions to execute, only the last one can trig-
ger navigation.

 As you can see, it’s possible to create fairly sophisticated rules about when to
invoke page actions. However, they do require some setup. To handle the more com-
mon cases of prerender functionality, Seam provides a couple of built-in page actions
to secure a view.

3.4.2 Built-in page actions

Every application needs certain page-oriented features, such as the ability to restrict
unauthenticated or unauthorized users from accessing protected pages. Rather than
forcing you to invest time in a solution for every application, Seam offers a handful of
built-in page actions for handling this work.

119Combining page actions with navigation
 If you’ve ever tried to use a servlet filter-based security mechanism, such as Spring
Security, to secure JSF pages, you were likely frustrated by the fact that it doesn’t do a
good job of securing JSF pages because it’s not granular enough. Securing JSF pages is
easy if done at the proper level, just prior to the Render Response phase. Page actions
are the perfect fit. To restrict access to users that aren’t authenticated, you simply add
the login-required attribute to the page definition:

<page view-id="/CourseEdit.xhtml" login-required="true"/>

You can also enforce custom security rules using a nested <restrict> element. If you’re
using a Java Authentication and Authorization Service (JAAS) principle (we cover its
configuration in chapter 11), and you want to enforce role-based security according to
the return value of isUserInRole(), then you can do so using the built-in EL function
named s:hasRole in the <restrict> element. Let’s assume that there’s a role named
“edit” that is used to grant privileges to modify records. You can prevent anyone who isn’t
assigned the edit role from modifying a course with the following page declaration:

<page view-id="/CourseEdit.xhtml" login-required="true">
 <restrict>#{s:hasRole('edit')}</restrict>
</page>

In a fashion similar to how you require the user to be authenticated, you can enforce
that a conversation already be in effect by adding the conversation-required attri-
bute to the page declaration. Both of these tags can also be added to the root <pages>
node if you want either of them to apply to all pages. If either of these two conditions
fails, Seam provides the login-view-id and no-conversation-view-id attributes
that indicate where to direct the user. We’ll look at security and conversations in much
greater depth later in this book. Just note that these are features of Seam that you can
configure using pages.xml.

 There is another built-in page action that is capable of loading a message bundle for
a set of pages. The keys are added to the unified message bundle that’s prepared by
Seam. You learn how to configure and use the Seam message bundle in section 5.5.2 of
chapter 5. The following declaration loads the message bundle defined in the
admin.properties file on the classpath for the administration section of the website:

<page view-id="/admin/*" bundle="admin"/>

It’s also possible to enforce that a page be requested via an HTTPS request using a
built-in action. The scheme attribute on the page declaration checks the current
scheme and redirects the user to the appropriate scheme if it’s not the correct one:

<page view-id="/secure/*" scheme="https"/>

I could fill a book trying to cover every last detail of Seam’s page-oriented functional-
ity. Since there’s plenty more in Seam to cover, I need to move on rather than itemize
the entire page descriptor schema. I encourage you to consult the Seam reference
documentation if you’re curious about a lesser-used page descriptor configuration
element that I haven’t covered here.

120 CHAPTER 3 The Seam life cycle
 The prerender logic discussed so far is transparent to the user. However, a URL that
makes sense to the developer doesn’t always make sense to the end user or a search
engine. Specifically, URLs that have a lot of query string parameters appear rather cryp-
tic. The next section shows you how to create friendlier-looking URLs in Seam.

3.4.3 Search engine–friendly URLs

Using a layer of abstraction between the URL and the rendered view can accommodate
a more logical, prettier, and RESTful URL strategy. The goal is to turn URLs that look like
/Course.seam?courseId=15 into /course/view/15. JSF wasn’t designed with the REST
concept in mind, so we must look elsewhere. Although it’s possible to preprocess the
request using page actions, as we did in the previous example, it’s far easier to accom-
plish this task using a third-party rewrite filter, aptly named UrlRewriteFilter. If you’re
familiar with Apache’s mod_rewrite filter, the premise is the same.

At the time of this writing, Seam doesn’t include a filter in its filter chain for enabling
and configuring the UrlRewriteFilter, though it’s expected to be in the Seam 2.1
release. Until then, it needs to be configured in the web.xml descriptor. Add the fol-
lowing XML stanza anywhere below the SeamFilter in that file:

Why are search engine–friendly URLs desirable?
To help people find information on your site, you want to ensure that search engines
understand your website or application. One way to optimize a site for search engines
is by making the links that point to other pages of the site self-describing. The URL
should contain words and characters that provide clues as to what resource will be
displayed when the URL is requested. Search engines can then learn this pattern and
provide search results that associate a direct link to a resource that matches the
search terms.

All the relevant information should also be in the URL path. Putting information in the
query string makes it difficult for the search engine to sort between essential and
nonessential information and may even cause important information about the
resource to be truncated. Statistics engines are notorious for wreaking such havoc
on URLs. So having search engine–friendly URLs also means having statistics
engine–friendly URLs. The statistics generated are also more accurate since you get
the granularity of showing the requests for resources rather than just the servlet path
that serves them.

Search engine–friendly URLs are desirable because they are simple and they are
technology agnostic. Suppose you implement your application in Struts and spread
around links that ended in .do. Then, if you later switch to JSF, all of the existing
links instantly become invalid, likely resulting in a 404 error for the user. You now
have the job of publicizing the new links that end in .jsf (or .seam). Instead, what
you want to do is make the URL about the resource, not about the framework that’s
serving it.

121Combining page actions with navigation
<filter>
 <filter-name>UrlRewriteFilter</filter-name>
 <filter-class>
 org.tuckey.web.filters.urlrewrite.UrlRewriteFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>UrlRewriteFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

You’ll also need to modify the build to include the urlrewritefilter.jar file in the
deployment archive. Please see appendix A for details on how to add a library to the
deployment archive.

 The rewrite rules are defined in the /WEB-INF/urlrewrite.xml descriptor. The rules
are defined using either Perl 5 regular expressions or wildcards. It’s possible to capture
match references and pass them on to the new URL that’s constructed. Listing 3.5 shows
the configuration for friendly course URLs.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE urlrewrite PUBLIC
 "-//tuckey.org//DTD UrlRewrite 3.0//EN"
 "http://tuckey.org/res/dtds/urlrewrite3.0.dtd">
<urlrewrite>
 <rule>
 <from>^/course/view/([0-9]+)$</from>
 <to last="true">/Course.seam?courseId=$1</to>
 </rule>
 <rule>
 <from>^/course/edit/([0-9]+)$</from>
 <to last="true">/CourseEdit.seam?courseId=$1</to>
 </rule>
 <rule>
 <from>^/$</from>
 <to>/home.seam</to>
 </rule>
</urlrewrite>

Friendly URLs can cause relative paths to break since the servlet path is no longer rep-
resentive of the rendered view. A reference to a stylesheet may stop working because
the browser thinks that the friendly URL is the base URL of the resource. To solve this
problem, you should use absolute references to such resources, such as

#{facesContext.externalContext.request.contextPath}/stylesheet/theme.css

It’s also possible to create friendly URLs using the inverse mechanism. If you use regu-
lar HTML links, links created with <h:outputLink>, or Seam UI command compo-
nents in your view, you can define outbound rules that convert link targets to friendly
URLs before they are sent along with the response. Here’s an example of an outgoing
rewrite rule that produces friendly course URLs for the course detail page:

Listing 3.5 URL rewrite configuration for friendly URLs

Matches URLs like
/course/view/15

Matches URLs like
/course/edit/15

Matches
root URL

122 CHAPTER 3 The Seam life cycle
<outbound-rule>
 <from>^(/.+)?/Course.seam\?courseId=(\d+)$</from>
 <to>$1/course/view/$2</to>
</outbound-rule>

When defining outbound rules with strict matching (the leading caret), the context
path (in this case /open18) must be captured in the <from> expression and passed
on to the target URL. You also have to consider all the possible query parameters that
may appear in the URL for the rule to be matched. A common parameter to watch
out for is the conversation id parameter, thus requiring a more complex expression.

 The UrlRewriteFilter is quite capable of slicing and dicing the URL in whatever cre-
ative ways you can think of to write regular expressions. Not only is it useful for creating
friendly URLs, but it can also help when you want to migrate a site to a new structure,
serve custom resources based on the user agent (browser), or trim long or complicated
URLs. You can see more examples of the UrlRewriteFilter in action in the example
projects (under the examples directory) that come with the Seam distribution.

 Now that you are well versed in Seam’s pages.xml configuration, it’s time to see how
Seam ties this functionality into the JSF life cycle and what else it adds in the process.

3.5 The JSF life cycle with Seam
The JSF life cycle under the direction of Seam is more well balanced than its intrinsic
counterpart. By that, I mean that in Seam’s version of the JSF life cycle, the initial
request processing is just as full-featured as the postback processing. You’ve seen many
of the ways in which Seam expands the activity in the initial request by applying page-
oriented features. These new features include parameter mappings, front controllers,
and request routing. In this section, we’re going to (quickly) step through the JSF life
cycle again, this time observing the points where Seam adds its enhancements.

3.5.1 Phase listeners versus servlet filters

Seam is able to work closely with JSF thanks to the granularity offered by a phase lis-
tener. Few other frameworks offer such a deep view into the execution processes. You’ll
often see frameworks using servlet filters to perform such tasks, such as Spring Security.
The problem with filters is that they work at too high a level and lack the intimate
knowledge of what’s going on inside the request. Without this context, it becomes dif-
ficult to make the correct decision. Under some circumstances, it’s impossible for a
filter to influence the execution path. Seam’s phase listener, SeamPhaseListener, is
low-level enough to alter the execution flow of the life cycle as dictated by the page-
oriented functionality or to get it involved in supplemental business. Let’s examine
when these activities take place.

3.5.2 Stepping through the augmented life cycle

Before we get started with the revamped JSF life cycle, let me warn you that the
amount of activity that happens in the Seam life cycle is daunting. Trying to cover it all
on a single walkthrough would be difficult. Therefore, I’ll give you a general idea of

123The JSF life cycle with Seam
what happens, emphasizing key points. Think of this run-through as the highlights
reel: it’s going to give you a broad overview and plenty to be excited about. Are you
ready to roll the tape?
THE INITIAL REQUEST, SEAM-STYLE

Once again, we’ll examine the life cycle as it processes the initial request. I promise
that the story is far more interesting this time around. Table 3.2 walks through the
tasks that Seam wraps around the JSF phases on the initial request.

Table 3.2 A general overview of the tasks that Seam incorporates into the JSF life cycle on an initial
 request (JSF phases shown in bold; horizontal line signifies transition from Restore View to
 Render Response)

Step Task Description

1 Initial request The life cycle begins with a GET request captured by the JSF servlet.

2 Begin JTA transaction If transaction management is enabled and JTA transactions are being
used, a JTA transaction is opened.

3 Restore View On an initial request, the Restore View phase merely creates an
empty component hierarchy.

4 Restore or initialize
conversation

Restore the long-running conversation if requested. If there’s a prob-
lem restoring it due to a timeout or concurrent access and authenti-
cation isn’t required, advance to the no-conversation view. If a long-
running conversation doesn’t exist, initialize a temporary conversation.

5 Handle conversation
propagation

Determine from the request parameters if a long-running conversa-
tion is to begin, end, be joined, or remain untouched.

6 Validate page flow If a stateful page flow is in use, it is validated to ensure the user
isn’t attempting to request a page out of sequence. If the request
isn’t compliant, appropriate action is taken.

7 Process page
parameters

The parameters associated with this view ID are read from the
request, converted, validated, and stored in the view root.

8 Enforce login, long-
running conversation,
and permissions

If the user must be authenticated to view this page, the nonauthenti-
cated user is redirected to the login page. Once authenticated, the
process of rendering this page is resumed. If a long-running conver-
sation is required to view this page and one doesn’t exist, the user is
forwarded to the no-conversation view. If the user doesn’t have
appropriate permissions to view this page, a security error is raised.

9 Apply page parameters If all validations and conversations pass, the page parameters are
applied to the model via the value bindings or stored in the page con-
text (no value binding).

10 Begin non-JTA
transaction

If transaction management is enabled and resource-local (non-JTA)
transactions are being used, the remaining response is wrapped in a
resource-local transaction (through interaction with the persistence
manager).

11 Emulate the Invoke
Application phase

The life cycle temporarily takes on the signature of the Invoke Appli-
cation phase to accommodate postback features on an initial
request.

124 CHAPTER 3 The Seam life cycle
You can breathe again; the process is over. Table 3.2 doesn’t cover every last detail of
the steps added by Seam in the JSF life cycle, but it comes pretty close. If you had to
abbreviate this list, the most notable improvements made to the initial request are

■ Transactions are started and stopped automatically (if they are enabled).
■ Page parameters, actions, and restrictions defined in the page descriptor are

applied.

12 Enforce login, long-
running conversation,
and permissions

The restrictions are once again applied. This step occurs twice
because some execution paths will skip steps 1–9 when rendering a
given view ID after a navigation event.

13 Select data model row If request was initiated by a Seam UI command component within a
UIData component, advance the index of DataModel to the cor-
responding row.

14 Execute page actions Each page action associated with the view ID is executed. This includes
actions that are passed through a Seam UI command component. Nav-
igation rules are applied after each execution. If more than one navi-
gation rule is applicable, the one with the highest priority is used.

15 Commit transaction If transaction management is enabled and a transaction is active, it
is committed. A new transaction is opened to prepare for the render-
ing of the response.

16 Migrate JSF messages Interpolate then migrate Seam-managed FacesMessages stored
in the conversation to the FacesContext, having now survived any
redirects.

17 Prepare conversation
switching

Conversations can be selected through a UI component. This step
remembers the description and view ID for the current page. The
stack must be prepared at this point in the event the life cycle is
short-circuited before the Render Response phase.

18 Store conversation The conversation is stored in the session until the next request.

19 Render Response The response is rendered by reading the JSF view template and
encoding it to the generated markup (typically XHTML). The UI
component hierarchy is stored in either the client or the server
to be restored on a postback.

20 Commit transaction If transaction management is enabled, commit the transaction that
was active during the rendering of the response.

21 Prepare conversation
switching

Conversations can be selected through a UI component. This step
remembers the description and view ID for the current page, and
updates the stack prepared prior to the Render Response phase.

22 Clean up conversation Either end the temporary conversation or update the last request
time of the long-running conversation.

Table 3.2 A general overview of the tasks that Seam incorporates into the JSF life cycle on an initial
 request (JSF phases shown in bold; horizontal line signifies transition from Restore View to
 Render Response) (continued)

Step Task Description

125The JSF life cycle with Seam
The global transaction that Seam wraps around each request is an important part of
what makes Seam applications so practical. You can safely perform persistence opera-
tions in your page actions and action methods without having to worry about begin-
ning and committing a transaction. Seam takes care of it for you. If you prefer to push
your persistence logic to other layers, you are still able to take advantage of the global
transaction since it spans the entire action method call stack. Global transactions are
addressed in chapters 8, 9, and 10, which cover transactions and persistence in depth.

After seeing nearly two dozen steps on the initial request, you may be dreading the
postback. Well, fear not, because there isn’t much to cover. Seam performs most of its
work around the Restore View and Render Response phases.
LESS PATCHING ON POSTBACK

This section is extremely short because a postback in the Seam life cycle is simply a
combination of Seam’s page-oriented additives and the standard JSF postback mecha-
nism. The most notable enhancement is that Seam wraps a transaction around the
Invoke Application phase, committing the transaction once the phase is complete. This
parallels how page actions are managed. Once again, Seam takes the tedium of deal-
ing with transactions out of the picture until we’re absolutely ready to start fine-tuning
them. One thing to watch out for is that page actions get executed on a postback,
something you might not think about at first. To ensure that a page action only exe-
cutes during an initial request, you can apply the following conditional logic to the
page action declaration: 11

<page>
 <action execute="#{actionBean.executeOnInitialRequestOnly}"
 if="#{empty param['javax.faces.ViewState']}"/>
</page>

The Seam life cycle introduces quite a number of new features on top of what was
already available with the JSF life cycle by hooking into its phase listener architecture.
The most blatant deficiencies in JSF are the initial request handling and the navigation

11 In JSF 1.2, this check is performed by the ResponseStateManager#isPostback(FacesContext) method.

Lazy associations in the view
One of the key benefits of Seam is how it properly scopes the persistence manager
(JPA EntityManager or Hibernate Session) to allow uninitialized proxies and entity
associations to be traversed in the view without fear of encountering a Lazy-
InitializationException (LIE). In short, they just work. In the past, developers
have relied on the Open Session in View pattern to extend the lifetime of the persis-
tence manager across a single request. Seam takes a smarter approach by binding
the persistence manager to the conversation scope and dually wrapping a transaction
around the request. In chapter 9, you learn about Seam’s conversation-scoped per-
sistence manager and how it contrasts with the Open Session in View pattern.

126 CHAPTER 3 The Seam life cycle
capabilities, both of which Seam corrects, making it possible to create more sophisti-
cated JSF applications. All too often, though, things go wrong. When they do, the appli-
cation should handle itself just as well as it does when things go as planned. In the next
section, you’ll learn that Seam helps out in this area by tacking an exception-handling
facility onto JSF.

3.6 A try-catch block around the life cycle
The ability to handle exceptions is just as important as all the other cool and exciting
things that a framework such as Seam can do. Unfortunately, exception handling is
often overlooked. This is true of JSF. The faces-config.xml descriptor doesn’t allow
exception handlers to be defined. Fortunately, Seam taps into the JSF life cycle to trap
and handle exceptions gracefully.

3.6.1 Failing gracefully or with intentional crudeness

Seam handles failures by catching a thrown exception that occurs during the process-
ing of the request and offers you a chance to deal with it from within the same execu-
tion of the life cycle. By catching the exception as part of its life cycle, Seam can
retain page parameters, the temporary or long-running conversation, and any JSF
messages that may have been added before the exception occurred. Seam will also
ensure that any transactions are rolled back before delegating to the exception han-
dler if deemed appropriate.

 When dealing with an exception, you can take one of two actions:

■ Redirect
■ Send HTTP error code

In the process of handling an exception, you may also

■ Add a JSF message
■ End a conversation
■ Add parameters to a redirect

There are two ways you can define how an exception is handled. You can either define
exception matching rules in the page descriptor that watch and act on exceptions
when they are thrown, or you can go straight to the exception class and configure how
the exception should be handled when it is raised.

3.6.2 Registering an exception handler

To configure an exception handler, you again leverage the page descriptor. Using the
code in listing 3.6, we capture a Seam authorization exception in a graceful manner.
When Seam catches the exception, it first stores the original exception in the conver-
sation-scoped variable named org.jboss.seam.caughtException.12 It then looks
through the exception hierarchy for an exception handler. If it finds one, it stores the

12 Prior to Seam 2.1 the original exception was stored in the variable named org.jboss.seam.exception.

127A try-catch block around the life cycle
handled exception in the conversation-scoped variable named org.jboss.seam.
handledException. The exception handler can then add a message to the request and
issue navigation to an error page. The message is a standard JSF FacesMessage and is
thus displayed in the user interface using the <h:messages> component tag.

<exception class="org.jboss.seam.security.AuthorizationException">
 <redirect view-id="/error.xhtml">
 <message severity="WARN">
 Sorry, you do not have access to the requested resource.
 This message may explain why:
 #{org.jboss.seam.handledException.message}
 or
 #{org.jboss.seam.caughtException.message}
 </message>
 </redirect>
</exception>

NOTE If you’re using Facelets, you have to ensure that both Facelets develop-
ment mode and Seam debug mode are disabled in order for the excep-
tion handler to kick in all cases. Otherwise, you may be presented with a
special debug page that displays the exception. The instructions for tog-
gling Seam debug mode and Facelets development mode can be found
in section section 2.6.1 of chapter 2.

3.6.3 Handling the exception at the source

You can also configure exception handling through annotations by adding either an
@HttpError annotation or a @Redirect annotation to the exception class (but not
both). You can supplement either of these with the @ApplicationException annota-
tion to control how the active transaction or long-running conversation is handled.

 The @Redirect annotation, summarized in table 3.3, allows you to render a pretty
error page and kindly inform the user what went wrong.

The @HttpError annotation, on the other hand, is typically used to generate a fatal
and ungraceful response to the client. I think of it as screaming at an unwelcome

Listing 3.6 Configuration for capturing authorization exceptions

Table 3.3 The @Redirect annotation

Name: Redirect

Purpose: Indicates that an HTTP redirect should be issued when this exception is raised.

Target: TYPE (exception class)

Attribute Type Function

message String (EL) The message used to register an info-level FacesMessage.
Default: the exception message.

viewId String (EL) The JSF view ID to redirect to when this exception is thrown.
Default: the current view ID.

Inner exception

Outermost exception

128 CHAPTER 3 The Seam life cycle
guest. When an exception class annotated with @HttpError is thrown, Seam will send
the specified HTTP status code to the browser along with the message in the excep-
tion. The @HttpError annotation is summarized in table 3.4.

The @ApplicationException annotation, summarized in table 3.5, is used to end a
long-running conversation or immediately roll back the active transaction. When an
exception class annotated with @ApplicationException is thrown, Seam determines
from this annotation how to handle the conversation and the transaction. Note that
unhandled exceptions always force a rollback. The @ApplicationException just
forces the rollback to happen immediately.

As an example, suppose you’ve implemented an exception specific to your application:

@Redirect(viewId = "/penaltyStrokeWarning.xhtml"
 message = "You're ball is out of play. That will cost you one stroke.")
public class OutOfBoundsException extends Exception {}

With exceptions handled properly, and the user having received the appropriate slap
on the wrist for foul play, the coverage of the Seam life cycle comes to a close. Seam is

Table 3.4 The @HttpError annotation

Name: HttpError

Purpose: Indicates that an HTTP error response should be sent when this exception is raised.

Target: TYPE (exception class)

Attribute Type Function

message String (EL) The message used to register an info-level FacesMessage.
Default: the exception message.

errorCode int One of the HTTP error code constants in the Java Servlet API.
Default: 500, an internal server error.

Table 3.5 The @ApplicationException annotation

Name: ApplicationException

Purpose: Controls how the long-running conversation and transaction are handled when this exception

is raised. A synonym to javax.ejb.ApplicationException for use in non-EJB
environments.

Target: TYPE (exception class)

Attribute Type Function

rollback boolean If true, this flag indicates that the transaction should roll back
immediately. If false, the transaction is rolled back at the end
of the request. Default: false.

end boolean If true, this flag indicates the long-running conversation
should be ended. If false, the conversation is left untouched.
Default: false.

129Summary
a tremendous web-oriented framework because it has taken JSF and extended it to
give you all the control you need over the pages in your application.

3.7 Summary
In this chapter, you learned how Seam hooks into the Java Servlet and JSF life cycles to
provide services for both JSF and non-JSF requests. You witnessed the multifaceted
nature of this integration, which leverages a servlet listener to bootstrap Seam and lis-
ten for HTTP session events, a JSF phase listener to tap into the JSF life cycle, a servlet
to generate and serve supporting resources, and a servlet filter to provide services
beyond the reach of the JSF servlet. With this integration in place, focus turned toward
Seam’s JSF enhancements.

 This chapter dedicated a section to reviewing the JSF life cycle, presenting the stark
contrast between an initial request and a postback and identifying which of the six life-
cycle JSF phases play a role in each scenario. You discovered that the notification of
each phase transition, captured using a JSF phase listener, is how Seam weaves in many
of its JSF enhancements, giving rise to the Seam life cycle. The steps of the Seam life
cycle were explained.

 Most of Seam’s enhancements affect the initial request, in the form of page-
oriented controls, which were covered in detail. The controls are configured in
Seam’s page descriptor, which you learned acts as a stand-in replacement for naviga-
tion rules defined in the JSF configuration file. I encouraged you to move to Seam’s
navigation rules to gain more intelligent navigation. You also learned that committing
to Seam’s page descriptor gives you the ability to accomplish tasks that JSF has been
criticized for lacking in the past, such as a front controller, advanced page navigation,
RESTful URLs, and exception handling. In short, by extending JSF, Seam delivers fea-
tures of an action-based framework like Struts without ditching the many benefits of a
component-based model.

 Having gained the big picture of a Seam request, you are now ready to turn to the
other essential aspects of Seam: components and contexts. In the next chapter, you’ll
learn about Seam components, those classes in a seam-gen project decorated with the
@Name annotation. You’ll discover that Seam components can effectively replace the
managed bean facility in JSF. But what makes Seam stand apart is that Seam compo-
nents can serve many roles, ranging from presentation to business to persistence. In
fact, a single component can serve in all three roles. Read on to discover how Seam’s
contextual container is used to support the Seam life cycle and how Seam’s liberal
architecture gives Seam components tremendous utility.

Components and contexts
This chapter introduces the components and contexts that Seam manages. If you’ve
worked with the Spring Framework, the idea of declaring managed objects should be
familiar to you. In Seam, however, you replace all uses of the word bean with the word
component. Like Spring, Seam boasts similar capabilities to define, configure, and
instantiate components. In one regard, you can think of Seam as a lightweight con-
tainer. It doesn’t force you to code to container-specific interfaces, require you to
adopt a special programming model, or mandate that your components even live in
a container. Instead, components are just plain old Java objects (POJOs). What makes
Seam unique is that it leverages existing containers and contexts to host the objects
it instantiates, so it’s more accurately classified as a meta-container. After obtaining
an instance of a component, Seam decorates it with enterprise services that are
applied transparently through the use of method interceptors. The main advantage
that Seam has over other managed containers such as Spring is that Seam treats a

This chapter covers
■ Defining Seam components using annotations
■ Hooking into component life-cycle events
■ Using EJB session beans as Seam components
■ Accessing instances of Seam components
130

131Seam’s contextual naming container
component’s context with equal importance as the component itself. Thus, the focus of
this chapter is not just components, but rather contextual components.

 Chapter 2 provided the opportunity to get an application up and running and
observe Seam in Action. I am sure those exercises, as well as references from the previous
chapter, have spawned loads of questions about components. I can assure you that your
questions will be addressed in this chapter. To learn about Seam components, you’re
going to use top-down development to add member registration to the Open 18 appli-
cation. You’ll first use seam-gen to create a new entity and the supporting view and
action bean component. Hibernate then takes care of adding the corresponding table
to the database when the application starts based on the information in the JPA anno-
tations on the entity class. You then study how the view, the action bean component,
and the entity interact with one another. Before doing all that, though, you must
understand Seam’s very essence: the contextual container.

4.1 Seam’s contextual naming container
At its core, Seam is a container that holds names, or rather, variable names. But Seam
doesn’t just let all of these variable names clump together at the bottom of the barrel.
Instead, Seam divides container into compartments and disperses the variables into each
one accordingly. Each compartment represents a scope, or in Seam terminology, a context.
A context defines where a variable name can be found and for how long it hangs around.

 To be precise, the Seam container holds context variables. A context variable can
hold a reference to any type of object. But, as you’ll soon discover, the real divas of the
Seam container are the components. When the application interacts with a context
variable holding a reference to a component instance, lots of exciting things happen.
From this point forward, when I use the term context variable, I’m referring to a vari-
able in the Seam container that stores a value in a distinct context.

NOTE In the text, I’ll often switch between the terms scope and context. Don’t let
this confuse you; these two terms are interchangeable. Technically, the
context is the bucket and the scope is the marker that identifies the
bucket, but that’s really splitting hairs.

Before advancing with your lesson on Seam components and getting the lowdown on
where they hang out, I first need to briefly introduce you to Seam’s contexts and show
you what sets them apart from the traditional contexts in the Java Servlet API.

4.1.1 Seam’s context model

You have a set of contexts for storing variables for the same reason that you have mul-
tiple golf clubs in your bag. In golf, you choose a club depending on how far you want
the ball to go. In a web application, you choose a context depending on how long you
want a variable to stick around. You’re likely familiar with the three scopes defined in
the Java Servlet API: application, session, and request. The problem with this abridged
set of scopes is that they are too few. It’s like trying to play a round of golf with a driver,
a five-iron, and a putter. You can make it work, but there are times when you’re going
to have to make each club do something for which it wasn’t designed.

132 CHAPTER 4 Components and contexts
 The vast chasms that lie between the coarse-grained servlet scopes have claimed
the lives of many applications. In addition, each servlet scope requires that you use a
different API to access its variables, letting unnecessary complexity slip into the code.
The Seam developers solved these two obstacles by introducing the contextual nam-
ing container, which provides a single interface to access all variables, regardless of
the context in which they are stored, and introduces several new contexts that fill in
the gaps between the existing ones.

4.1.2 Unifying the Java servlet contexts

Seam delivers a much needed technology update to the Java web environment by
establishing a unified context model. Seam takes all contexts under the wings of its
container, allowing the existing contexts to fit naturally with the new set of contexts
that it contributes. By controlling the contexts, Seam provides one-stop shopping for
context variables and adds useful enhancements to the existing servlet contexts.

 The list of contexts Seam adds to the existing options are the stateless context, the
page context, the conversation context, and the business process context. The complete
set of contexts Seam supports are represented by the names in the Java 5 enum Scope-
Type, which you’ll see used in a couple of Seam annotations later in the chapter. Table
4.1 identifies these contexts, the associated name in the enum type, and a brief descrip-
tion of the context’s life span. Note that the stateless and unspecified scopes aren’t real
contexts, but rather directives that instruct Seam how to handle a variable lookup.

Table 4.1 Seam’s contexts, ordered from the shortest to the longest lifespan

Context
name

Enum name in
org.jboss.seam.ScopeType

Description

Stateless STATELESS A nonstoring context. Forces a component to be instanti-
ated each time the component name is resolved. Equiva-
lent to Spring’s prototype scope.

Event EVENT Analogous to the servlet request scope. Exists from the
beginning of the Restore View phase until the end of the
Render Response phase in the JSF life cycle or until a redi-
rect occurs.

Page PAGE Begins at the start of the JSF Render Response phase and
carries on with each adjoining JSF postback until a redi-
rect or a navigation to another page occurs. The storage
mechanism for this context is the JSF component tree.

Conversation CONVERSATION Lasts from at least the Restore View phase until the end
of the Render Response phase, even in the event of a redi-
rect. If converted to a long-running conversation, it spans
multiple requests for a single user until terminated. Con-
versations are propagated by the use of a special request
parameter for non-JSF postback requests and through the
JSF component tree on a JSF postback.

Session SESSION Analogous to the servlet session scope. Access to
session-scoped component instances are serialized.

133Seam’s contextual naming container
Let’s briefly explore the storing contexts and the relevance of each, starting with the
stateful contexts contributed by Seam.

4.1.3 Seam’s new stateful contexts

Seam makes a big deal about providing stateful contexts. As the user interacts with the
application, state is accumulated and that state needs to be tracked. In traditional web
applications, long-term state would be stored in the HTTP session, the de facto stateful
context. However, Seam encourages you to store long-term state in a context whose life-
time aligns better with a user’s interaction. In support of this recommendation, Seam’s
stateful context stack includes two new contexts, conversation and business process,
that model a use case, rather than being fixed to predetermined boundaries like the
HTTP session scope. Seam also exposes JSF’s view root attributes as the page context,
solidifying them as a legitimate stateful context. Having these new stateful contexts is
important because they help reduce load on the server while also staving off bugs
caused by inadvertent sharing of state. But what’s most important about Seam’s array of
stateful contexts is that they prevent misuse of the HTTP session. Let’s consider the pur-
pose and duration of each context.

 JSF has always supported a page scope, which is an unofficial classification of the attri-
butes stored in the view root of the JSF UI component tree. Seam recognizes these attri-
butes as first-class context variables and exposes them via the Seam page context. The
page context is capable of propagating data from the Render Response phase of the JSF
life cycle through at least the ensuing Invoke Application phase on a postback, then on
to the Render Response phase if the same view is rendered again without a redirect. This
cycle continues for as many times as the same UI component tree is restored (as a result
of a postback), and is only terminated by a navigation event that occurs prior to the Ren-
der Response phase. You may have used this scope in a less formal way if you have ever
included the <t:saveState> component tag from the MyFaces Tomahawk component
set1 in your application. The benefit of using Seam’s page context is that you don’t tie
the state logic to the view.

Application APPLICATION Analogous to the servlet application scope.

Business
process

BUSINESS_PROCESS Spans multiple conversations for multiple users as con-
trolled declaratively by start and end states in the busi-
ness process definition file.

Unspecified UNSPECIFIED A directive to indicate that the scope should be implied.
Depending on the circumstance, it tells Seam to either
use the scope of the current component or to performing
a hierarchical search across all scopes.

1 http://myfaces.apache.org/tomahawk/uiSaveState.html

Table 4.1 Seam’s contexts, ordered from the shortest to the longest lifespan (continued)

Context
name

Enum name in
org.jboss.seam.ScopeType

Description

http://myfaces.apache.org/tomahawk/uiSaveState.html

134 CHAPTER 4 Components and contexts
 The conversation and business process scopes are for managing long-running pro-
cesses. Their boundaries are controlled declaratively using annotations or page
descriptor tags. A conversation is a drop-in replacement for most uses of the session
scope. The business process is a variation on the conversation scope, but can pass state
between multiple users of the application, backed by persistence storage. You’ll learn
more about conversations in chapter 7 and business processes in chapter 14 (online).

4.1.4 Seam’s enhanced servlet contexts

Seam doesn’t turn its back on the traditional Java servlet contexts—it just fixes them.
Seam even uses the Java Servlet API as the underlying storage mechanism for these
particular contexts, though not blindly. By taking control of these scopes, Seam is
able to generalize their purpose and address flaws in how they are handled by the
native container.

 For instance, the event context wraps the servlet request scope. This abstraction
generalizes a web request as an event so that the Java Servlet API is abstracted from
Seam’s core. This generalization opens the door for Seam to support the event con-
struct as defined in alternate environments. For typical web development, the event
context and request scope are one and the same.

 There are times when variables need to be retained throughout a logical
request—defined as the time between when a page is requested and when it is rendered.
A logical request differs from a servlet request when it involves one or more interim redi-
rects. An example is the Redirect-After-Post pattern.2 Unfortunately, the request scope
is useless in this case since it doesn’t survive a redirect. Developers who have used the
Redirect-After-Post pattern on a JSF postback know that it causes all request-scoped data
prepared in the Invoke Application phase to be dropped. The data that is most often
missed is the JSF status messages. So what does Seam do to help? In the absence of a long-
running conversation, which you’ll learn about in chapter 7, Seam’s conversation scope
propagates context variables across a logical request—what Seam terms a temporary
conversation. A temporary conversation covers the purpose of a Ruby on Rails flash
hash. Seam’s conversation-scoped FacesMessages component can be used, for
instance, to ensure that JSF status messages survive redirects. Problem solved.
KEEPING COMPONENTS @SYNCHRONIZED

Seam improves the session context as well by protecting session-scoped components
from concurrent access. Multiple requests scheduled to be handled by the same
servlet (i.e., FacesServlet) may arrive at the server at the same time. These requests
run in different threads but are serviced by the same servlet instance. If the applica-
tion logic executed by both requests accesses the same session-scoped variable, it
may result in the object referenced by that variable being altered in conflicting ways.
This scenario is said to violate thread safety. To avoid it, you’d need to add the syn-
chronized keyword to the region of code accessing the variable. Seam addresses this

2 Redirect-After-Post is a workaround that prevents double posts as a result of the user clicking refresh after sub-
mitting a form. An explanation can be found in the Redirect After Post article on the ServerSide.com: http:
//www.theserverside.com/tt/articles/article.tss?l=RedirectAfterPost.

http: //www.theserverside.com/tt/articles/article.tss?l=RedirectAfterPost
http: //www.theserverside.com/tt/articles/article.tss?l=RedirectAfterPost

135Sorting out components
long-standing pitfall in web-based applications by automatically synchronizing session-
scoped variables for you, and doing so with optimal efficiency. You can apply this syn-
chronization logic to components in other scopes by adding the @Synchronized anno-
tation to the class definition, summarized in table 4.2. This annotation allows the
timeout period of the synchronization to be tuned using the timeout attribute.

The important point to remember about the contextual container is that it provides
access to all context variables through a consistent interface, regardless of the under-
lying storage mechanism. You’ll learn how to use the context API in section 4.7. With
contexts covered, let’s turn the focus of our discussion to the components associated
with them.

4.2 Sorting out components
The term component has been used to mean many things. In my attempts to describe it
to you, I found it difficult to locate a universal definition, likely because one doesn’t
exist. In theory, a component is supposedly a module that can be plugged into an
application in the same way that one Lego piece is attached to another Lego piece to
form a larger structure. As a person who makes a living developing software, I’m sure
you’ll agree that software components are a bit more complicated than Legos.

 Definitions and intentions don’t matter anyway. What matters is what the word
means to you as a software developer. Up to now, we’ve assumed that a component is
equivalent to a JSF managed bean. Although a Seam component can stand in for a JSF
managed bean, the definition of a component is broader. A component is a set of
instructions, stored in a container, that is used to create objects whose life cycle is man-
aged by the container. After taking a deeper, but brief dive into this somewhat abstract
term, I promise that this component jargon will make sense. It’s all in the naming.

4.2.1 Components vs. component instances

A component is a set of instructions, or a blueprint, for creating an object. It supple-
ments the Java class definition. Each component is assigned a name, which is used to
address the component. Table 4.3 lists several containers and how the components
they manage are declared.

 When a class becomes a component, it gains access to whatever services the con-
tainer has to provide. For instance, methods on EJB session beans are automatically
wrapped in transactions; servlet components and JSF managed beans have access to

Table 4.2 The @Synchronized annotation

Name: Synchronized

Purpose: Protects a component against concurrent access

Target: TYPE (class)

Attribute Type Function

timeout long The duration of time in milliseconds that a thread should be made to wait
before an IllegalStateException is thrown. Default: 1000.

136 CHAPTER 4 Components and contexts
web-tier resource injections; Spring beans are injected with other Spring beans when
instantiated. As you can see, being a component gives a class special privileges.

 Great, so now you know what a component is. But since this book is about Seam,
let’s focus on Seam components. A Seam component holds

■ Metadata pertaining to the creation of an instance
■ Life-cycle methods
■ Initial property values or object references

Seam creates component instances from the
component definition, as figure 4.1 illus-
trates. When your application interacts with
a component, what it’s really invoking is an
instance of that component.

Once an instance of a component is created, it’s stored as an attribute in its desig-
nated context under the name of the component, forming what is known as a context
variable. An instance of a component is just a Java object, with one exception. It is
strung with interceptors that allow Seam to keep tabs on it and manage its life cycle.
Once in control, Seam is able to transparently weave behavior into the object when it
is invoked. You may recognize this technique as Aspect-Oriented Programming
(AOP). The idea of AOP is to handle cross-cutting concerns that would otherwise
appear as boilerplate code or tie the code to a particular environment. With AOP at
work, a method call isn’t just a method call. More goes on around each invocation,
and that means you get more for less work.

Table 4.3 A sampling of component containers and how components are defined in each one

Container How classes become components

Seam Annotated with @Name or declared in components.xml

EJB Annotated with @Stateful, @Stateless, @MessageDriven or
declared in ejb-jar.xml (annotations only relevant for EJB 3)

JSF Declared as managed beans in faces-config.xml

Spring Declared as a Spring bean in applicationContext.xml

Servlet container Servlets, filters, and listeners declared in web.xml

Component vs. component instance: making the distinction
The relationship between a component and a component instance parallels the rela-
tionship between a Java class and a Java object, respectively. Seam even uses the
Component type to describe a component definition in the same way that Java uses
the Class type to describe a class definition.

C om ponen t C om ponen t
Instance

Figure 4.1 Component instances are created
from components by the Seam container

137Sorting out components
 Seam determines how to handle the object based on the instructions provided in
annotations. The behavior that Seam applies includes injecting dependencies, manag-
ing transactions, enforcing security constraints, invoking life-cycle methods, and han-
dling events triggered by the component, to mention a few. That should sound similar
to how EJB works as it inspired this design.

4.2.2 Seam manages components

There’s another important characteristic of a component: a component is managed by
the Seam container. The container hands out an instance of a component when the
name assigned to the component is requested, as shown in figure 4.2. When this request
comes in, Seam first tries to locate an existing instance. If one can’t be found, Seam will
create one (if asked to do so). The instance is then returned to the requester.

 With Seam in control, you no longer have to create instances by instantiating the Java
class explicitly using the Java new operator. That isn’t to say that you can’t—but to get
all of the enhancements that Seam applies to the object via AOP (which happens during
the newInstance() routine in figure 4.2), you must allow Seam to create the instance
for you. In that regard, the Seam container is a factory for component instances, which
uses the component definitions as the schematics for how to create those instances.

 The translation from component to component instance happens more often in a
Seam application than it does in other lightweight containers such as Spring. That’s
because context is so important in Seam. In Seam, component instances come and go
along with the life cycle of the contexts in which they are stored. As you learned ear-
lier, Seam’s contexts have varying life spans (one with no life span at all). More often
than not, components in Seam are associated with stateful contexts, which means they
don’t invariably hang around for the lifetime of the application.

 Instance creation takes place in the Spring container just as it does in Seam, but
you typically don’t give it much thought. That’s because Spring primarily uses single-
ton beans, whose lifetime is tied to that of the application. What’s so interesting about
Seam is that it’s perfectly natural to create an object and inject dependencies into it at
an arbitrary point in time, rather than when the application starts.

S eam C ontainerA pp lication

getInstance (nam e)

new Instance ()

S tatefu l C ontexts

lookup(nam e)

opt [no t found]

instance

instance

Figure 4.2 Sequence diagram of a component instance being requested from the Seam container

138 CHAPTER 4 Components and contexts
NOTE Spring does provide prototype beans that are created each time they’re
referenced, but they are arguably more difficult to use than Seam’s con-
textual components.

We haven’t yet addressed how Seam components are defined. To be more concise,
how do the components get into the Seam container? Read on to find out.

4.3 Defining components using annotations
In Seam, you can define components in one of two ways: you can use either annotations
or XML. The goal of Seam is to reduce as much XML coding as possible. Therefore,
annotations are the preferred mechanism for defining a Seam component. Two com-
mon alternatives are the XML-based Seam component descriptor, covered in chapter 5,
and Seam’s pluggable container mechanism—the integration that allows Spring beans
to serve as Seam components—which is explored in chapter 15 (online). This chapter
focuses on the annotation approach. The annotations that dictate how a component is
defined are listed in table 4.4. As the chapter develops, I’ll introduce you to each one
in detail.

This section concentrates on @Name and @Scope, which together form an integral com-
ponent definition. The remaining annotations are auxiliary and affect how the com-
ponent is processed or behaves at runtime.

Table 4.4 Seam annotations that define components and declare how they are instantiated

Annotation What it does

@Name Declares a class as a Seam component and assigns it a name. When the compo-
nent name is requested, Seam instantiates a new instance of the class and binds
it to the context variable with the same name.

@Scope Specifies the default scope in which the context variable is stored when an
instance of the component is instantiated.

@Role (@Roles) Defines alternate name and scope pairings for the component that can be used
to instantiate parallel instances of the same component for different purposes.
Multiple @Role declarations are wrapped in a @Roles annotation.

@Startup Instructs Seam to instantiate the component automatically when its assigned con-
text starts (only applies to application-scoped and session-scoped components).

@Namespace Binds a URI to a Java package and used to define custom XML namespaces in
the Seam component descriptor.

@Install Used to make installation of a component conditional or to provide a precedence
to override another component definition. Conditions include the presence of a
class on the classpath, the presence of another component, or the debug mode
setting.

@AutoCreate Tells Seam to create a new instance of the component when the component
name is first requested, even if the calling code doesn’t request for it to be
created.

139Defining components using annotations
4.3.1 Giving a component a @Name

It all starts with a @Name. The most fundamental way of creating a Seam component is
by adding the @Name annotation to the class declaration. This annotation is summa-
rized in table 4.5. Given that every Seam component must be assigned a name, you
must provide one using the value attribute of the @Name annotation.

You can place a @Name annotation on any class that you’d like to dress up as a Seam
component. Keep in mind, though, that annotations are obviously only useful for
classes that you can modify. See the accompanying sidebar describing the syntax of
annotations if you’re unfamiliar with how to use them.

The coolest part of Seam is its ability to normalize the nonsemantic differences
among components’ native types. The list of candidates for a Seam component
includes

Table 4.5 The @Name annotation

Name: Name

Purpose: Marks a Java class as a Seam component and assigns the component a unique name

Target: TYPE (class)

Attribute Type Function

value String The name of the component. This value is used as the name of the con-
text variable to which instances are bound in the component’s scope.
Default: none (required).

The syntax of annotations
Annotations are markers. They consist of a Java type—a name prefixed with an at
sign (@)—and a set of attributes associated with that type. Annotations can be
placed on interfaces, class definitions (types), methods, fields, parameters, and
packages. The acceptable locations are defined by the annotation.

The attribute assignments for an annotation appear as a list of name-value pairs
placed between a set of parentheses and separated by commas. There’s an excep-
tion to this syntax rule, though. If you’re defining exactly one attribute, and the
name of that attribute is value, then the attribute name and the equals sign (=)
can be omitted. If the name of the attribute is not value, or you’re defining multiple
attributes on a single annotation, then both the attribute name and value are
required for every attribute. If you’re not declaring any attributes, the parentheses
can be omitted.

Attribute values can be primitives, Java types, annotations, or arrays of the former.
When defining an array value, the items are placed between a set of curly braces and
separated by commas. Again, there is an exception to this syntax rule. If the multi-
valued attribute has exactly one item, the curly braces can be omitted.

140 CHAPTER 4 Components and contexts
■ JavaBean (POJO)
– JavaBean
– Groovy class (Groovy Bean)
– Spring bean3

■ EJB component
– Stateless session bean
– Stateful session bean
– Message-driven bean

■ JPA entity class (treated differently than JavaBean components)

Seam decorates JavaBean components with functionality equivalent to what is pro-
vided by the EJB container, such as container-managed transaction management and
security, shielding the rest of the application from being affected by the underlying
type. What sets components in Seam apart from those in other containers is the atten-
tion to the context of a component instance—the scope of its existence.

4.3.2 Putting a component in @Scope

The @Name annotation is only half of the component story in Seam. The component
instance has to be put somewhere once it’s created. That’s where the @Scope annota-
tion comes in. The @Scope annotation dictates the contextual scope in which an
instance of the component will be stored after it’s instantiated by the Seam container.
You can, of course, put the component instance anywhere you want using a manual
assignment. The @Scope annotation just determines the default scope where Seam
stores the instance. Table 4.6 lists the scope that is used for each type of component if
one is not specified in the component definition.

You can override these default scope assignments by adding the @Scope annotation,
summarized in table 4.7, to the class definition.

 Let’s consider an example of how to put the @Name and @Scope annotations
together to develop a new module for the Open 18 application.

3 Spring beans are classes that are managed by the Spring container. Seam can “borrow” a bean from the Spring
container and decorate it with Seam services, just like it can with EJB components.

Component type Default scope assignment

EJB stateful session bean Conversation

JPA entity class Conversation

EJB stateless session bean Stateless

EJB message driven bean Stateless

JavaBean (POJO) Event Table 4.6 Seam component
classifications and default scopes

141A comprehensive component example
4.4 A comprehensive component example
To add member registration to the Open 18 application, we first need to create an
entity that holds a member’s details. Thus, we’re going to make a JPA entity class our
first Seam component. Because members who register with the Open 18 application
are golfers, we’ll name the corresponding entity Golfer.

4.4.1 Creating the entity components

To create the Golfer entity, navigate to the Seam distribution directory and run the
seam new-entity command using the following responses:

Entity class name: Golfer
Master page name: golferList
Detail page name: golfer

The new-entity command generates the Golfer JPA entity class containing a base set
of properties, a page to list the golfers (golferList.xhtml) and corresponding page
controller (GolferList), and a page to display the details of a golfer (golfer.xhtml)
and corresponding page controller (GolferHome). The action beans components that
support the CRUD operations are covered in depth in chapter 10. For now, let’s focus
on using the Golfer entity class for the registration page.

 The @Entity annotation added to the class declaration marks this class a JPA entity
and the @Table annotation customizes the database table mapping. Whenever you
add a new entity to the application, you also need to add a corresponding table to the
database. Fortunately, Hibernate takes care of this task for you when the application is
deployed as long as the value of the Hibernate property hibernate.hbm2ddl.auto in
the resources/META-INF/persistence-dev-war.xml descriptor is update. Note that this
is a change from the default value of validate set by seam-gen. Hibernate will also
add additional table columns for any new entity properties that it detects.

 I’ve decided to enhance the Golfer class, shown in listing 4.1, by making it a sub-
class of Member, shown in listing 4.2. The use of entity inheritance sets the stage for a
more flexible and realistic application. However, don’t concern yourself too much
with the JPA annotations, such as @PrimaryKeyJoinColumn, if they aren’t familiar to
you, because the primary focus here is on using this class as a form “backing” bean in
a JSF page. In order for that to happen, it needs to be declared as a Seam component.

Table 4.7 The @Scope annotation

Name: Scope

Purpose: Overrides the default scope for a Seam component

Target: TYPE (class)

Attribute Type Function

value ScopeType The Seam context in which instances of this component are stored.
Table 4.6 lists the default value according to component type.
Default: none (required).

142 CHAPTER 4 Components and contexts
 To make Golfer a Seam component, you simply add the @Name and @Scope annota-
tions alongside the JPA annotations, shown in bold in listing 4.1. The component
name newGolfer has been chosen since the component will be called on to instantiate
a fresh instance of a golfer for use in the registration form. The @Scope annotation is
present to explicitly bind the component to the event scope for demonstration, over-
riding the default scope assignment for entity classes, which is the conversation scope.
Several bean properties have been added to support the use case, which map to col-
umns in the GOLFER table. Also note the use of the Hibernate Validator annotations
which, as you learned in the previous chapter, help enforce validations in the UI.

An alternative to adding @Name and @Scope to a JPA entity class is to
declare the component in the Seam component descriptor using XML,
which you’ll learn about in the next chapter. For now, appreciate that the
use of annotations keeps things simple by eliminating XML configura-
tion. Given that annotations are merely class metadata, they don’t affect
the execution of the code (unless consulted using reflection). I confess
that I prefer to limit the use of the @Name annotation to action beans and
business components. Entity classes are the most frequently shared com-
ponents, so conflicts can occur between teams over how to define the
Seam annotations. Besides, entity classes instantiated by the persistence
manager aren’t decorated with Seam interceptors. The primary use of a
Seam entity component is to serve as a prototype—a new, transient (not
yet persisted) instance. The prototype typically requires additional con-
figuration that can only be defined in the component descriptor.

package org.open18.model;

import java.util.Date;
import javax.persistence.*;
import org.hibernate.validator.*;
import org.jboss.seam.annotations.*;
import org.jboss.seam.ScopeType;

@Entity
@PrimaryKeyJoinColumn(name = "MEMBER_ID")
@Table(name = "GOLFER")
@Name("newGolfer")
@Scope(ScopeType.EVENT)
public class Golfer extends Member {
 private String firstName;
 private String lastName;
 private Gender gender;
 private Date dateJoined;
 private Date dateOfBirth;
 private String location;

 @Column(name = "last_name", nullable = false)
 @NotNull @Length(max = 40)
 public String getLastName() { return lastName; }
 public void setLastName(String lastName) {

Listing 4.1 The Golfer entity class as a Seam component

AUTHOR
NOTE

143A comprehensive component example
 this.lastName = lastName;
 }

 @Column(name = "first_name", nullable = false)
 @NotNull @Length(max = 40)
 public String getFirstName() { return firstName; }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 @Transient
 public String getName() { return firstName + ' ' + lastName; }

 @Enumerated(EnumType.STRING)
 public Gender getGender() { return gender; }
 public void setGender(Gender gender) {
 this.gender = gender;
 }

 @Temporal(TemporalType.TIMESTAMP)
 @Column(name = "joined", nullable = false, updatable = false)
 @NotNull
 public Date getDateJoined() { return dateJoined; }
 public void setDateJoined(Date dateJoined) {
 this.dateJoined = dateJoined;
 }

 @Temporal(TemporalType.DATE)
 @Column(name = "dob")
 public Date getDateOfBirth() { return dateOfBirth; }
 public void setDateOfBirth(Date dateOfBirth) {
 this.dateOfBirth = dateOfBirth;
 }

 public String getLocation() { return this.location; }
 public void setLocation(String location) {
 this.location = location;
 }
}

Member is an abstract entity class that holds the username, passwordHash, and
emailAddress inherited by the Golfer entity. The Member entity, shown in listing 4.2,
uses a joined-inheritance strategy. This design makes it possible to have different types
of members that are represented in separate tables. For the purpose of this registra-
tion example, we assume that a golfer is the only type of member. Again, don’t get
bogged down in this design if you’re new to JPA. Appreciate that the goal here is to
establish a JavaBean that can be used to capture data from the registration form.

package org.open18.model;

import java.io.Serializable;
import javax.persistence.*;
import org.hibernate.validator.*;

@Entity
@Inheritance(strategy = InheritanceType.JOINED)

Listing 4.2 The Member entity class, a superclass for application user types

144 CHAPTER 4 Components and contexts
@Table(name = "MEMBER", uniqueConstraints = {
 @UniqueConstraint(columnNames = "username"),
 @UniqueConstraint(columnNames = "email_address")
})
public abstract class Member implements Serializable {
 private Long id;
 private String username;
 private String passwordHash;
 private String emailAddress;

 @Id @GeneratedValue
 public Long getId() { return id; }
 public void setId(Long id) {
 this.id = id;
 }

 @Column(name = "username", nullable = false)
 @NotNull @Length(min = 6)
 public String getUsername() { return username; }
 public void setUsername(String username) {
 this.username = username;
 }

 @Column(name = "password_hash", nullable = false)
 @NotNull
 public String getPasswordHash() { return passwordHash; }
 public void setPasswordHash(String passwordHash) {
 this.passwordHash = passwordHash;
 }

 @Column(name = "email_address", nullable = false)
 @NotNull @Email
 public String getEmailAddress() { return emailAddress; }
 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }
}

The registration form needs to capture a plain-text password from the user as well as a
password confirmation. Corresponding properties aren’t found on either the Golfer or
the Member entity since these fields aren’t to be persisted. Rather than dirtying the entity
classes with transient fields, we’ll put these fields on a reusable JavaBean, PasswordBean,
defined in listing 4.3. The PasswordBean also contains a business method for verifying
that the two passwords entered are equivalent. This class is created under the src/model
directory of the seam-gen project along with the entity classes.

package org.open18.auth;

import org.jboss.seam.annotations.Name;

@Name("passwordBean")
public class PasswordBean {
 private String password;
 private String confirm;

 public String getPassword() { return password; }

Listing 4.3 A Seam JavaBean component that holds and verifies a new password

145A comprehensive component example
 public void setPassword(String password) { this.password = password; }

 public String getConfirm() { return confirm; }
 public void setConfirm(String confirm) { this.confirm = confirm; }

 public boolean verify() {
 return confirm != null && confirm.equals(password);
 }
}

To give you a true appreciation of how easy Seam is making your life, I want to now
show you how @Name and @Scope provide everything necessary to design a JSF form
and action bean component to process the form submission. No XML is required.

4.4.2 Preparing an action bean component

Return once again to the Seam distribution directory. Execute the command seam
new-action to create the RegisterAction component using the following responses:

Seam component name: registerAction
Bean class name: RegisterAction
Action method name: register
Page name: register

This command generates the RegisterAction JavaBean class shown in listing 4.4. The
@Name annotation above this class makes it a Seam component. Since the @Scope anno-
tation is excluded, and this is a regular JavaBean, instances of it are bound to the
event context. (The Seam annotations @In and @Logger are described later in this
chapter.) This component will serve as an action bean component—a component that
provides action methods used by UI command components. A Seam component used
for this purpose completely replaces the need for a JSF managed bean.

 The RegisterAction component contains a single method, register(), that will
be used as the target of the form on the register.xhtml page, also generated by the
new-action command. Although the register() method is just a stub, it will suffice
for now. You’ll develop the RegisterAction component and register.xhtml page fur-
ther as you progress through the chapter.

package org.open18.action;

import org.jboss.seam.annotations.*;
import org.jboss.seam.log.Log;
import org.jboss.seam.faces.FacesMessages;

@Name("registerAction")
public class RegisterAction {

 @Logger private Log log;

 @In private FacesMessages facesMessages;

 public void register() {
 log.info("registerAction.register() action called");
 facesMessages.add("register");
 }
}

Listing 4.4 The Seam component that handles the member registration

146 CHAPTER 4 Components and contexts
Before taking another step down the development path, we need to safeguard our-
selves by creating a test. Fortunately, seam-gen has already done the legwork for us.

4.4.3 Integration testing components

To practice good agile development techniques, you always want to create a test either
before or while you’re developing a new component. Conveniently, the new-action
command also generated an integration test class, RegisterActionTest, in the src/test
directory. The test class, shown in listing 4.5, has been renamed to RegisterGolfer-
IntegrationTest to better represent its function as an integration test.

package org.open18.test;

import org.jboss.seam.mock.SeamTest;
import org.testng.annotations.Test;

public class RegisterGolferIntegrationTest extends SeamTest {

 @Test
 public void test_register() throws Exception {
 new FacesRequest() {
 @Override
 protected void invokeApplication() {
 invokeMethod("#{registerAction.register}");
 }
 }.run();
 }
}

The test class in listing 4.5 extends SeamTest, which bootstraps the Embedded JBoss to
provide a Java EE–compliant environment in which to test your components. The
FacesRequest anonymous inner class is used to emulate the JSF life cycle, shown here
passing through the Invoke Application phase. seam-gen projects use the testing frame-
work TestNG. A TestNG configuration file, RegisterActionTest.xml, is created along
with this class to configure the test runner. A modified version that takes into account
the renamed test class is shown here:

<!DOCTYPE suite SYSTEM "http://beust.com/testng/testng-1.0.dtd">
<suite name="RegisterAction Tests" verbose="2" parallel="false">
 <test name="RegisterAction Test">
 <class name="org.open18.test.RegisterGolferIntegrationTest"/>
 </classes>
 </test>
</suite>

The Ant target named test in the project’s build.xml file looks for files ending in
Test.xml and feeds them into the TestNG test runner to execute. You should be able to
run ant test from the root of the project to verify that the test passes, producing the
output shown here:

test:
 [testng] [Parser] Running:

Listing 4.5 A TestNG-based Seam integration test

Indicates method
override (Java 5)

147A comprehensive component example
 [testng] /home/twoputt/projects/open18/test-build/

 ➥RegisterAction.xml
 [testng]
 [testng] INFO [org.open18.action.RegisterAction] registerAction.

 ➥register() action called
 [testng] PASSED: test_register
 [testng]
 [testng] ===
 [testng] RegisterAction Test
 [testng] Tests run: 1, Failures: 0, Skips: 0
 [testng] ===
 [testng]
 [testng]
 [testng] ===
 [testng] RegisterAction Tests
 [testng] Total tests run: 1, Failures: 0, Skips: 0
 [testng] ===
 [testng]

BUILD SUCCESSFUL
Total time: 12 seconds

You can adjust the log levels used during a test run by editing the Log4j configuration
bootstrap/log4j.xml. The file src/test/readme.txt contains instructions on how to run
a Seam integration test from Eclipse (it requires that you have Embedded JBoss on the
test classpath).

NOTE The Embedded JBoss bundled with Seam 2.0 only works with a Java 5 run-
time (not a Java 6 or 7 runtime). Until a version of Seam is released with
a Java 6–compatible Embedded JBoss container, you must run tests using
Java 5.

What about unit tests?
Seam favors the use of integration tests, not unit tests, for validating the behavior of
action bean components. This approach aligns with Seam’s goal to eliminate unnec-
essary layers. These integration tests are necessary if your action bean component
works with an ORM or JSF directly. You can use Seam to create a well-layered appli-
cation, thus allowing you to create unit tests at the boundaries of every layer. Seam
just helps you get an application up and running quickly, and for that, integration
tests are the tests that matter the most.

If you believe strongly in the fact that your unit tests should run without any external
dependencies—such as the Embedded JBoss runtime—and your action bean com-
ponent depends on functionality provided by the Seam container, it’s possible to
bootstrap a mock Seam container. Refer to the Seam test suite for examples of how
this is done. If you venture down that path, I encourage you to have a framework like
EasyMock handy to mock built-in Seam components that are harder to make work
in isolation.

148 CHAPTER 4 Components and contexts
The action bean component RegisterAction is just a stub at this point, but it’s good
enough to turn to the task of creating the JSF template that renders the registration
form. Using test-driven development (TDD) principles, we’ll complete the implemen-
tation of the register() method when we need it—not a minute sooner.

4.4.4 Hooking components into JSF

Now we need to set up JSF so that it can access the Seam components. Guess what?
There’s nothing to do! Believe it or not, any Seam component is accessible to JSF as is
(see the accompanying sidebar). The @Name annotation can be compared to defining
a JSF managed bean in the faces-config.xml descriptor, except that the resulting com-
ponent is far more capable. While you may look back and see that you’ve entered
quite a bit of code, you haven’t had to write a single line of XML. And there’s no need
to mess with glue code, either. Golfer and PasswordBean can serve as backing beans,
and RegisterAction can provide the action method for the registration page. All you
need to do is write a JSF view to use them. Let’s enhance the registration view gener-
ated by seam-gen to capture the input necessary to register a new member.

JSF VIEWS, SEAM-STYLE

The register.xhtml page was created with a basic JSF form when you ran the new-action
command, but we need to add input fields to it. The augmented form is shown in listing
4.6. The register() method on the RegisterAction component serves as the form’s
action, as defined by the method-binding expression #{registerAction.register} in
the action attribute of the UI command button. This method-binding expression is
derived by combining the component name of the action bean component, register-
Action, with the name of the action method, register (minus the parentheses). Seam

Resolving Seam components from JSF
Seam establishes a bridge between JSF and its own container by registering a cus-
tom expression language (EL) resolver with the JSF 1.2 application runtime. The con-
figuration for this resolver is defined in the faces-config.xml descriptor in the Seam
core JAR file:

<faces-config>
 <application>
 <el-resolver>org.jboss.seam.el.SeamELResolver</el-resolver>
 </application>
</faces-config>

When a Seam component name is used as the root—the first segment—of an EL
expression, Seam either locates or creates a component instance and makes it avail-
able to the variable resolver. For instance, the EL resolver divides the expression
#{passwordBean.password} into the method getPassword() on a Seam compo-
nent named passwordBean. If the custom resolver cannot find a matching Seam
component, it passes the torch back to the default JSF variable resolver.

149A comprehensive component example
also prepares an instance of the Golfer entity class, binding it to the context variable
newGolfer, and an instance of the PasswordBean JavaBean class, binding it to the con-
text variable passwordBean, which are both used to capture data from the input fields.

<h:form id="registerActionForm">
 <rich:panel>
 <f:facet name="header">Open 18 Member Registration</f:facet>
 <s:decorate id="firstNameField" template="layout/edit.xhtml">
 <ui:define name="label">First name</ui:define>
 <h:inputText id="firstName"
 value="#{newGolfer.firstName}" required="true"/>
 </s:decorate>
 <s:decorate id="lastNameField" template="layout/edit.xhtml">
 <ui:define name="label">Last name</ui:define>
 <h:inputText id="lastName"
 value="#{newGolfer.lastName}" required="true"/>
 </s:decorate>
 <s:decorate id="emailField" template="layout/edit.xhtml">
 <ui:define name="label">Email address</ui:define>
 <h:inputText id="emailAddress"
 value="#{newGolfer.emailAddress}" required="true"/>
 </s:decorate>
 <s:decorate id="usernameField" template="layout/edit.xhtml">
 <ui:define name="label">Username</ui:define>
 <h:inputText id="username"
 value="#{newGolfer.username}" required="true"/>
 </s:decorate>
 <s:decorate id="passwordField" template="layout/edit.xhtml">
 <ui:define name="label">Password</ui:define>
 <h:inputSecret id="password"
 value="#{passwordBean.password}" required="true"/>
 </s:decorate>
 <s:decorate id="confirmField" template="layout/edit.xhtml">
 <ui:define name="label">Confirm password</ui:define>
 <h:inputSecret id="confirm"
 value="#{passwordBean.confirm}" required="true"/>
 </s:decorate>
 <s:decorate id="dateOfBirthField" template="layout/edit.xhtml">
 <ui:define name="label">Date of birth</ui:define>
 <rich:calendar id="dateOfBirth"
 value="#{newGolfer.dateOfBirth}"/>
 </s:decorate>
 <s:decorate id="genderField" template="layout/edit.xhtml">
 <ui:define name="label">Gender</ui:define>
 <h:selectOneRadio id="gender" value="#{newGolfer.gender}">
 <s:convertEnum/>
 <s:enumItem enumValue="MALE" label="Male"/>
 <s:enumItem enumValue="FEMALE" label="Female"/>
 </h:selectOneRadio>
 </s:decorate>
 <s:decorate id="locationField" template="layout/edit.xhtml">
 <ui:define name="label">Location</ui:define>
 <h:inputText id="location" value="#{newGolfer.location}"/>

Listing 4.6 The golfer registration form

150 CHAPTER 4 Components and contexts
 </s:decorate>
 <div style="clear:both">
 * required fields
 </div>
 </rich:panel>
 <div class="actionButtons">
 <h:commandButton id="cancel" value="Cancel"
 action="home" immediate="true"/>
 <h:commandButton id="register" value="Register"
 action="#{registerAction.register}">
 <s:defaultAction/>
 </h:commandButton>
 </div>
</h:form>

This form should appear familiar to you since the markup, particularly <s:decorate>,
was covered in the previous chapter. Let’s focus on how the form data is exchanged with
our components. Value-binding expressions that take the form #{newGolfer.

username} are a two-way street. They’re used to output a component property to the
screen as well as capture a value to be assigned to the property when the form is sub-
mitted. This form captures data from the user and assigns the values to the properties
of the Seam components bound to the newGolfer and passwordBean context variables.

 This JSF template takes advantage of several UI components not yet covered. The
<s:convertEnum> and <s:enumItem> Seam UI component tags translate Java 5 enum
type properties to and from string values. The <rich:calendar> component tag from
RichFaces lets the user select a date using a pop-up calendar. The <s:defaultAction>
Seam UI component tag sets which button is activated when the user presses
the Enter key. This overrides the default browser behavior of associating the first
submit button in the form with the Enter key, which in this case would be the Cancel
button. For a complete list of component tags that Seam adds to JSF, consult the Seam
reference documentation.

 As you can see, annotations and Seam UI component tags dramatically reduce the
amount of work necessary to pull together a JSF application. While we still need to
provide an implementation for the register() action method, the @Name annotation
is the only link needed to get JSF working with your Seam components.

 A component lives a busy life outside of these moments in the limelight. In the
next section, you’ll get a glimpse behind the scenes of the life of a component: how
it’s discovered, selected, groomed, and managed by the Seam container.

4.5 A component’s life
Before a component definition can be used to spawn component instances, the defini-
tion of the component must be discovered by the Seam container. Even upon discov-
ery, the component may not be loaded into the Seam container if its prerequisites
aren’t satisfied. Once loaded, Seam will create an instance from the definition imme-
diately if it’s a startup component or wait for it to be requested if not. Regardless of
when instance creation occurs, its life-cycle callback methods are invoked before the
instance is returned to the requester. Finally, when the component is destroyed or

151A component’s life
goes out of scope, it has one last opportunity to perform work before being cast away.
That’s a component’s life; let’s start from the birth.

4.5.1 Loading component definitions

In order for the components to get into the container, Seam has to find them. This
happens during the Seam initialization process. The means by which Seam is boot-
strapped is covered in the previous chapter. During initialization, a deployment scan-
ner scours the classpath looking for classes that host the @Name annotation. In
addition to Java classes, Seam accepts both compiled and noncompiled Groovy
classes. Seam also looks for classes that are identified as components in the XML-based
component descriptor and loads them into the container. The component descriptor
is covered in depth in the next chapter.

 For each class declared as a component, Seam creates a component definition and
stashes it away in the application scope. The name of the attribute under which the
component definition is stored is derived by appending .component to the component
name (e.g., registerAction.component). For your purposes, you’ll always address the
component by its component name (e.g., registerAction).

 Many XML configurations were devised because the Java language lacked a common
syntax for adding class metadata that is detectable by the classloader. That changed
when annotations were introduced. The component scanner frees you from having to
declare every Seam component in an XML descriptor because it’s capable of seeking out
classes that host the @Name annotation. The result is that you have one less XML file to
juggle (and no unnecessary layer of abstraction).

 Ah, but there’s a catch! Seam only considers qualified classpath entries (class direc-
tories and JAR files). A classpath entry is considered qualified if it contains a seam.prop-
erties file at its root or the META-INF directory contains a component descriptor (i.e.,
components.xml). In the next chapter, you’ll discover that the seam.properties file has
another use: to initialize the properties of Seam components.
Figure 4.3 shows the presence of the seam.properties file at
the root of classpath for the open18.jar. If you have Seam
components deployed and they aren’t being picked up, the
first thing to verify is that a seam.properties file is present on
the classpath where your Seam components reside.

 Requiring the presence of a marker file is a JVM class-
loader optimization that works to pare down the number of
classpath entries that must be scanned for components.
Though it may seem annoying to have to ensure that a
marker file is present, this annoyance pays off in that it helps
Seam figure out which classpath entries are relevant. With-
out this optimization, Seam would go looking all over the
classpath for components, possibly even stepping into the
application server classpath, an expensive and potentially

Figure 4.3 Seam
will scan this classpath
entry since it contains the
seam.properties marker file.

152 CHAPTER 4 Components and contexts
error-prone operation. By using the classpath markers, Seam knows exactly where
to look.

 It is possible that even though a class is in a qualified classpath entry and has a
@Name annotation, or it’s declared as a component in the component descriptor, it still
won’t be recognized as a Seam component. The next section details how to define
prerequisites on a class that make its installation conditional.

4.5.2 When to @Install a component

When the component scanner finds a class annotated with @Name, the default behavior
is to make it a component. While the automatic discovery of components is a powerful
mechanism, you lose a degree of flexibility over which classes are turned into compo-
nents. That’s where the @Install annotation comes into play. This @Install annota-
tion, summarized in table 4.8, tells Seam the conditions under which to honor a
component declaration. It can also be used to allow a second definition of the same
component to override the first. Both cases will be considered in detail.

 You have a wide range of prerequisites for controlling the condition under which a
component is installed. The most clear-cut is the value attribute on the @Install
annotation, which is a boolean that can be used to switch the component on or off.

Table 4.8 The @Install annotation

Name: Install

Purpose: Used to define a set of prerequisite conditions necessary for a component declaration to be

accepted and the component registered with the Seam container (i.e., installed).

Target: TYPE (class)

Attribute Type Function

value boolean A flag indicating whether to install the component. Subse-
quent conditions may still prevent the component from
being installed. Default: true.

dependencies String[] The names of other components that must be installed for
this component to be installed. Default: none.

classDependencies String[] Classes that must be available on the classpath for this
component to be installed. Classes are provided as
strings to avoid unnecessary compilation requirements.
Default: none.

genericDependencies Class[] Classes that must be acting as components for this com-
ponent to be installed. Default: none.

precedence int A weighted value used to compare against other compo-
nents assigned the same name. The component of higher
precedence will be installed. Default: 20.

debug boolean Indicates that this component should only be installed
when Seam is operating in debug mode. Default: false.

153A component’s life
You can further control whether the component is installed by enforcing any of the
following prerequisites:

■ The presence of other component definitions, looked up by component name
■ The presence of other component definitions, looked up by class name
■ Classes available on the classpath
■ A weighted precedence value (selects one definition over another for the same

component name and precedence combination)
■ The Seam debug mode setting

If the prerequisites are not satisfied, that doesn’t mean that its future as a component
is entirely bleak, though. You can still place it back into the ranks of the other compo-
nents by declaring it in the component descriptor. Several built-in Seam components
are declared using @Install(false), allowing you to enable them as needed. A sam-
pling of components include

■ Seam managed persistence context
■ jBPM session factory
■ POJO cache
■ Asynchronous dispatcher (Quartz, EJB 3, Spring)
■ Non-JTA transaction manager
■ JMS topic publisher
■ Spring context loader

Aside from limiting the set of component definitions, conditional installation can be
useful for selecting between alternate implementations of a component.
ALTERNATE IMPLEMENTATIONS

There are times when you need to perform different logic to support different imple-
mentations of the same API, such as the JSF specification or application server environ-
ment. To keep your component clean, void of conditional logic that checks for the
presence of an implementation class, you may choose to separate the logic for each
implementation into different components and have the appropriate component
selected by Seam according to the prerequisites defined in the @Install annotation.

 To make use of the @Install annotation in this case, you create two implementation
classes and one interface. Then you give the two implementations the same component
name, and let the @Install annotation handle which one will be configured based on
the presence of a particular JSF implementation class.

 You can create a component for the Sun JSF implementation:

@Name("jsfAdapter")
@Install(classDependencies = "com.sun.faces.context.FacesContextImpl")
public class SunJsfAdapter implements JsfAdapter {...}

and another for the MyFaces JSF implementation:

@Name("jsfAdapter")
@Install(classDependencies =

154 CHAPTER 4 Components and contexts
 "org.apache.myfaces.context.servlet.ServletFacesContextImpl")
public class MyFacesJsfAdapter implements JsfAdapter {...}

You can then request the component named jsfAdapter from the Seam container
and Seam will return the appropriate implementation for you depending on which
FacesContext implementation class is available on the classpath.

 How many frameworks completely overlook this type of functionality, forcing you
to devise your own solution? Conditional installation is a fundamental part of defining
components.

NOTE Seam doesn’t allow EL value expressions to be used in the value attribute
of the @Install annotation. However, you can put a replacement token
(a name surround by a pair of @ symbols) in the installed attribute on
the <component> element and then have your build supply an environ-
ment-specific value for that token in the components.properties file.
You’ll learn how to use replacement tokens in the next chapter.

There is another facet to alternate implementations: you can define components that
should only be available during development mode, possibly ones that override equiv-
alently named production components.
DEBUG MODE COMPONENTS

Another way to control the installation of a component is to tie it to Seam’s debug
mode flag. You do so by setting the debug attribute on the @Install annotation to
true. Seam’s debug mode is controlled by the debug property on the org.jboss.
seam.core.init component. You enable the debug mode flag by adding the follow-
ing declaration to the component descriptor:

<core:init debug="true"/>

You’ll learn how to configure built-in Seam components using XML in the next chap-
ter. For now, let’s focus on the effect of this setting. When it’s set to true, Seam
activates components that are marked with @Install(debug=true). You can use this
flag to swap in components that return canned data or otherwise stub out
back-end logic. In debug mode, the debug component has higher priority. When it
comes time to deploy to a production environment, the debug component is dis-
abled, and if a non-debug component with the same component name exists, it
becomes activated.

 Speaking of priority, one component definition can be selected over another
based on its precedence. A precedence value is required any time you have two com-
ponents assigned to the same component name. Let’s see how Seam handles the
curve ball of conflicting component definitions.
INSTALLATION PRECEDENCE

Precedence defines which component definition wins when two components try to
occupy the same space—in other words, they have the same component name. A pre-
cedence is an integer value assigned to a component using the precedence attribute
on the @Install annotation. The higher the value, the more clout it has. All built-in

155A component’s life
Seam components have a precedence of Install.BUILT_IN (0), so they can easily be
overridden. If a precedence isn’t defined, it defaults to Install.APPLICATION (20).
With precedence in the picture, the rule is that two components can’t be defined with
the same name and precedence value. If this situation occurs, it will cause an excep-
tion to be thrown at startup when the component scanner discovers it.

 If all the prerequisites are satisfied, the component gets the gig. It has made it into
the container. A single class can also produce multiple component definitions with
different component names and potentially different scopes. These alternate defini-
tions are known as component roles.

4.5.3 Giving a component multiple @Roles

As you know, a component must be assigned a name. But that doesn’t mean it can’t
be assigned more than one name. Alternate name and scope combinations are
assigned to a component using the @Role annotation, summarized in table 4.9. To
define multiple @Role annotations for a single component, you nest them within the
@Roles annotation.

The idea behind roles is to allow the same component to be instantiated and man-
aged by Seam for different purposes. A scope is assigned to a role in order to relieve
the code that uses the role name from making the decision of where to store the new
instance. You’ll often see this technique used in outjection, covered in chapter 6.

 Multiple roles also allow you to use multiple instances of the same component class
simultaneously in the same scope. Let’s consider a simple example when such dualism
is needed. The registration form is using an instance of the Golfer component, named
newGolfer, to capture the new member information. Suppose that we want to use an
example query, fed with another instance of the Golfer class, that allows the registering
member to locate the member that referred them to the website. To implement this fea-
ture, the Golfer component needs to be accessed under two different names,
newGolfer and golferExample. When the user clicks the lookup button, the search cri-
teria get applied to the auxiliary Golfer instance bound to the golferExample context

Table 4.9 The @Role annotation

Name: Role

Purpose: Associates the component with an alternate name and scope. Multiple roles are nested

within the @Roles annotation.

Target: TYPE (class)

Attribute Type Function

name String An alternate name for this component. A new instance of this component
is created when this alternate name is requested, independent of any
instance bound to its primary name. Default: none (required).

scope ScopeType The Seam context in which an instance of this component is stored for
this role. Table 4.6 lists the default value according to component type.

156 CHAPTER 4 Components and contexts
variable and passed on to the back end to perform the example query. The alternate
name is assigned to the Golfer class using a @Role annotation, shown here in bold:

@Name("newGolfer")
@Scope(ScopeType.EVENT)
@Role(name = "golferExample", scope = ScopeType.EVENT)
public class Golfer extends Member { ... }

Example queries are supported natively in Hibernate but not in JPA. Here’s how an
example query is conducted using Hibernate:

List<Golfer> existingGolfers = (List<Golfer>) session
 .createCriteria(Golfer.class)
 .add(Example.create(golferExample)).list();

Later in this chapter, you’ll learn how to access a component instance populated from
a UI form in your action bean component. For now, keep in mind that the role lets
you isolate the instance of Golfer used for the example query from the instance used
to back the registration form.

 Returning to the component scanner, once it finishes addressing all the compo-
nent definitions and role assignments, the Seam container is left with a bunch of com-
ponent definitions. But there aren’t yet any component instances. Typically, a
component definition has to wait until its component name is requested in order to
be instantiated. There’s one condition when the instance of the component is created
even though it’s not explicitly requested: if the component is a startup component.

4.5.4 Instantiating components at @Startup

The @Startup annotation, summarized in table 4.10, instructs Seam to take the ini-
tiative of creating an instance of the component when the component’s scope is
initialized. At the time of this writing, only application- and session-scoped compo-
nents can be flagged as startup components, though other scopes may be added in
the future.

 If you add the @Startup annotation to the class definition of a component, and the
component is scoped to the application context, Seam automatically creates an

Table 4.10 The @Startup annotation

Name: Startup

Purpose: Instructs the container to eagerly instantiate a component at system initialization
for application-scoped components or when the session starts for session-scoped
components.

Target: TYPE (class)

Attribute Type Function

depends String[] The names of other components that should be started before this one, if
they’re available. Dependencies must be in the same scope as the compo-
nent itself. Default: none.

157A component’s life
instance of the component when the application starts. This eager instantiation is consis-
tent with the default behavior of singleton Spring beans. The instance is available as a
context variable for the lifetime of the container and thus doesn’t have to be instanti-
ated when requested. The @Startup annotation is well suited for components that use
the singleton design pattern.

Application-scoped components aren’t well suited as business objects.
Because they’re shared among all threads and synchronizing them would
be extremely expensive, storing client-specific information in them is
out of the question. Without state, their use in a long-running business
use case is limited. Despite this general rule, the @Startup hook is useful
for thread-safe resources such as a Hibernate SessionFactory or JPA
EntityManagerFactory that you do want in the application scope
because they are expensive to initialize.

If the component flagged with the @Startup annotation is scoped to the session con-
text, Seam automatically creates an instance of the component when the HTTP session
starts. This functionality is a unique Seam feature. It enables you to have components
that are automatically instantiated on a per-user basis.

 The depends attribute on the @Startup annotation can be used to control the
order in which other startup components are instantiated (though as a side effect it
can also result in components being started even if they aren’t defined as startup com-
ponents). The dependent components are supplied as a list of component names in
the order that you want them to start.

 Regardless of whether the component is instantiated eagerly by the container or it
waits for the component name to be requested by the application, Seam handles
instance creation. While it is nice to have Seam handle these details for you, there are
times when you need to be there to help out with the creation of the instance or to
perform custom cleanup when the instance is being destroyed. Component life-cycle
callback methods give you that chance.

4.5.5 Component life-cycle callbacks

At the beginning of this chapter, I mention that one of the benefits of using the Seam
container to instantiate your classes is that it manages the life cycle of the instance.
You can add code that participates in the life cycle by registering two special life-cycle
methods. One method is invoked when the component instance is created and
another when it’s destroyed. These methods are identified through the use of annota-
tions (the method name is therefore irrelevant). Note that there can only be a single
create method and a single destroy method per component.

 The method on a component annotated with @PostConstuct is called after an
instance has been created and initialized (meaning after the initial property values
have been applied). The @PreDestroy method is called before the component
instance is removed from the context in which it resides. Both of these annotations
are part of the Java EE 5 API. When working with a non-EJB component, you can use

WARNING

158 CHAPTER 4 Components and contexts
either the standard Java EE annotations or their synonyms from the Seam API. The
@Create annotation stands in for the @PostConstruct annotation and the @Destroy
annotation stands in for the @PreDestroy annotation in non-Java EE 5 environments,
as explained in table 4.11.

Note that Seam takes care of invoking the create and destroy methods on JavaBean
components while the EJB container handles this task for EJB 3 components. It’s just
that with Seam JavaBean components, you have a choice as to which annotation set
to use.

NOTE Any of the life-cycle methods called by Seam can be a no-argument
method or accept the Seam component definition—an instance of
org.jboss.seam.Component—as its sole parameter. The getName()
method on the component definition provides access to the name of the
component, which may be useful during an initialization routine.

Let’s consider a simple example of when the create and destroy life-cycle methods are
used. In the following code, the RegisterAction component writes to the log file
whenever it’s created and destroyed:

@Name("registerAction")
public class RegisterAction {
 ...
 @PostConstruct
 public void onCreate(Component self) {
 log.debug("Created " + self.getName() + " component");
 }
 @PreDestroy
 public void onDestroy() {
 log.debug("Destroyed registerAction component");
 }
}

You can also have collaborator components tap into the life cycle of a component by
observing events raised by the container when an instance is created and destroyed.
Events are also raised when the instance is bound to and unbound from a context vari-
able. You’ll learn about component events in the next chapter.

 The create method is the component way of writing a constructor. It’s especially
useful for performing postinitialization logic on the component, such as validating
its state or loading auxiliary resources that it needs. If you add the @Startup annota-
tion to the component, the create method becomes a way to perform logic when the

Table 4.11 The component life-cycle methods per environment

When called Java EE environment Non-Java EE environment

After initialization of the component instance @PostConstruct @Create

Before component instance is removed from
the Seam context

@PreDestroy @Destroy

@Create also
works here

@Destroy also
works here

159A component’s life
application starts or when the user’s session begins, depending on whether the com-
ponent is application- or session-scoped. Startup logic is useful for performing tasks
such as

■ Starting an in-memory database and loading it with seed data
■ Applying a database upgrade script
■ Running an indexing service (i.e., Lucene)
■ Starting up a third-party container, library, or service (i.e., Spring, JMS, jBPM)

The @Install(debug=true) combined with @Startup can be useful for seeding a data-
base in a test environment, as an alternative to Hibernate’s import.sql. You can also have
a non-startup component execute logic when the application starts by observing the
Seam container postinitialization event (org.jboss.seam.postInitialization).

 JavaBean components also support the Java EE standard @PrePassivate and
@PostActivate annotations. Methods on a JavaBean marked with these annotations
are invoked by Seam when the HTTP session is migrated between nodes in a cluster.4 If
these annotations are used on an EJB component, Seam has no say in the matter and
the EJB container takes on the task of invoking these methods.

 Although components are the divas of the Seam container, even rock stars need
agents. Let’s look at how components get connected to one another.

4.5.6 Wiring components together

Since Seam is a lightweight, dependency injection facilitator, you may be eager to
know how components are wired together. I hate to disappointment you, but this is
going to be a short section. Dependency injection is one of Seam’s biggest features
and there’s too much to get into right now. This brief introduction will give you a
glimpse of what you need to know.

 The primary means of wiring Seam components together in Seam is a mechanism
called bijection, which is explained in detail in chapter 6. Bijection is controlled using
annotations. The @In annotation placed on a field or JavaBean property of a compo-
nent tells Seam to assign to that property the value of a component instance whose
component name matches the name of the recipient property, commonly referred to
as injection. The bi prefix is used in the name because in addition to injecting compo-
nents, the inverse is possible. The @Out annotation placed on a field or JavaBean prop-
erty of a component declares that the value of that property is to be bound to a
context variable of the same name.

 Bijection is a new approach to inversion of control. Seam also supports the tradi-
tional dependency injection mechanism—dubbed static dependency injection, which
is controlled using the component descriptor. You’ll learn about static dependency
injection in the next chapter. There’s one case when Seam uses an annotation to
perform static dependency injection: the @Logger annotation injects a logger instance
at component creation time.

4 http://wiki.jboss.org/wiki/HttpSessionReplication

http://wiki.jboss.org/wiki/HttpSessionReplication

160 CHAPTER 4 Components and contexts
INJECTING A @LOGGER

Seam can automatically create a logger that’s configured exclusively for a component.
This feature should be a welcome relief for anyone who is tired of fiddling with mun-
dane logger declarations. But Seam also offers some other nice enhancements. Just
like Apache’s commons-logging, Seam’s logger implementation supports different
logging providers. What makes Seam’s logger unique is that it lets you use value
expressions inline in the log messages. These smart log messages reduce the tedium
of providing contextual information in the message (the name of the authenticated
user, the account name, the order ID, and so on).

 To have Seam inject a Log instance into a property of a component, simply place
that @Logger annotation above the property whose type is org.jboss.seam.log.Log:

@Name("registerAction")
public class RegisterAction() {
 @Logger private Log log;
 ...
}

The Log instance is injected after the component is instantiated but before the @Post-
Construct method is invoked. Table 4.12 summarizes the @Logger annotation.

TIP How do you configure the logging? There’s no change in configuration if
you’re using Log4j or the standard JDK logging. Seam uses Log4j if it’s
available on the classpath, falling back to standard JDK logging if it’s not.
Seam’s Log implementation is merely a wrapper around the existing log-
ging frameworks, adding the convenience of injecting the Log instance
via dependency injection and using EL notation in the message.

Here’s an example of a log message that uses EL notation:

log.debug("Registering golfer #{newGolfer.username}");

The messages are considered contextual because they can access any Seam compo-
nent that’s “in context” at the time the log message is reported. This parallels the use
of EL in JSF messages when added using the FacesMessage component.

 In section 4.7, you’ll learn how to access a component once it is loaded and ready
to perform. For now, let’s skip to the end of a component’s life.

Table 4.12 The @Logger annotation

Name: Logger

Purpose: Injects a Seam Log instance into this field when the component is instantiated.

Target: FIELD (of type org.jboss.seam.log.Log)

Attribute Type Function

category String A custom log category for this instance. Default: the fully qualified class
name in which this annotation is used.

161Using EJB 3 session beans in Seam
4.5.7 Where all components go to die

Just like any other Java objects, component instances die when they go out of scope. A
component instance is destroyed when any of the following occurs:

■ The context it occupies ends
■ The context variable to which it is bound is assigned a null value
■ The instance is explicitly removed using the Seam API

The instance is invoked one last time before it goes out of scope when its destroy method
is called by the Seam container. The destroy method was covered in section 4.5.5.

 That covers the life of a JavaBean component and the instances that it spawns. Seam
is also capable of participating in the life of an EJB session bean component. However,
in this case, Seam merely plays the role of collaborator to the EJB container. Let’s see how
Seam works with the EJB container to turn EJB session beans into Seam components.

4.6 Using EJB 3 session beans in Seam
After I made so much ado about how Seam stitches EJB 3 and JSF together in chapter 1,
you may be wondering why I avoided the use of an EJB 3 session bean in the registration
example. If you’re waiting for the big unveiling, I’m sorry to disappoint you. There isn’t
much to show. The switch from a JavaBean to an EJB 3 session bean is just a matter of
adding a couple of annotations and an interface and voilà, you have an EJB component.
Of course, this migration isn’t nearly as simple in EJB 2. Although Seam can work with
EJB 2 components, all references to EJB in this book assume the use of EJB 3.

NOTE In order to use an EJB session bean, your project must be deployed as an
EAR. The EJB session beans are packaged as an EJB JAR and the web appli-
cation is packaged separately as a WAR. These two archives are then bundled
together to form an EAR. To create an EAR project, run seam setup again,
this time choosing the EAR project option. Unfortunately, by using the EAR
format you lose incremental hot deployment of JavaBean components.

Up to this point, I’ve presented several areas of Java EE that Seam replaces with its own
solution. For instance, the page descriptor replaces the declarative JSF navigation and
adds page-oriented features, the @Name annotation replaces the JSF managed bean
facility, and the Seam container manages all variable contexts. Apart from these
improvements, Seam leverages a great deal of the Java EE standard, which is most
apparent in the area of EJB.

 In this section, you’ll learn that Seam can derive a component from an EJB 3 ses-
sion bean—herein referred to as a Seam session bean component. The EJB 3 con-
tainer does most of the work of managing it; Seam only steps in to bind the
component to a context variable and apply its own set of method interceptors. While
we are on the topic of ownership, let’s consider who owns a Seam session bean compo-
nent, the EJB container or Seam?

162 CHAPTER 4 Components and contexts
4.6.1 Whose component is it, anyway?

At first, you might not give the question of who owns a Seam session bean component
much thought. The component scanner finds a class with a @Name annotation in an
EJB JAR with a seam.properties file and creates a component for it. But the same class
has already been picked up by the EJB container, either because it has a @Stateless or
@Stateful annotation or it’s declared as an EJB component in an XML descriptor. So,
who owns the component, the EJB container or Seam?

 The answer is: The EJB container. Still, session beans designated as Seam compo-
nents have a sort of dual personality. They act as both Seam components and EJB 3
components, taking on the services of both containers. The EJB container manages
the session bean, but Seam gets its hands on the session bean’s life cycle, using inter-
ceptors to weave in additional services.

 Seam session bean components differ from other Seam component types in one
fundamental way: Seam doesn’t create instances of session bean components using
the default constructor of the class. Instead, the work of instantiating the class is dele-
gated to the EJB container. The EJB container is responsible for managing session
bean components in the same way that Seam manages JavaBean components.

 When the Seam container determines that an instance of the component needs to
be created, Seam asks the EJB container for a reference to the session bean instance
using a JNDI lookup. Once Seam has a reference to the session bean instance, Seam
adds additional services to it and then binds it to a context variable, just as Seam
would do with a JavaBean component instance. The two containers are working
together to create and initialize an instance of a session bean component.

NOTE What about message-driven beans? I am purposefully not discussing mes-
sage-driven beans (MDBs) in this section. Although an MDB can act as a
Seam component, the dynamics are very different. Message-driven beans
can’t be instantiated by the application, which means they’re never asso-
ciated with a context. Instead, they listen for messages on a JMS topic or
queue and get instantiated by the EJB container to handle a message
when it arrives. They can, however, take advantage of bijection.

Let’s take a closer look at how a session bean becomes a Seam component and what it
means for the component’s functionality.

4.6.2 The making of a Seam session bean component

A handful of differences exists between a JavaBean component and a Seam session
bean component. One set of differences pertains to the requirements for creating an
EJB 3 component. The other set of differences relates to how Seam treats these com-
ponents when compared to other Seam components.

 The EJB 3.0 specification requires session beans to implement either a local or
remote interface (though this requirement is being removed in EJB 3.1). The interface
must be annotated with either @Local or @Remote or must be declared as an EJB 3 inter-
face in an XML descriptor. In order for a method on a session bean component to be

163Using EJB 3 session beans in Seam
accessible to the client (e.g., a Seam application), it must be defined on the EJB 3 inter-
face. It’s not enough just to declare the method as public on the implementing class.

 There’s one final requirement that only pertains to stateful session bean compo-
nents. All stateful session beans acting as Seam components must define a no-argu-
ments method marked with the EJB 3 @Remove annotation. The @Remove method is
called when the context containing the session bean reference is destroyed. Seam uses
this method to instruct the EJB container to destroy the session bean. If the @Remove
method is invoked directly, it leads to an immediate removal of the session bean refer-
ence, unless a runtime or remote exception is thrown and the exception class is
marked with @ApplicationException (it’s not a system exception) or an exception is
thrown that isn’t a runtime or remote exception and the retainIfException attribute
on the @Remove annotation is set to true.

NOTE Note that there is a distinct difference between the @Remove and @Pre-
Destroy annotations. The method marked with the @Remove annotation
is called when Seam removes the reference to the instance, and the method
marked with the @PreDestroy annotation is called when the EJB 3 con-
tainer destroys the instance itself.

The action bean component for the registration page can be rewritten as a stateful
Seam session bean component. Begin by renaming the implementation class to
RegisterActionBean, annotating it with @Stateful, and implementing the Register-
Action interface:

package org.open18.action;

import ...;
import javax.ejb.Stateful;

@Stateful
@Name("registerAction")
@Scope(ScopeType.EVENT)
public class RegisterActionBean implements RegisterAction {
 ...
 @Remove public void destroy() {}
}

Note that the rest of the class body remains as before since Seam session bean compo-
nents can still use annotations handled by Seam, such as @Logger and @In.

 The next, and final, step is to define the RegisterAction type as the EJB 3 interface
and declare the methods that need to be accessible to clients, such as JSF. The method
annotated with @Remove must also be defined on the interface. The result is shown here:

package org.open18.action;

import ...;
import javax.ejb.Local;

@Local
public interface RegisterAction {
 public void register();
 public void destroy();
}

164 CHAPTER 4 Components and contexts
Unlike JavaBean components, the methods of an EJB component are automatically
wrapped in a transaction, unless specified otherwise. You haven’t had to worry about
transactions up to this point since Seam automatically wraps each request in a global
JTA transaction. However, if you were to disable Seam’s transaction management, the
transactional behavior of EJB 3 components would kick in.

 Besides the difference in default scopes and which container handles transactions,
the persistence context, concurrency, and security, the session bean components oper-
ate just like their JavaBean counterparts. Seam truly does make the use of EJBs a pref-
erence rather than a design decision. If you determine that you need an EJB feature,
such as web services, you can make the switch when necessary. For in-depth coverage
of EJB and the features it provides, consult EJB 3 in Action (Manning, 2007). The focus
of this chapter is on the integration between Seam and EJB 3 components.

4.6.3 The mechanics of the interaction

Let’s take a closer look at how Seam obtains session bean references from the EJB con-
tainer and how it participates in the life cycle of the server-side component. There are
several references in this section to features of Seam that are covered in chapter 6,
such as bijection and interceptors. Feel free to come back to this section once you’ve
learned that material. You can safely skip this section if you’re only interested in the
high-level view of Seam EJB components right now.
PLAYING A PART IN THE LIFE OF A SESSION BEAN COMPONENT

From the moment the Seam component scanner detects a Seam session bean compo-
nent, Seam begins to participate in its life. Seam taps into the postconstruct logic of
the EJB component to register additional server-side method interceptors that deco-
rate the component with services such as bijection, conversation controls, and event
handling. Seam brings these features to Seam session beans by registering an EJB
interceptor using the following interceptor mapping in the EJB deployment descrip-
tor, META-INF/ejb-jar.xml:

EJB References
To access an EJB component via JNDI when deploying to a compliant Java EE
server, you must register an EJB reference in the web.xml descriptor. The reference
is declared using <ejb-ref> for a remote component and <ejb-local-ref> for a
local component. The value of <ejb-ref-name>, which is arbitrary, is bound to the
java:comp/env namespace in JNDI. Here’s an example of a local reference for
RegisterActionBean:

<ejb-local-ref>
 <ejb-ref-name>open18ee/RegisterActionBean/local</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local>org.open18.action.RegisterAction</local>
</ejb-local-ref>

This step is not required on JBoss AS 4 since the component is automatically registered
with JNDI using the pattern: application name/component name/client view type.

165Using EJB 3 session beans in Seam
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <interceptors>
 <interceptor>
 <interceptor-class>
 org.jboss.seam.ejb.SeamInterceptor
 </interceptor-class>
 </interceptor>
 </interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 org.jboss.seam.ejb.SeamInterceptor
 </interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>
</ejb-jar>

Obviously, you want this type of configuration to be set up automatically, which luckily
seam-gen handles for you. As an alternative, you can skip the XML descriptor and
install the interceptor on each session bean component individually using the EJB 3
@Interceptors annotation, as follows:

@Stateful
@Name("registerAction")
@Interceptors(SeamInterceptor.class)
public class RegisterActionBean implements RegisterAction { ... }

Intercepting session bean invocations is only part of the work Seam has to do to
expose a session bean as a Seam component. The next step happens when the Seam
component scanner comes across the session bean implementation class annotated
with @Name (or declared in the component descriptor). The component scanner sim-
ply mines the class definition for information, looking for Seam annotations as it nor-
mally would for any other component, and then stores the component definition away
in the Seam container. At this point, no interaction occurs with the EJB container.
OBTAINING A SESSION BEAN REFERENCE

The fusion with the EJB container occurs when the Seam container receives a
request for an unassigned context variable that’s associated with a session bean com-
ponent. To resolve a value, Seam performs a JNDI lookup to get a reference to the
corresponding session bean in the EJB container. This lookup is part of the standard
EJB mechanism.

In order to use an EJB session bean as a Seam component, you have to let
Seam retrieve it from JNDI. The application should not perform the JNDI
lookup itself.

There are two ways to declare the JNDI name that Seam should use to look up the session
bean. You can either specify a name explicitly in the component class or you can define

WARNING

166 CHAPTER 4 Components and contexts
a template that Seam uses to compute the JNDI name for individual components. The
first option is the most straightforward, yet also the most tedious. Here we supply the
JNDI name on the session bean component explicitly using the @JndiName annotation:

@Stateful
@Name("registerAction")
@JndiName("open18ee/RegisterAction/local")
public class RegisterActionBean implements RegisterAction { ... }

A summary of the @JndiName annotation is provided in table 4.13.

TUNING THE JNDI PATTERN

It’s possible to have Seam resolve the JNDI name implicitly instead of having to declare
the @JndiName annotation on every session bean component. However, Seam still
needs assistance in dealing with the widely varying JNDI naming conventions across
application servers. You provide Seam with a template, which you assign to the jndi-
Pattern property on the built-in init component. You learn how to assign values to
properties of a Seam component in the next chapter. For now, just know that the init
component is configured in the component descriptor using the <core:init> ele-
ment. Here’s the template that's used when deploying to JBoss AS 4, where open18ee
is the name of the application:

<core:init jndiPattern="open18ee/#{ejbName}/local"/>

Seam uses this template to construct the JNDI name for the EJB component. The
#{ejbName} token is not interpreted as an EL expression. Rather, it gets replaced with
the first nonempty value in the following list:

■ The value of the name attribute on the @Stateful or @Stateless annotation
■ The unqualified class name of the component
■ The value of the <ejb-name> node in the EJB deployment descriptor or web.xml

Applying these rules to the example, the #{ejbName} is replaced with RegisterAction,
making the entire pattern open18ee/RegisterAction/local. If the server uses a JNDI
namespace, such as GlassFish, the pattern must include it:

<core:init jndiPattern="java:comp/env/open18ee/#{ejbName}/local"/>

In Java EE-compliant environments, EJB references are declared in the web.xml
descriptor. The jndiPattern merely reflects the naming convention you use for those
reference names.

Table 4.13 The @JndiName annotation

Name: JndiName

Purpose: Supplies the JNDI name that Seam uses to obtain a reference to an EJB component.

Target: TYPE (class)

Attribute Type Function

value String The JNDI name of the EJB component. Default: none (required).

167Using EJB 3 session beans in Seam
 Projects created by seam-gen use the property replacement token @jndiPattern@
for specifying a value for the jndiPattern property in the test environment. The value
for the token is defined in the components.properties file. The pattern found in that
file is specific to the Embedded JBoss container:

jndiPattern=\#{ejbName}/local

Everything that happens after the lookup of the session bean reference up until the
reference to the newly minted instance is returned to Seam is controlled by the EJB 3
container. Let’s consider what happens after that point.
INFUSING SESSION BEAN COMPONENTS WITH SEAM FUNCTIONALITY

Once Seam has obtained a client-side reference to the session bean, it wraps the proxy
in additional client-side interceptors and stores it as a context variable just like any
other Seam component. Unless specified otherwise, the default scope for stateless ses-
sion beans is the stateless context, and for stateful session beans the default scope is
conversation context.

 What makes Seam session bean components so unique is that they share a hybrid
of functionality from the EJB container and the Seam container. For instance, all
methods are, by default, automatically wrapped in a container-managed transaction,
courtesy of the Java EE container. But the component can also take advantage of bijec-
tion, a service provided by the Seam container. Bijection allows other Seam compo-
nent instances to be injected into session beans, something that’s more cumbersome
to do with EJB 3 alone (you have to pull in objects from JNDI using the Java EE
@Resource annotation). You see this same type of crossover with Spring-Seam compo-
nents in chapter 15 (online). Table 4.14 lists all of the core services available to a
hybrid Seam-EJB 3 component (excluding Seam extensions).

 The only catch is that by mixing services, your session beans are going to miss the
features provided by Seam in a pure EJB 3 environment. You could stick to obtaining a
reference to another EJB component using the @EJB resource injection annotation

Table 4.14 A list of the core annotations available on a hybrid Seam session bean component

Annotation Provided by When applied and condition

@Resource Java EE (web tier, EJB 3 tier) Postconstruct, static

@EJB Java EE (EJB 3 tier) Postconstruct, static

@PersistenceContext Java EE (web tier, EJB 3 tier) proxied
by Seam

Postconstruct, static

@Interceptors Java EE (EJB 3 tier) Around invoke, stateless

@Interceptors
(on @interface)

Seam Around invoke, stateless or
stateful

@AroundInvoke Java EE (EJB tier) Around invoke

@PreDestroy Java EE (EJB tier) Predestroy

168 CHAPTER 4 Components and contexts
rather than using bijection, for instance. But why? “Upgrading” your EJB 3 environ-
ment is just a matter of adding Seam to the classpath and configuring it, so I encour-
age you to let go of the purist flag and use Seam in combination with the Java EE
services if at all possible.

 You have now witnessed a day in the life of both JavaBean components and session
bean components. It’s time to learn how to get components to participate in your
application.

4.7 Accessing components
Seam components are the key enablers for integrating technologies in a Seam appli-
cation. Consequently, Seam’s forte is providing unified access to those components
across the board. There are three ways to ask for an instance of a Seam component
from the Seam container. You can use

■ The component name
■ EL notation (binding expression) that references the component name
■ The Java class of the component

Table 4.15 gives a preview of where component instances can be accessed.
In the previous chapter you saw some examples of Seam components being used in
page orchestration logic. That’s just the beginning. The EL is used in JSF views, page
flows, business process definitions, annotations, and Java code. You’ll begin learning

@PrePassivate Java EE (EJB tier) Prepassivate

@PostConstruct Java EE (EJB tier) enhanced by Seam Postconstruct

@In, @RequestParameter,
@DataModelSelection,
@DataModelSelectionIndex

Seam Around invoke, dynamic

@Out, @DataModel Seam Around invoke, dynamic

@Logger Seam Postconstruct, static

Table 4.15 Places where Seam components can be accessed

From where How accessed

JSF view EL notation

Seam annotation (e.g., @In, @Out) Component name or EL notation

Java code: Component.getInstance() Component name or component class

Java code: Expressions.instance() EL notation

JPQL or HQL query EL notation

JSF message (i.e., FacesMessage) EL notation

Table 4.14 A list of the core annotations available on a hybrid Seam session bean component (continued)

Annotation Provided by When applied and condition

169Accessing components
about these options in this section. Let’s start by considering what happens when a
component instance is requested.

4.7.1 Access modes

As it has probably been ingrained into you by now, a component is a recipe that
describes how to create a Java object that is managed by the Seam container (a com-
ponent instance). When you request a component, you’re effectively asking the con-
tainer to hand you back an instance of the component. This request operates in one
of two modes:

■ Lookup only —In this mode, Seam searches for a component instance that’s
bound to the requested context variable. It either looks for an instance in the
specified scope, or, if a scope isn’t provided, it uses a hierarchical search of all
the contexts. If an instance cannot be found, a null value is returned—the non-
conditional path in figure 4.2. This mode is the default for the @In annotation,
covered in chapter 6.

■ Lookup with option to create —In this mode, Seam performs the same search that’s
used in the lookup-only mode, but this time, if an instance can’t be found,
Seam instantiates an instance according to the component definition and stores
it in the context specified by that definition. Instance creation is represented by
the optional clause in figure 4.2. When a component is referenced via a value
expression, this mode is always used to locate an instance.

There’s one case when Seam creates a component instance when operating in
lookup-only mode: if the requested component is an autocreate component and an
instance hasn’t already been forged. In this case, a new instance of the component is
created, regardless of the mode. An autocreate component is formed by placing the
@AutoCreate annotation on the component class (or by setting the auto-create
attribute of the component definition declared in the component descriptor to
true). Factory components, which you’ll learn about in chapter 6, can also declare
autocreate behavior.

Java properties (i18n bundle or component
property)

EL notation

JavaScript using Seam Remoting Component name, stub instance, or EL notation

Seam component descriptor (e.g.,
components.xml)

Component name, component class, or EL notation

Seam page descriptor (e.g., pages.xml) EL notation

jPDL page flow descriptor EL notation

jBPM business process descriptor EL notation

Spring configuration file Component name or EL notation

Table 4.15 Places where Seam components can be accessed (continued)

From where How accessed

170 CHAPTER 4 Components and contexts
 Autocreate functionality eliminates the need to specify the create option on the
context variable at the point of access, shifting the responsibility to the component
definition. The @AutoCreate annotation is summarized in table 4.16.

Several methods of accessing a Seam component are summarized in table 4.17. The
final three examples involve the @In annotation, which allows the bijection mecha-
nism to supply a component instance to a property of a Seam component. For now,
you can think of the @In annotation as shorthand for looking up the component
name explicitly using Component.getInstance() and then assigning it to a property
of the component class. This table also indicates the conditions under which the
instance will be created if it doesn’t exist in the container.

That covers the conditions by which Seam will create component instances. Let’s take
a closer look at the strategies you can use to access these component instances.

4.7.2 Access strategies

In a Seam application, you’ll find references to components in annotations, EL nota-
tion, and via the Seam API. Regardless of which access strategy you use, the lookup
always trickles down to a Seam API call. Therefore, let’s study this interaction.
SEAM API
Seam offers several static getInstance() methods on the Component class that are capa-
ble of locating and creating component instances. But it’s important to understand this
means of access because it’s how instances are requested from the Seam container.

 You access a component using the Seam API by passing either the component
name (e.g., passwordManager) or the Java class object (e.g., PasswordManager.class)

Table 4.16 The @AutoCreate annotation

Name: AutoCreate

Purpose: Indicates that Seam should automatically instantiate the component when its component

name is requested if an instance doesn’t already exist

Target: TYPE (class), PACKAGE

Table 4.17 Ways to access a Seam component

Example usage Create if doesn’t exist?

Component.getInstance("componentName") Yes

#{componentName} Yes

Component.getInstance(ComponentClass.class) Yes

@In("componentName") No, unless an autocreate component

@In(value="componentName", create = true) Yes

@In("#{componentName}") Yes

171Accessing components
to the Component.getInstance() method. (The PasswordManager component, intro-
duced in listing 5.3 in the next chapter, is responsible for hashing the new golfer’s
password.) When you supply a Java class, Seam resolves the component name auto-
matically from the component definition and continues the lookup based on the
resolved value. Here’s an example of a lookup by component name:

PasswordManager passwordManager =
 (PasswordManager) Component.getInstance("passwordManager");

You can also access a context variable directly from the context where it is stored. To
do so, you use the Context.get*Context() to retrieve the context—where the * is a
placeholder for the name of the context—and then use the get() method to pull the
component instance out of the context based on the context variable name:

PasswordManager passwordManager =
 (PasswordManager) Context.getEventContext().get("passwordManager");

The main difference between Component.getInstance() and accessing the instance
directly from the context in which it’s stored is that Component.getInstance()creates
an instance if one doesn’t exist (unless you pass false as the second argument),
whereas accessing the instance using the Context API never creates a new instance. The
context API merely gives you direct access to the storage location of context variables.

 You can also search across all contexts using the org.jboss.seam.contexts.
Context.lookupInStatefulContexts() method:

PasswordManager passwordManager = (PasswordManager)
 Contexts.lookupInStatefulContexts("passwordManager");

The lookupInStatefulContexts() method is used by Seam to locate a component
instance in cases when a scope isn’t explicitly provided.

Let’s use the Seam API to look up the dependent components needed to complete
the registration logic in the register() method of the RegisterAction component.
The implementation is shown in listing 4.7. It needs to be paired with a navigation
rule to direct the user to a success page when registration is complete, which is not
shown here.

Component names and context variables
Uses of the term context variable in this chapter have been in relation to component
names. While it’s true that a component instance is stored in a context variable
according to its component name, a context variable can refer to an object not
derived from a Seam component. In fact, any of the name-based access strategies
discussed in this section happily return non-Seam objects along with those that are
managed by Seam. The notable difference between a component name and plain
context variable name is that Seam knows how to initialize a Seam component if the
search by component name turns up empty, whereas Seam returns null (in this sce-
nario) if the name isn’t associated with a component.

172 CHAPTER 4 Components and contexts
package org.open18.action;

import ...;
import org.jboss.seam.context.Contexts;

@Name("registerAction")
public class RegisterAction {
 @Logger private Log log;

 public String register() {
 log.debug(
 "Registering golfer #{newGolfer.username}");
 Context eventContext = Contexts.getEventContext();
 PasswordBean passwordBean = (PasswordBean)
 eventContext.get("passwordBean");
 if (!passwordBean.verify()) {
 FacesMessages.instance()
 .addToControl("confirm", "value does not match password");
 return null;
 }
 Golfer newGolfer =
 (Golfer) Contexts.lookupInStatefulContexts("newGolfer");
 PasswordManager passwordManager = (PasswordManager)
 Component.getInstance(PasswordManager.class);
 newGolfer.setPasswordHash(
 passwordManager.hash(passwordBean.getPassword()));
 EntityManager entityManager = (EntityManager)
 Component.getInstance("entityManager");
 newGolfer.setDateJoined(new Date());
 entityManager.persist(newGolfer);
 FacesMessages.instance().add(
 "Welcome to the club, #{newGolfer.name}!");
 return "success";
 }
}

This method is abnormally complex because it does not take advantage of bijection.
You will appreciate the simplicity that bijection introduces when you see the refac-
tored version of this component in chapter 6. However, there are perfectly justifiable
reasons for using the Seam API directly as in this example, such as to reduce the over-
head of method interceptors, to obtain a component instance in a test case, or when
bijection isn’t available.

 Let’s enhance the integration test from earlier to validate the newly implemented
registration logic. The updated test case in listing 4.8 uses a mixture of the Seam API
and the EL. The form backing beans are populated in the Update Model Values phase,
emulating a form submission, and the register() method is invoked in the Invoke
Application phase.

package org.open18.action;

import ...;

Listing 4.7 Using the Seam API to access dependent component instances

Listing 4.8 Using the Seam API and the EL in an integration test

Evaluates EL
immediately

Forces page to
be rerendered

Evaluates EL
when phase ends

173Accessing components
public class RegisterActionIntegrationTest extends SeamTest {

 @Test public void registerValidGolfer() throws Exception {
 new FacesRequest("/register.xhtml") {
 @Override protected void updateModelValues() {
 Golfer g = (Golfer) Component.getInstance("newGolfer");
 g.setFirstName("Tommy");
 g.setLastName("Twoputt");
 g.setUsername("twoputt");
 g.setEmailAddress("twoputt@open18.org");
 setValue("#{passwordBean.password}","ilovegolf");
 setValue("#{passwordBean.confirm}","ilovegolf");
 }

 @Override protected void invokeApplication() {
 String result = invokeMethod("#{registerAction.register}");
 assert result != null && result.equals("success");
 }
 }.run();
 }
}

The test should once again succeed, this time accompanied by SQL statements in the
log.

 You often see the Seam API used to look up a component instance by calling a
static instance() method on the component itself. This replaces the use of a static or
thread local variable to maintain an instance of an object. Instead, you let the Seam
container manage the instance in one of its scopes. I like to call this a scoped singleton,
since it’s accessed just as you would access a singleton, except it isn’t necessarily
scoped to the lifetime of the application. For instance, the following method can be
used to obtain the event-scoped PasswordManager:

public static PasswordManager instance() {
 return (PasswordManager)
 Component.getInstance(PasswordManager.class, ScopeType.EVENT);
}

This technique is useful for retrieving an implementation class of an interface by
component name. An example of this type of lookup is seen in the Seam transaction
component. The instance() method on the org.jboss.seam.transaction.Trans-
action class returns a JTA UserTransaction subclass instance using Seam’s alternate
implementation selection logic described earlier (which installs one of several candi-
date components):

public static UserTransaction instance() {
 return (UserTransaction)
 Component.getInstance(Transaction.class, ScopeType.EVENT);
}

You’ll learn about configuring transactions in Seam in chapter 9. If you’re interested
in how this lookup works, I encourage you to dive into the Seam source code.

 You have to decide for yourself whether it’s acceptable to interact directly with the
Seam API in your business logic. It’s certainly the most efficient way to access Seam

174 CHAPTER 4 Components and contexts
components, but if POJO development is important to you, you may prefer the level of
abstraction provided by bijection. Again, Seam doesn’t force your hand.

 A more ubiquitous and flexible means of component access is through EL nota-
tion. That’s our next stop. You’ve already seen several examples of this syntax in this
chapter’s examples. Let’s take a closer look.
EL NOTATION

Value- and method-binding expressions are the lingua franca of Seam. The reason EL
notation is so appealing is because it cleanly separates component access from the con-
tainer responsible for serving the component instance. It’s also attractive because it is
dynamic and untyped. EL notation is like having a sticker slapped on your code that says
Insert Component Here. The rest is up to the EL resolver and, in turn, the container man-
aging the instance. The EL is the key for being able to resolve components from any-
where and makes the references portable to any EL resolver, not just Seam’s.

 Value expressions are used for both resolving a component instance and binding
to its properties. Value expressions can also be used in JSF messages and log messages
if registered using Seam’s FacesMessages and Log components, respectively. In addi-
tion to using value and method expressions in the usual places, you can call on the EL
using the Seam API. Let’s rewrite the portion of the register() method to use value
and method expressions instead of looking up a component instance and acting on it
directly. The following snippet shows two ways to interact with the PasswordBean com-
ponent via the EL:

Boolean valid = (Boolean)
 Expressions.instance()
 .createMethodExpression("#{passwordBean.verify}")
 .invoke();
...
String password = (String)
 Expressions.instance()
 .createValueExpression("#{passwordBean.password}")
 .getValue();

You can also use a value expression to assign a value. For instance, say that you want to
clear the confirm password when it’s wrong. You can once again use a value-binding
expression:

Expressions.instance()
 .createValueExpression("#{passwordBean.confirm}")
 .setValue(null);

We just covered good old-fashioned EL. But Seam offers so much more. Let’s see what
Seam does to make the EL even more powerful as an integrator.
SEAM’S ENHANCED EL
The EL is ideal for integrating technologies because it uses a simple, technology-
agnostic syntax. It standardizes on the JavaBean property notation for value expres-
sions and no-argument methods for method expressions. Unfortunately, its simplicity
is also its downfall. Because it’s at the intersection of so many technologies, you often
find that if the EL supported that one additional feature, you’d be able to take the
integration to the next level. This longing is especially strong when you’re attempting

175Accessing components
to implement advanced layouts that require more sophisticated logic, which you
encounter in later examples in the book.

 Fortunately, Seam supports several enhancements to the EL, provided in part by
the JBoss EL library and supplemented by the Seam EL resolver:

■ Parameterized method-binding expressions
■ Parameterized value-binding expressions
■ No-argument event listener methods
■ “Magic” bean properties (properties not present on the class)
■ Projections

The first two enhancements allow you to use method arguments in an EL expres-
sion. The arguments are surrounded in parentheses and separated by commas, just
like in Java. Each argument is interpreted as a context variable unless it is quoted or
is a number. Before looking at examples of parameterized expressions, I want to
highlight the fact that Seam goes in the other direction as well by making the
FacesEvent argument on JSF event listener methods optional (e.g. ActionEvent,
ValueChangeEvent, and so on). This feature lets you implement an action or event
listener without tying your UI logic directly to the JSF API.

 You can use a parameterized method binding to pass data to a method on a
Seam component. Using the example from earlier in the chapter, you can change
the register() action method to pass the newGolfer and passwordBean context
variables as arguments:

<h:commandButton id="register" value="Register"
 action="#{registerAction.register(newGolfer, passwordBean)}"/>

Be aware that the context variable is resolved when the action method is invoked, not
when the button in which it’s used is rendered. Thus, the parameters should be names
of proper Seam components that will be available on the next request.

 You can also pass parameters to value-binding expressions. However, note that
when doing so you have to use the full method name of the property (i.e., get-
Name()), not the shorthand syntax (name). Say you’re creating a page in which you
want to display the collection of tees for a particular hole on the golf course. The fol-
lowing value expression gives you access to calculated data that otherwise wouldn’t be
attainable with standard EL:

#{teeSet.getTeesByHoleNumber(10)}

Parameterized method- and value-binding expressions allow Seam components to
serve as a function library for use in a JSF view, circumventing the need to have to go
through the formal process of registering EL functions. A prime example is custom
string manipulation, perhaps to truncate a string, leaving a trailing ellipsis if it exceeds
a maximum length:

#{stringUtils.truncate(facility.name, 10)}

You can also call a method on the model to execute domain-specific Boolean logic:

<h:graphicImage value="/img/signature.gif"
 rendered="#{course.isSignatureHole(hole)}"/>

176 CHAPTER 4 Components and contexts
The parameterized syntax also provides access to methods that don’t follow the Java-
Bean property syntax. For instance, that pesky size() method on collections and
equally evasive length() method on strings aren’t reachable using a standard value
expression. But you can use the parameterized method syntax to get there:

#{course.holes.size()}
#{course.name.length()}

Recognizing that there are a handful of collection methods that are extremely useful
but happen to not follow the JavaBean naming convention, Seam developers have
weaved them into the Seam EL resolver as “magic” methods. These properties are
summarized in table 4.18, which map to equivalently named no-argument methods on
the Java type.

The Seam EL resolver provides direct access to Seam context maps, which are refer-
enced as the root of an EL expression. The name of the map for each context
is derived by appending Context to the lowercase name of the context. For instance,
eventContext is a map of variables in the event context. You can access the
PasswordBean instance via EL using #{eventContext.passwordBean} or #{event-
Context["passwordBean"]}.

 The parameterized syntax for value and method expressions is only available if
you’re using JSP 2.1 (or later) or Facelets (another compelling reason for using Face-
lets). The optional FacesEvent argument on action and event listeners and magic
methods are available across the board. Because of limitations in the JSP compiler, the
final enhancement, projections, is only available for expressions appearing within
strings in Java code, within component tag attributes in Facelets view templates, or in
Seam descriptors.

 Projections allow you to mine a collection for values. For instance, suppose you
want to get all of the colors used for tee sets on a course:

#{course.teeSets.{ts|ts.color}}

The ts acts as the iterator variable for the teeSets collection, and the pipe character
(|) separates the iterator variable from the nested expression. It’s equivalent to the fol-
lowing pseudocode:

List result = new ArrayList()
for (ts : course.teeSets) {
 result.add(ts.color)
}
return result;

Table 4.18 The magic bean properties supported by the Seam EL resolver

java.util.Collection java.util.Map javax.faces.DataModel

size entrySet
keySet
size
values

empty
size

177Summary
Projections work for any collection type (list or set), map (entries), or array. The
resulting type is always a java.util.List (providing a convenient way to convert a
Set to a List) Though not demonstrated in this example, the value expression used
in the projection can use the parameterized syntax described earlier.

 Projections can also be nested. This allows you to descend into collections returned
by the collections, with each level of nesting using the same pattern of iterator variable
and nested expression separated by the pipe character. Say you wanted to amass a col-
lection of the distances of all the tees on the course:

#{course.teeSets.{ts|ts.tees.{t|t.distance}}}

To get access to all the tees, instead of the tee distances, you have to reference the iter-
ator variable in the expression segment, highlighted in bold:

#{course.teeSets.{ts|ts.tees.{t|t}}}

Projections are convenient if you’re trying to save typing and perform quick one-
liners like you can do in languages such as Ruby and Groovy. Projections demonstrate
how Seam stretches the limits of Java EE to offer next-generation efficiencies. Even if
you don’t take advantage of projections, you’ll likely use the other EL enhancements
quite often.

 The final place you’ll access Seam components is in annotations, which you’ll get a
heavy dose of in chapter 6. You should now have an appreciation for the various ways
in which you can interact with Seam’s contextual container for the purpose of retriev-
ing component instances. Trust that you’ll get plenty more practice at it as you prog-
ress through the book.

4.8 Summary
This chapter covered the two essential concepts in Seam: components and contexts.
The chapter opened by introducing Seam’s rich contexts, which provides a central-
ized storage mechanism for objects. You learned that objects stored in these buckets
are known as context variables. Seam’s contexts build on those available in the Java
Servlet API, encouraging you to hold long-running state to support use cases without
fear of memory leaks, expensive replication, or concurrency problems.

 The term component was given meaning in the context of Seam, being defined as a
blueprint for creating an object whose lifecycle is managed by Seam. You learned that
creation happens when the name assigned to a component is requested and an instance
doesn’t already exist. In this sense, the Seam container is a simple object factory. But you
discovered that Seam goes well beyond instantiating the component by wrapping it with
method interceptors that allow Seam to weave functionality into the instance, provide
life-cycle callbacks, and ultimately manage it throughout its lifetime. Many of the core
interceptors are covered in chapter 6, and additional ones pertaining to conversations
persistence, and security are explored in chapters 7, 9, and 11, respectively.

 Throughout the chapter, examples were provided that demonstrate how to access
components using the Seam API and EL notation. These examples serve merely as a

178 CHAPTER 4 Components and contexts
warm-up for what’s to come. Indeed, components are used in every remaining chap-
ter in this book. If by some chance you don’t feel comfortable with how to access them
yet, you’ll get plenty more practice, especially with how they’re exchanged declara-
tively using annotations in chapter 6.

 To balance the focus on annotations in this chapter, the next chapter presents an
XML-based approach to defining components. You discover that this alternative
approach is about more than just replacing @ symbols with angled brackets. You learn
that XML gives you a way to configure components by assigning initial values. Compo-
nent configuration, as this mechanism is termed, builds on the basic component
knowledge that you learned about in this chapter. You have only seen the beginning
of what you can do with a component.

The Seam
 component descriptor
Seam embraces annotations to keep you out of the XML weeds. You are a Java (or
Groovy) developer, darn it, and that’s the language in which you should be allowed
to program your application! Despite this pragmatic statement, it would be mislead-
ing to say that Seam eliminates XML entirely. It doesn’t. If you’re one of those XML
enthusiasts, you’ll be glad to know that you don’t have to give up your angled brack-
ets when you move to Seam. In fact, there are some areas of Seam where XML con-
figuration is the best choice—or even the only choice. One example is Seam’s page
descriptor, covered in chapter 3, which administers Seam’s page-oriented function-
ality.1 Since views are defined in XML, it’s only natural for page controls to be defined

This chapter covers
■ Creating component definitions in XML
■ Defining component XML namespaces
■ Configuring a component’s properties
■ Using the Seam resource bundle

1 Java-based page configuration is in the pipeline, so this requirement may not hold true for long.
179

180 CHAPTER 5 The Seam component descriptor
that way as well. The use of XML also ensures a quick turnaround by avoiding the com-
pilation step, which is important given that views often require a lot of tinkering.

 Component definitions are another example where XML proves useful. Annota-
tions such as @Name are easy enough to add to classes under your control. However, if
the class you intend to declare as a Seam component is sealed in a third-party JAR file
or maintained by another team, annotations don’t do you much good. There may also
be situations where you need to alter an existing component definition—either one
from your application or one of Seam’s built-in components—or assign property val-
ues to that component. In these cases, you have to resort to external configuration,
which this chapter covers.

 In the previous chapter, you gained an appreciation for the simplicity that annota-
tions bring to the development of Seam components. If you are content working with
annotations, I encourage you to skip ahead to the next chapter to learn about another
set of annotations that are used to wire components together and to initialize context
variables. On the other hand, if you are interested in learning how to define and con-
figure components in XML, this chapter shows how this task is accomplished using the
Seam component descriptor. The component descriptor contains XML-based metadata
that offers a way to keep the component definition separate from the class. You can also
use this file to assign initial property values to component instances, wire components
together, override the settings of existing components, and control built-in Seam func-
tionality. The XML in Seam isn’t all old-fashioned, though. Thanks to XML namespaces,
you may almost mistake the XML for a real language. In addition to XML, you’ll learn
that Java properties files can be used to accomplish certain types of configuration in
Seam. We’ll look at Seam’s internationalization (i18n) support as an example of con-
figuring a built-in Seam component and how keys in a message bundle can in turn be
used to supply locale-specific values to the properties of a Seam component. By the end
of the chapter, you’ll appreciate that both XML and Java properties serve as a valuable
supplement to Seam’s primarily annotation-based approach.

5.1 Defining components using XML
The last thing the world needs is another XML configuration file, right? After the
debacle that was EJB 2, a major theme of the EJB 3 rework was to do away with
required XML descriptors. That theme carries into Seam. As promised in the previous
chapter, Seam components can be authored strictly using annotations. So, while Seam
has an XML-based component descriptor, its use is entirely optional. Seam happily
bootstraps in its absence.

 Let’s talk about those cases, though, when annotations are not well suited and XML
is warranted. The component descriptor supplements annotations in the following
cases:

■ Declare a class, which you can’t modify and that lacks a @Name annotation, as a
Seam component (admittedly you could extend the class as an alternative)

■ Install a class that’s not installed by default (the class has an @Install annota-
tion indicating that the component shouldn’t be installed)

181Defining components using XML
■ Override a component definition setting, such as the scope or autocreate value
(the value from the descriptor always takes precedence over the annotation)

■ Configure bean properties of components that get applied to the component
instance (perhaps to externalize deployment-specific information)

There’s also the possibility that you simply prefer XML over annotations. In that case,
you can use the component descriptor to define all of your Seam components. Seam
affords you that flexibility, though I don’t recommend that approach. Either way,
Seam has a wealth of built-in functionality that is only an XML element away. Likewise,
you can use the component descriptor to dress up your own components once they
are set in stone (i.e., compiled).

 I begin by providing an overview of the component descriptor; what it is, where it lives,
and the syntax it uses. I then explain how to use it to define and configure components.

5.1.1 Choosing your descriptor strategy

Seam’s XML-based component configuration can be partitioned across many files.
The component descriptor is a general term for the combined sum of the configura-
tions in all of the component descriptors on the classpath. Note that descriptor is a
fancy term for XML file.

 Seam supports both general descriptors and fine-grained descriptors. The general
descriptor can hold an arbitrary number of component definitions, whereas the fine-
grained descriptor is designed to govern the components for a single class. The name
of the general descriptor is components.xml, whereas fine-grained descriptors are
named using the file extension .component.xml.

 The general descriptor is often placed in the WEB-INF directory of the web applica-
tion, which is where seam-gen stashes it. However, this file need not be confined to the
WEB-INF directory. Instead, it can be distributed across the classpath, allowing you to
organize your configuration the way that’s most suitable for you, rather than having to
jam every last component definition into a single file. One recommendation is to par-
tition your component descriptors by module so that each descriptor is centered on
the classes within that artifact. You can narrow it even further by putting a general
descriptor in each Java package. The most extreme solution to avoiding monolithic
component descriptors is to define every component in a fine-grained descriptor adja-
cent to the subject class. The choice is up to you.

 The rules regarding where the component descriptors can be placed are fairly loose.
The locations that the Seam component scanner visits are summarized in table 5.1,

Table 5.1 The resource locations where Seam looks for XML-based component descriptors

Resource Location details

WEB-INF/components.xml Located in a web application archive (WAR)

META-INF/components.xml Located in any classpath entry (root of JAR or WEB-INF/classes in WAR)

components.xml or
*.component.xml

Located anywhere in a scanned classpath entry (a classpath entry is
scanned if it has a marker file, as described in section 4.5.1 of chapter 4)

182 CHAPTER 5 The Seam component descriptor
listed in the order that they’re addressed by the scanner. Regardless of how you decide
to divide up your XML-based component configuration, Seam collects them, combines
them with the settings defined in annotations, and assembles a unified set of component
definitions in memory. From that unified set is where instances are born, as you learned
in the previous chapter.

TIP Although seam-gen places the components.xml file in the WEB-INF direc-
tory, consider storing it in the META-INF directory instead, where it’s
accessible to unit and integration test environments that don’t recognize
the WEB-INF directory as part of the classpath.

That sums up where the component descriptor can be placed. Let’s open up the file,
have a look at its structure, and learn how to use it to create component definitions.

5.1.2 The structure of the component descriptor

The Seam component descriptor consists of one or more component definitions,
declared using the <component> element and nested within the root <components>
element. (In a fine-grained component descriptor, <component> can be the root ele-
ment.) In addition to generic <component> elements, Seam supports extension ele-
ments through the use of XML namespaces to accommodate “type-safe” XML
component declarations. The component descriptor also accommodates a handful of
noncomponent elements, such as <import> and <factory>, that are covered later in
this chapter and the next.

NOTE If you’ve worked with the Spring configuration file, you should feel right
at home using the Seam component descriptor. The main difference is
that instead of having a root <beans> element and child <bean> ele-
ments, the Seam component descriptor has a root <components> ele-
ment and child <component> elements. Both Seam and Spring support
extension elements using XML namespaces.

Listing 5.1 shows a simple component descriptor with two components defined. For
the components shown, it is assumed that the @Name and @Scope annotations are
absent from the class definitions. Instead, these classes are declared to be components
using XML. If the classes had @Name annotations equivalent to these definitions, an
exception would result for reasons that are described in section 5.4 (which covers
component definitions overrides).

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.0.xsd">

 <component name="newGolfer"
 class="org.open18.model.Golfer" scope="event"/>

Listing 5.1 A component descriptor with two component definitions

183Defining components using XML
 <component name="passwordBean"
 class="org.open18.auth.PasswordBean" scope="event" auto-create="true"/>

</components>

If Spring hasn’t made you tired of XML yet, then these definitions don’t look so bad.
The <component> element defines a new Seam component for the class specified in
the class attribute. The name attribute is equivalent to the @Name annotation and the
scope attribute is equivalent to the @Scope annotation. The mappings between com-
ponent definition annotations and the XML <component> element attributes are
shown in table 5.2.

You may notice that the XML equivalent of the @Role annotation is missing from this
list. Actually, it’s not. It’s the <component> element itself. The component descriptor
supports an arbitrary number of component definitions for a single class. The only
requirement is that you assign a different component name to each definition using
the name attribute. In effect, the name attribute is the role name. You may find the
<component> declaration to be more suitable for defining roles than the @Role anno-
tation, as I have.

 Here, the role assigned to the Golfer entity in the previous chapter using the
@Role annotation is defined using the <component> element instead:

<component name="golferExample"
 class="org.open18.model.Golfer" scope="event"/>

From the standpoint of the application, there’s no difference in how the component
is constructed when it’s defined using annotations versus XML. Seam builds the same

Table 5.2 The correlation between Seam annotations and the component descriptor

Class-level annotation or
annotation attribute

XML attribute on <component>

Java class name class

@Name name

@Scope scope

@AutoCreate auto-create

@Install(value) installed

@Install(precedence) precedence

@Startup startup

@Startup(depends) startupDepends (Seam 2.1 or greater)

@JndiNamea jndi-namea

a. The @JndiName annotation and jndi-name attribute are only relevant for EJB session
bean components.

184 CHAPTER 5 The Seam component descriptor
internal representation of a component definition in both cases and uses it to dish out
component instances. But the XML version allows you to assign initial values to bean
properties, which is covered in section 5.3. Right now, the XML stanza appears basic
because all it’s doing is declaring the component.

You can’t create XML-based component definitions for classes on the hot-
deployment classpath (sourced from the src/action folder of WAR proj-
ects created by seam-gen). The component scanner that processes the
component descriptors can’t “see” classes in the hot-deploy classloader.
This shortcoming may be resolved in a future release. Regardless, it
defeats the purpose of using the hot-deploy classloader since compo-
nents defined in component descriptors are not hot deployable (hot-
deployable components can only be defined using @Name). The compo-
nent descriptor can still be used to register initial property values for hot-
deployable components.

Although the general component descriptor may seem simple enough to manage
with just a few component definitions in it, the trouble is that its size can quickly get
out of hand as you start relying on it more heavily. Narrowing in on a single configura-
tion becomes as challenging as finding a matching sock in a laundry pile. To prevent
this melting pot of configurations, let’s consider how to segment declarations by com-
ponent class using fine-grained component descriptors.

5.1.3 Fine-grained component descriptors

The fine-grained component descriptor is designed to make it more intuitive for the
developer to locate the configuration for a class, since it’s adjacent to the class it con-
figures, and to make the content of that descriptor be “task-oriented” since it focuses
on a single class. It also offers a nice alternative to using Seam component annota-
tions—especially if you shiver at the thought of using a lot of annotations on your
class—without losing the benefit of being in close proximity to the class.

 Fine-grained descriptors are identified by the .component.xml file extension and
are used to configure a neighboring Java (or Groovy) class as a Seam component. The
name of the class to which the fine-grained descriptor corresponds is derived by strip-
ping the .component.xml extension from the descriptor’s resource path and convert-
ing slashes (/) to dots (.). For example, the fine-grained component descriptor whose
resource path is org/open18/auth/PasswordBean.component.xml is used to config-
ure the org.open18.auth.PasswordBean class. The reverse logic is used to derive the
resource path of the fine-grained descriptor from the name of a class. Seam searches
in both directions when preparing the component definition.

 You saw this dispersed approach to XML-based configuration in chapter 3 when
you were introduced to fine-grained page descriptors. They differ in that a fine-
grained page descriptor only deals with a single <page> element, whereas the fine-
grained component descriptor is capable of accepting one or more <component> ele-
ments, depending on whether the root tag is <component> or <components>. If you

WARNING

185XML namespaces in the component descriptor
intend on declaring only a single component definition, you use <component> as the
root element. A fine-grained descriptor with a single component definition need not
declare the class attribute, as the class name is derived according to the conversion
logic just described. The content of a fine-grained descriptor is shown here, which
includes the optional XML namespace declarations:

<component xmlns="http://jboss.com/products/seam/components"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.0.xsd"
 name="passwordBean" scope="event"/>

If you intend on using multiple declarations in the fine-grained descriptor, you make
<components> the root element. However, by not using <component> as the root ele-
ment, you lose the benefit of the implied value of the class attribute, which is now
required. What you do gain is the full capacity of the component descriptor for con-
figuring the class. You can assign one or more roles using multiple <component> ele-
ments, or you can use auxiliary elements like <factory> and <event>, which are both
covered in the next chapter.

There’s nothing stopping you from putting arbitrary component defini-
tions—definitions not related to the adjacent class—in a fine-grained
descriptor that uses <components> as the root element. However, this
practice is discouraged because it hides component definitions in unex-
pected places.

The downside of the fine-grained descriptor is that it is yet another XML file that you
have to manage. You also lose the type safety that annotations afford you. Fortunately,
there’s a compromise. Seam offers “type-safe” XML elements through the use of XML
namespaces and XML Schema, thus reducing the pain involved in working with XML.

5.2 XML namespaces in the component descriptor
You can hardly ignore the XML namespace declarations at the top of the component
descriptors presented thus far. In fact, they account for more than half of the charac-
ters in the documents! Let’s see what this gratuitous metadata is all about and what it
buys you.

5.2.1 The purpose of XML namespace declarations

The namespace declarations that attach to the root element of the component
descriptor import a vocabulary of XML elements and attributes defined in W3C XML
Schema for creating and configuring components. The reason XML Schema is used is
because it offers a rich typing system and allows the vocabulary to be extended
through custom namespaces (akin to a Java package). That means the names, classes,
and bean properties of components can be reflected in the names of the XML ele-
ments and attributes, and that strict validation of the markup can be enforced. It’s for
this reason that the XML is considered “type-safe.”

WARNING

186 CHAPTER 5 The Seam component descriptor
DON’T BE SO GENERIC

The http://jboss.com/products/seam/components namespace represents the
generic Seam component vocabulary, which provides the <component> element
already covered. Aside from the root element, <components>, the other elements in
this namespace are <property> (for setting a property value), <import> (which we
examine later in this chapter), and <factory> and <event>, both of which are
described in the next chapter. Using this namespace alone, you don’t see much bene-
fit from using XML Schema over a less verbose alternative like DTD because the prop-
erty names in generic <component> definitions can’t be validated. The benefit comes
in the extensive set of component-specific namespaces that Seam provides that widen
this vocabulary and make it type safe. You can also define your own XML namespaces,
as you’ll learn to do later in this section.

NOTE Each namespace that you import provides an XML vocabulary that maps
one-to-one with the names of component classes and their bean proper-
ties. Therefore, I’ll refer to the namespaces from this point forward as
component XML namespaces.

Let’s look at an example where an element from a component XML namespace is used
to replace a generic element. The built-in component named org.jboss.seam.
core.init has a property named debug that controls Seam’s debug mode. With the
generic component namespace already declared, the debug mode property is set to true
using the following stanza, which references this component by its name (not class):

<component name="org.jboss.seam.core.init">
 <property name="debug">true</property>
</component>

Instead of using generic elements to define or configure components, you can use
custom elements and attributes imported from a component XML namespace. The
vocabulary associated with the built-in http://jboss.com/products/seam/core

namespace includes the XML element <init> (which maps to the Seam component
class org.jboss.seam.core.Init) and a set of XML attributes (which fit to the prop-
erties of the class). By importing this namespace into the component descriptor and
binding it to the namespace alias core, it’s possible to use the qualified <core:init>
element to set the debug property of the corresponding component to true, shown
here in bold:

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.0.xsd
 http://jboss.com/products/seam/core
 http://jboss.com/products/seam/core-2.0.xsd">
 <core:init debug="true"/>
</components>

187XML namespaces in the component descriptor
This declaration assigns an initial value to the property of a built-in component, which
you’ll learn more about in section 5.3. The key point is that both the property name
and value are validated by the schema. Although the namespace declarations are
quite verbose, they help cut down on the number of characters needed throughout
the remainder of the component descriptor.

INFO If you aren’t accustomed to XML Schema-based configuration, you may
be turned off by the clutter they introduce to the root element. However,
these formalities are your ticket to a friendly development experience.
The xsi:schemaLocation attribute maps the XML namespaces to XML
Schema Documents (XSDs), which the IDE retrieves and interprets to
provide you with XML tag completion, similar to what you get with Java
syntax. If you don’t need the IDE support, you can leave off the
namespace declarations.

Most built-in Seam components are associated with a namespace, which we explore
next. After a survey of the built-in namespaces, we tackle the mapping between XML
elements in a component namespace and Java classes.
A SURVEY OF SEAM’S BUILT- IN COMPONENTS

An itemization of all of the built-in components in Seam would be in vain, as they
are ever-changing. I want to at least give you a snapshot of the functional areas of
Seam. Table 5.3 lists Seam’s built-in namespaces along with a description of the com-
ponents they include.

NOTE The version in the .xsd filename must match Seam’s major version. Thus,
if you’re using Seam 2.1.0.GA, the version should be 2.1. Table 5.3 lists
the 2.0 versions.

Table 5.3 Built-in component XML namespaces

Namespace URI / schema location Purpose

http://jboss.com/products/seam/async
http://jboss.com/products/seam/async-2.0.xsd

Asynchronous dispatchers

http://jboss.com/products/seam/bpm
http://jboss.com/products/seam/bpm-2.0.xsd

jBPM integration

http://jboss.com/products/seam/components
http://jboss.com/products/seam/components-2.0.xsd

Generic component definitions,
factories, event observers, and
context variable prefix imports

http://jboss.com/products/seam/core
http://jboss.com/products/seam/core-2.0.xsd

Core Seam settings (debug
mode, transaction manage-
ment switch, etc.)

http://jboss.com/products/seam/drools
http://jboss.com/products/seam/drools-2.0.xsd

Drools configuration and secu-
rity rules

http://jboss.com/products/seam/framework
http://jboss.com/products/seam/framework-2.0.xsd

Seam application (CRUD)
framework

188 CHAPTER 5 The Seam component descriptor
To register a component namespace in your component descriptor, first choose a com-
ponent namespace from table 5.3 and declare it as an XML namespace using an alias of
your choice. Next, add the namespace URI and schema location to the xsi:schema-
Location attribute on the root node. Then, you can use tag completion support in the
IDE to discover the available components since all of Seam’s built-in namespaces are
backed by an XML Schema vocabulary. If you are the exploratory type, I encourage you
to just add all of the namespaces from this table and see what your XML editor gives you.

 While having fun with tag completion and exploring the built-in components that
Seam offers through XML, you may be wondering what these elements have to do with
Java classes and component definitions. The first step to understanding this relation-
ship is learning how the namespaces are associated with Java packages.

http://jboss.com/products/seam/international
http://jboss.com/products/seam/international-2.0.xsd

Locale and time zone selector
components

http://jboss.com/products/seam/jms
http://jboss.com/products/seam/jms-2.0.xsd

JMS integration

http://jboss.com/products/seam/mail
http://jboss.com/products/seam/mail-2.0.xsd

E-mail integration and connec-
tion settings

http://jboss.com/products/seam/navigation
http://jboss.com/products/seam/navigation-2.0.xsd

Global navigation rules and
resource locations for global
page descriptors

http://jboss.com/products/seam/pdf
http://jboss.com/products/seam/pdf-2.0.xsd

PDF document storage
and key-store configuration
for signed PDFs (requires
jboss-seam-pdf.jar)

http://jboss.com/products/seam/persistence
http://jboss.com/products/seam/persistence-2.0.xsd

Persistence units and manager
configurations

http://jboss.com/products/seam/remoting
http://jboss.com/products/seam/remoting-2.0.xsd

JavaScript remoting settings

http://jboss.com/products/seam/security
http://jboss.com/products/seam/security-2.0.xsd

Identity (authentication and
authorization) configuration

http://jboss.com/products/seam/spring
http://jboss.com/products/seam/spring-2.0.xsd

Spring integration (requires
jboss-seam-spring.jar)

http://jboss.com/products/seam/theme
http://jboss.com/products/seam/theme-2.0.xsd

UI theme selector and available
themes

http://jboss.com/products/seam/transaction
http://jboss.com/products/seam/transaction-2.0.xsd

Transaction providers

http://jboss.com/products/seam/web
http://jboss.com/products/seam/web-2.0.xsd

Servlet filter configuration

Table 5.3 Built-in component XML namespaces (continued)

Namespace URI / schema location Purpose

189XML namespaces in the component descriptor
NAMESPACES AND JAVA PACKAGES

An XML namespace is a URI—a fancy way of saying a unique name. A namespace
looks like a URL, but it’s not mandatory that it resolve to a public document. The
namespace is mapped to an alias, such as core in the previous example. The name of
the alias is arbitrary. It’s used as a prefix on element names, such as <core:init>, to
associate these elements with a particular namespace. The prefix isn’t required for
elements in the default namespace, which is set using the xmlns attribute. Typically,
component descriptors declare http://jboss.com/products/seam/components as
the default namespace. As such, the <component> element doesn’t need a prefix.

 Namespaces are similar to Java packages. In fact, Seam enforces a one-to-one rela-
tionship between namespaces in the component descriptor and Java packages. You’ll
soon learn that the elements are transformations of Java class names and the attri-
butes the bean properties. The use of XML namespaces in the component descriptor
is the closest you can get to writing Java without actually using the Java syntax.

 Let’s draft an XML namespace for the Open 18 application to replace the use of
the generic <component> element. This lesson should also help you understand how
elements in a component XML namespace are interpreted so that you can make sense
of the syntax used to configure one of Seam’s built-in components.

5.2.2 Defining an XML @Namespace for components in a package

An XML namespace URI can be associated with a Java package using the @Namespace
annotation, summarized in table 5.4. @Namespace is a package-level annotation, which
means it’s placed above the package declaration in the package-info.java file.2 When
Seam encounters an XML element that’s not in the generic component namespace, it
looks for a @Namespace annotation to make the connection between the namespace
URI of that element and a Java package. Seam 2.1 supports an implied mapping
between namespace URI and Java package, making the @Namespace annotation just a
formality. The mechanics of this mapping are addressed in the next section.

2 package-info.java was introduced in Java 5 for declaring package-level annotations and JavaDoc comments.

Table 5.4 The @Namespace annotation

Name: Namespace

Purpose: Maps a URI to a Java package. The URI can be used as an XML namespace in the component

descriptor. The mapping tells Seam which Java package to look in to find components when

processing an XML element in that namespace.

Target: PACKAGE

Attribute Type Function

value String The XML namespace (URI) for this package. Default: none (required).

prefix String A qualifier used to derive the component name from the local name of
the XML element, similar to how a Java package qualifies a class name.
If this value is empty, a prefix is not used. Default: empty string.

190 CHAPTER 5 The Seam component descriptor
Let’s create a namespace for the authentication package in the Open 18 application.
The contents of the package-info.java file in the org.open18.auth package are shown
here:

@Namespace(value="http://open18.org/components/auth")
@AutoCreate
package org.open18.auth;
import org.jboss.seam.annotations.AutoCreate;
import org.jboss.seam.annotations.Namespace;

Notice that in addition to the @Namespace declaration, other Seam component anno-
tations can be added to the package-info.java file to set defaults for any component in
that package. In this case, all components in the org.open18.auth package support
the autocreate functionality.

As of Seam 2.0, the component scanner does not pick up @Namespace
annotations located on the hot-deploy classpath (sourced from the src/
action directory of seam-gen WAR projects). They must be on the main
classpath (e.g., the src/model directory).

You find similar declarations scattered throughout the Seam code base defining the
namespaces shown in table 5.3. Having created a component namespace of our own,
let’s see how it’s used to enable domain-specific markup in the component descriptor.

5.2.3 How XML namespaces are interpreted

The @Namespace declaration establishes a link between an XML namespace and
a Java package. (Again, in Seam 2.1, this mapping can be implied.) This relation-
ship is the key to extensible XML authoring of components. In other words, you
can define your components using custom XML elements just like Seam does its
built-in components.

 As with Seam’s built-in namespaces, begin by adding the namespace from the
@Namespace annotation to the component descriptor. Then choose a namespace alias
for associating XML elements with this URI. Listing 5.2 shows the declaration of the
http://open18.org/components/auth namespace bound to the auth namespace
alias and a definition of a component in the associated Java package.

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:auth="http://open18.org/components/auth"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.0.xsd">
 <auth:password-bean scope="event"/>
</components>

The <auth:password-bean> element is a type-safe way of declaring the PasswordBean
class as a component. You don’t actually have to declare the XML namespace in the

Listing 5.2 The PasswordBean defined using a component namespace

WARNING

191XML namespaces in the component descriptor
root element. You have the option of using the namespace directly in the prefix of
the element:

<http://open18.org/components/auth:password-bean scope="event"/>

The namespace alias is merely a shorthand syntax. Either way, the result is equivalent
to what’s achieved using the following generic component definition:

<component name="passwordBean"
 class="org.open18.auth.PasswordBean" scope="event"/>

Let’s explore how Seam interprets the type-safe declaration to derive the same set of
information provided by the generic component definition.
TRANSLATING XML INTO JAVA

The translation from the <auth:password-bean>
element to a fully qualified Java class is shown in
figure 5.1.

 When Seam encounters an XML element in
the auth namespace, it looks to see if there’s a
@Namespace annotation with a value that matches
the XML namespace URI. Indeed, the namespace
maps to a Java package as follows:

http://open18.org/components/auth -> org.open18.auth

As of Seam 2.1, there are two ways the Java packages can be derived from the XML
namespace URI if a matching @Namespace annotation isn’t defined. When the scheme
of the URI is http://, Seam implies the package name by stripping the www prefix (if
present), reversing the domain name, and appending the trailing paths as subpack-
ages (converting slashes to dots):

http://www.open18.org/auth -> org.open18.auth

When the namespace scheme is java:, rather than http://, the part of the URI that fol-
lows the scheme is used as the package name:

java:org.open18.auth -> org.open18.auth

At this point, the namespace URI has served its purpose and Seam ceases to do any-
thing more with it. It just helps put Seam in the right playing field. Next, the simple
name of the class—the class name without the Java package—is derived from the local
name of the XML element, which in this case is password-bean. This conversion
occurs by making the first letter and any letter after a hyphen uppercase and drop-
ping the hyphens:

password-bean -> PasswordBean

The package org.open18.auth and the simple class name PasswordBean are assem-
bled to form the fully qualified Java class. The complete translation is as follows:

<auth:password-bean> -> org.open18.auth.PasswordBean

<auth:password-bean />

Translates to
Java package

Translates to
class name

Resolves to org.open18.auth.PasswordBean

Figure 5.1 How Seam interprets an XML
element in a component namespace

192 CHAPTER 5 The Seam component descriptor
NOTE The benefit of using a custom XML element is that it eliminates the
need to specify the class attribute on the component definition.
Instead, the class is derived by adjoining the Java package assigned to
the element’s namespace URL and a translation of the element’s local
name from the XML element. If a Java package can’t be resolved from
the XML namespace URI of the element, an exception is thrown during
deployment that prevents the application from loading.

That takes care of the component class, but as you’ve learned, every Seam component
must be associated with a name and scope. Let’s see how they are assigned.
RESOLVING A COMPONENT NAME AND SCOPE

XML elements in a component namespace are treated as extensions to the <compo-
nent> element. That means they inherit all of the standard attributes used to define a
component that were listed in table 5.2. Because the standard attributes are inherited,
the component name and scope can be specified as attributes on the custom element:

<auth:password-bean name="passwordBean" scope="event"/>

However, declaring the component name on a custom element isn’t necessary. Seam
uses the following search order to locate a name to assign to a component defined
using a namespace element in the component descriptor:

■ The name attribute on the custom XML element
■ The @Name annotation on the associated Java class
■ A value derived from the local name of the XML element

If a component name is not specified in the name attribute of the XML element or the
@Name annotation, Seam gets its hands dirty and derives a name from the Java class.
Seam begins by lowercasing the first letter of the simple name of the class to arrive at
the unqualified component name:

PasswordBean -> passwordBean

This is where the @Namespace annotation comes back into play. The @Namespace anno-
tation has a prefix attribute, whose value is used to qualify a component name just as
a Java package qualifies a class name. If the prefix attribute on the @Namespace anno-
tation is empty, then the unqualified component name is equivalent to the fully quali-
fied component name. In this example, the prefix attribute is empty, so the
component name remains passwordBean.

 If the prefix attribute is not empty, the fully qualified component name is con-
structed by combining the value of the prefix attribute with the unqualified compo-
nent name, separated by the dot (.) character. Assume for a moment that the
namespace had been defined as follows:

@Namespace(value = "http://open18.org/components/auth",
 prefix = "org.open18.auth")

The component name derived from the <auth:password-bean> declaration becomes
org.open18.auth.passwordBean. Don’t confuse this with the fully qualified class name.

193XML namespaces in the component descriptor
 To locate a scope, Seam consults the scope attribute on the custom XML element,
then checks the @Scope annotation on the class. If neither one is present, a scope is
chosen automatically according to table 4.6 in chapter 4.

 You should now understand how Seam gets from <core:init> to the built-in Seam
component name org.jboss.seam.core.init, shown in an earlier example, knowing
that there’s a @Namespace annotation declared on the org.jboss.seam.core package
with a prefix of the same name and namespace URI http://jboss.com/products/
seam/core. Let’s see how to get the IDE to make this type of association for our com-
ponent namespace.
ENABLING VALIDATION AND IDE TAG COMPLETION

Declaring the auth namespace alias in your component descriptor isn’t enough to get
the XML to validate or to give the IDE the information it needs to provide tag comple-
tion. You still need to provide an XML Schema Document (XSD) for each of the com-
ponent namespaces that you declare. The XML Schema vocabulary for the auth
namespace, auth-1.0.xsd, is not shown here, but it’s available in the book source code
for this chapter. Once you’ve written that file, you add it to the xsi:schemaLocation
attribute in the component descriptor, shown here in bold:

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:auth="http://open18.org/components/auth"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://open18.org/components/auth
 http://open18.org/components/auth-1.0.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.0.xsd">
 ...
</components>

If the XSD isn’t available at the URL provided, you need to make the correlation
between the auth-1.0.xsd file and its namespace in your XML editor to achieve XML
tag completion and validation. This works automatically for Seam’s built-in
namespaces since the XSD files are published to a public web server.

 Although creating component XML namespaces may appear challenging, the
good news is that you are more often a consumer than you are a creator. Most of the
time you find yourself using the namespaces included with Seam to configure Seam’s
built-in components. Speaking of Seam’s built-in components, you may notice that all
of Seam’s components have fully qualified component names to avoid naming con-
flicts. However, these long component names can be cumbersome to type. Let’s see
how to import context variable prefixes so it’s possible to address component
instances by their base names.

5.2.4 Importing a context variable prefix

Just as packages are used in Java to avoid naming conflicts between classes, prefixes
are used to avoid naming conflicts between component names. A context variable pre-
fix even uses the same dot (.) notation that you’re familiar with from Java packages.

194 CHAPTER 5 The Seam component descriptor
To make referring to these names more convenient, Seam offers a way to import a set
of qualified context variable prefixes just like the import statement works in Java.

 A context variable prefix is imported using the <import> element in the component
descriptor so that you can reference the context variable according to its last seg-
ment—its unqualified name. Assume for a moment that we assigned the org.
open18.auth prefix to the component namespace mapped to the auth XML namespace.
The context variable prefix could be imported with the following declaration in the
component descriptor:

<import>org.open18.auth</import>

This import statement applies globally across the application. It allows you to refer-
ence the context variable for the PasswordBean component as passwordBean rather
than org.open18.auth.passwordBean.

TIP I encourage you to use fully qualified context variable names for your
application’s components and then import the context variable prefixes
using the <import> tag as needed. This becomes especially important if
you are building reusable Seam libraries.

All built-in Seam components use qualified component names to be polite and avoid
“stealing” context variable names you might need to use. You can find a complete list
of Seam’s built-in components in the Seam reference documentation. Given that
many of these components are so commonly used, Seam imports their context vari-
able prefixes automatically. At the time of this writing, that list includes the following:

■ org.jboss.seam.bpm
■ org.jboss.seam.captcha
■ org.jboss.seam.core
■ org.jboss.seam.faces
■ org.jboss.seam.framework
■ org.jboss.seam.international
■ org.jboss.seam.jms
■ org.jboss.seam.mail
■ org.jboss.seam.pageflow
■ org.jboss.seam.security
■ org.jboss.seam.security.management (Seam 2.1 or greater)
■ org.jboss.seam.security.permission (Seam 2.1 or greater)
■ org.jboss.seam.theme
■ org.jboss.seam.transaction
■ org.jboss.seam.web

This set of imports is especially convenient for those often-used Seam components.
One common component to reference in the UI is the FacesMessages class, bound to
the org.jboss.seam.faces.facesMessages context variable. You can see that the
namespace used by the context variable appears in the default list of imports, so you

195Configuring component properties
can instead reference it using the abbreviated context variable name facesMessages.
You may use this component, for example, to iterate over the global JSF messages,
without having to use <h:messages> with the globalOnly flag:

<rich:dataList var="msg" value="#{facesMessages.currentGlobalMessages}">
 #{msg.summary}
</rich:dataList>

Component names are used as context variables to access Seam components, which
you learned about in the previous chapter. They also provide a means of configuring
initial property values for a component, which are applied to an instance after it’s cre-
ated (either by Seam or by a collaborating container). In the next section, you’ll learn
how to set the initial state of an instance by supplementing its component definition
with property values.

5.3 Configuring component properties
In the previous chapter you learned how a class enters into “component-hood” by way
of annotations and, in this chapter, as a result of XML-based declarations. But alone,
these definitions are just a fancy way of instantiating a class and weaving services into
it. Oftentimes, a component becomes useful only once its state is initialized, which
entails assigning initial values to its properties. This initialization comes in the form of
a simple property value, such as a connection string, or as a reference to another com-
ponent, effectively wiring components together. The property value assignments
occur prior to the instance being put to work as a context variable.

NOTE The @Create and @PostConstruct life-cycle callback methods are exe-
cuted after the initial property values have been assigned to the compo-
nent instance.

In this section, you’ll learn how these initial property values are declared and what
types of values can be supplied. Before we get into the mechanics, let’s consider the
benefit of establishing the initial state of a component and find out what is meant by a
component property.

5.3.1 Component definitions as object prototypes

Where a component definition pays off is when it’s used to produce an object proto-
type. As part of the component definition, you can store a set of property names and
associated values, which Seam picks up on startup and subsequently transfers to the
component instance after it’s instantiated. The prototype might serve to prepopulate
a form or to fill in fixed values that aren’t modifiable by the user, such as the date a
record is created. Let’s see how these properties get mapped to the class.

 A property name is mapped to either a JavaBean-style “setter” method or a field on
the target object, herein referred to generally as a bean property. The field name shares
the same name as the property, whereas the setter method is derived by capitalizing
the property name and prefixing it with set (e.g., the createdDate property maps to
the setCreatedDate() method). If a property name matches both a field and a setter

196 CHAPTER 5 The Seam component descriptor
method, the setter method takes precedence. The property value is then injected into
the method or field using reflection. When the dependency being injected is a refer-
ence to another component instance, the mechanism is referred to as dependency
injection (DI), or more informally “component wiring” to borrow from the Spring
term “bean wiring.”

NOTE The access level of the method or field on the target object doesn’t mat-
ter. Seam can assign a value to a method or field of any access level, even
if it’s private—a privilege granted to reflection.

Unlike other parts of the component definition, component properties must be
defined in external configuration, rather than in annotations.3 Although Seam tries to
avoid unnecessary external configuration, namely XML, configurable properties is
one case where it makes sense to take advantage of the decoupling. Declaring a prop-
erty value outside of the Java source code allows you to achieve any of the following:

■ Adjust the runtime behavior of the application without having to recompile
(e.g., timeout period, debug mode, maximum number of query results)

■ Define different property values for different component roles
■ Declare references to other component instances, known as component wiring

It’s up to you to decide when and where to use component properties in your applica-
tion. The next choice to make is where to define that initial property value.

5.3.2 Where component properties are defined

You can add an initial property value to a component definition by declaring it in one
of three places, listed in the order of increasing precedence:

■ Component descriptor
■ Servlet context parameter
■ seam.properties

Chances are, you’ll use the component descriptor a vast majority of the time, given
that it’s the most flexible and convenient. Earlier you learned to use the component
descriptor to define Seam components with either a generic <component> element or
an element bound to a component XML namespace. You can use the same elements
to assign property metadata, to augment the component definition, or to configure
an existing component. Section 5.4 clarifies this distinction.

 As an alternative to using the component descriptor, you can configure compo-
nent properties using the standard Java properties syntax, herein referred to as exter-
nal property settings. External property settings can be defined in either the
seam.properties file or as servlet context parameters. Seam employs a simple naming
convention to determine how the property key is mapped to the bean property of a
Seam component, which we’ll go over when we look at this technique.

3 There is one exception to this rule. The @Logger annotation instructs Seam to inject a log instance into the
annotated method or field when the component is instantiated.

197Configuring component properties
 The remainder of this section takes a hands-on approach to explaining how to use
the formats just mentioned, drawing on use cases from the Open 18 application.
Given that you already have the component descriptor open, we’ll start with the XML-
based component configuration.
DEFINING PROPERTIES IN THE COMPONENT DESCRIPTOR

Properties can be associated with any component definition declared in the component
descriptor. If you use the generic <component> element, the properties are configured
using nested <property> elements. The name of the property being configured is spec-
ified in the name attribute of the <property> element, and the value to be assigned is
specified in the body of the element (or within a nested <value> element).

 To associate the configuration properties with an existing component definition,
you specify the component’s name in the name attribute of the <component> element.
If you want the <component> declaration to also serve as a component definition, you
must also supply the class attribute. To learn the distinction between the two, see sec-
tion 5.4.

 Let’s assume that we want to configure the hashing algorithm and character set
used in the PasswordManager component, shown in listing 5.3. The digestAlgorithm
property determines the type of hash that’s calculated from the plain-text password,
and the charset property determines the encoding scheme applied to the password
prior to hashing it.

package org.open18.auth;

import java.security.MessageDigest;
import org.jboss.seam.annotations.Name;
import org.jboss.seam.util.Hex;

@Name("passwordManager")
public class PasswordManager {
 private String digestAlgorithm;
 private String charset;

 public void setDigestAlgorithm(String algorithm) {
 this.digestAlgorithm = algorithm;
 }

 public void setCharset(String charset) {
 this.charset = charset;
 }

 public String hash(String plainTextPassword) {
 try {
 MessageDigest digest =
 MessageDigest.getInstance(digestAlgorithm);
 digest.update(plainTextPassword.getBytes(charset));
 byte[] rawHash = digest.digest();
 return new String(Hex.encodeHex(rawHash));
 }
 catch (Exception e) {

Listing 5.3 A configurable component used to hash plain-text passwords

198 CHAPTER 5 The Seam component descriptor
 throw new RuntimeException(e);
 }
 }
}

Initial property values must be assigned to customize the behavior of the hash()
method for the current application (and to prevent a NullPointerException). The
following declaration configures the digestAlgorithm and charset values for a com-
ponent named passwordManager using nested <property> elements:

<component name="passwordManager">
 <property name="digestAlgorithm">SHA-1</property>
 <property name="charset">UTF-8</property>
</component>

If there is no component named passwordManager in the Seam container, this config-
uration serves no purpose. When the passwordManager component name is
requested, Seam instantiates a new instance of the corresponding class and then
applies the property values using reflection. The net effect is equivalent to the follow-
ing Java code:

PasswordManager passwordManager = new PasswordManager();
passwordManager.setDigestAlgorithm("SHA-1");
passwordManager.setCharset("UTF-8");
Contexts.getEventContext().set("passwordManager", passwordManager);

This snippet is intended to provide a general picture of how the property values affect
the instance. Of course, this is a generalization of what happens when a component is
instantiated. In actuality, there are a plethora of method interceptors that are wrapped
around the instance followed by execution of its life-cycle methods, if defined.

 To make for a more concise declaration, properties can be defined as attributes on
the <component> element. The component configuration for PasswordManager has
been modified to take advantage of this shorthand:

<component name="passwordManager" digestAlgorithm="SHA-1" charset="UTF-8"/>

However, the attribute syntax comes with a very important disclaimer. You can’t use
the attribute syntax to configure a property whose name is a reserved word in the
XML vocabulary of the <component> element. The reserved words follow; these attri-
bute names are interpreted as part of the component definition:

■ name

■ class

■ scope

■ auto-create

■ installed

■ startupDepends (Seam 2.1 or greater)
■ startup

■ precedence

■ jndi-name

199Configuring component properties
Memorize this list or keep it close at hand. Otherwise, you’ll be very confused as to
why you get an error (or a silent failure) when you try to assign a value to a bean prop-
erty whose name is in this reserved list using an attribute on the <component> ele-
ment. One way to handle this case is to use a nested <property> (or namespace
element). Another option is to use an external property setting, covered later.

 The third syntax for registering an initial property value in the component descrip-
tor is to use a nested element whose name is equivalent to the property that you’re
configuring. Once again, the component configuration for PasswordManager has
been rewritten to reflect this syntax:

<component name="passwordManager">
 <digestAlgorithm>SHA-1</digestAlgorithm>
 <charset>UTF-8</charset>
</component>

If you’ve been following along with your XML editor, you know that the XML Schema
validator is not happy with these last two variations—using an attribute on <compo-
nent> or nested element that shares the name of the property. That’s because the
generic component XML vocabulary doesn’t declare any attributes or elements with
the names digestAlgorithm or charset.

 So what good is this syntax if it doesn’t validate? Well, it just doesn’t validate yet. You
simply need to educate the XML validator. As you learned, an element in a component
XML namespace extends from the generic <component> element. You have to extend
the XML Schema of the generic namespace and append any custom attributes or
nested element names used by your component namespace. That requires that you
create an XSD, as covered in section 5.2.3. Then you can use the element-based syntax
to configure the property of a component and still have the document validate.

 Granted, if you aren’t concerned about the document validating and just want to
make your XML cleaner without the overhead of creating an XSD, then there’s noth-
ing stopping you. Seam doesn’t mandate that the document validate against the
schema so as to avoid imposing an arbitrary restriction on you. Use of XSD is merely a
best practice to get the type safety when developing. However, be warned that the XML
editor may not be so forgiving and may complain loudly about the custom attribute
and element names being invalid. Fortunately, all of the built-in Seam components
already have corresponding XSDs, so you can use custom attribute and element names
to define properties for these components and the document will validate.

 Assuming that you’ve imported the appropriate XML vocabulary, then the configu-
ration for the PasswordManager component can take advantage of the shorthand syn-
tax, as shown in listing 5.4, and still validate.

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:auth="http://open18.org/components/auth"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="

Listing 5.4 Component configuration using custom XML attribute and element names

200 CHAPTER 5 The Seam component descriptor
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.0.xsd
 http://open18.org/components/auth
 http://open18.org/components/auth-1.0.xsd">
 <auth:password-manager>
 <auth:digest-algorithm>SHA-1</auth:digest-algorithm>
 <auth:charset>UTF-8</auth:charset>
 </auth:password-manager>
</components>

I threw a curve ball at you in that last excerpt. Can you tell what it is? I changed the
name of the <digestAlgorithm> element to digest-algorithm. Seam always converts
hyphenated element names, attribute names, and the value of the name attribute on
the <property> element to their camel-case equivalents. This conversion is consistent
with what’s done to derive the simple name of the class from the element name, as
you learned in section 5.2.3.

 Thus, you could have written the <property> element for the digestAlgorithm
property using the hyphenated form:

<property name="digest-algorithm">SHA-1</property>

or, if the namespace vocabulary supports it, written the attribute name as

<auth:password-manager digest-algorithm="SHA-1"/>

NOTE The XML namespace alias (e.g., auth) doesn’t play a role in the process-
ing of elements that map to properties as it does when top-level elements
mapped to component classes are interpreted (in the latter case, the alias
is used to resolve a Java package as described in section 5.2.3). In the pre-
vious example, you could have used the unqualified element <digest-
algorithm> and, disregarding the whining from the XML editor, the
property value would have been assigned properly.

To summarize, you can configure a component property using a nested <property>
element, an attribute with the same name as the property on the component element,
or a nested element with the same name as the property. The important question to
ask is, “Does it validate?” In all cases, the nested <property> element validates, though
without any guarantee of type safety. The component XML namespace vocabulary dic-
tates the custom attributes and nested elements you can use to configure a compo-
nent’s properties. Seam’s built-in component namespaces mostly rely on the syntax of
attribute names in hyphenated form. See section 5.5 for more examples of this syntax.
If you’re defining your own XML Schema, you may choose to adopt Seam’s style as
your standard.

 That covers the variety of syntaxes you can use to define component properties in
XML. Let’s move on to property configuration using external property settings.
EXTERNAL PROPERTY SETTINGS

The component descriptor allows you to declare a component and configure its prop-
erties. External property settings only allow you to configure the properties of existing

201Configuring component properties
Seam components. That means the class must have a @Name annotation or it must be
declared as a component in a component descriptor (it must also meet the conditions
to be installed).

 To define the property of a component using an external property, the property
key is constructed by joining the name of the component with the name of the bean
property on the component, separated by a dot (.) character. The value associated
with that key is used as the value to assign to the bean property. Note that in this case
the hyphenated form isn’t acknowledged, so the key must reference the property
name verbatim.

 Let’s return to our PasswordManager component. For the purpose of this example,
we’ll assume that the PasswordManager has been defined as a Seam component
named passwordManager. To assign values to the digestAlgorithm and charset prop-
erties using external property settings, you add the following two lines to a seam.prop-
erties file:

passwordManager.digestAlgorithm=SHA-1
passwordManager.charset=UTF-8

If you assigned the fully qualified name org.open18.auth.passwordManager to the
PasswordManager component, the assignments appear as follow:

org.open18.auth.passwordManager.digestAlgorithm=SHA-1
org.open18.auth.passwordManager.charset=UTF-8

The location of the seam.properties file is described in section 4.5.1 of chapter 4. When
you define the property settings in the seam.properties file, you specify the value in the
standard java.util.Properties syntax, separating the name of the configuration
property from the value with either an equals sign (=) or a space. For more complex
string values than what is shown here, see the JavaDoc for java.util.Properties for
a more complete explanation of the standard rules.

In seam-gen projects, you must use the seam.properties from the
resources folder, not the one from src/action or src/model. The latter
two locations are ignored by the build.

Instead of registering initial property values in a seam.properties file, you can set them
up as servlet context parameters in the web application’s WEB-INF/web.xml file. The
same java.util.Properties syntax applies. Note that these parameters aren’t
defined in the JSF servlet definition, but rather as context-wide initialization parame-
ters using top-level <context-param> elements:

<context-param>
 <param-name>passwordManager.digestAlgorithm</param-name>
 <param-value>SHA-1</param-value>
</context-param>
<context-param>
 <param-name>passwordManager.charset</param-name>
 <param-value>UTF-8</param-value>
</context-param>

WARNING

202 CHAPTER 5 The Seam component descriptor
Using servlet context parameters is arguably less flexible since it requires a servlet
environment for the properties to take effect. This limitation can make it difficult to
create basic unit tests because it forces you to bootstrap the servlet environment.

Keep in mind that the component name (the context variable name) is
used as the first half of the property key, not the class name of the compo-
nent. Many of the built-in Seam components have names that closely
resemble the class that they represent, so don’t confuse the two. In addi-
tion, don’t confuse the dots in the component name with the final dot
used to isolate the name of the bean property.

Just to get a taste for a more advanced property key, let’s consider how you might set
the property on one of Seam’s built-in components. Figure 5.2 shows how to disable
the transaction management in Seam by setting the transactionManagementEnabled
property on the built-in org.jboss.seam.init component to false. Transaction
management is covered in chapter 9. For now, we’re merely playing around with the
setting for demonstration purposes.

Assigning values to the bean properties of a component using external property set-
tings is a simpler and more terse alternative than XML. In addition, if you define a value
for a component property using an external property setting, it takes precedence over
the configuration of the same property in the component descriptor. This override can
be useful for adjusting property values for different deployment environments.

 Those are the basics of configuring components, but your exposure has been lim-
ited to basic string properties. Let’s step it up a notch and explore the more complex
property types that Seam gives you the capability to configure.

5.3.3 Property value types

The values that are assigned to the properties of a component can be any of the
following:

■ Basic types (strings, numbers, Booleans, enums, characters, and class names)
■ EL (value and method expressions)
■ Collections (where each individual value can be any item in this list)
■ Replacement tokens (a name surrounded by @ symbols)

Let’s cover a couple more of the basic types before moving further down the list.

WARNING

org.jboss.seam.core.init.transactionManagementEnabled=false

Fully-qualified component name Component property name

Property valueProperty delimiter

Figure 5.2 How Seam
interprets an external
property setting in order
to assign an initial value
to the property of a
component

203Configuring component properties
BASIC VALUE TYPES

The basic types are straightforward. A value begins its life as a string when it’s read
from the configuration file. Seam then determines the correct type for the value
based on the target property’s type and converts it before performing the assignment.
If a converter isn’t registered, an exception is thrown at startup. If the value can’t be
converted, an exception is thrown when the component is instantiated.

TIP You can create your own property converter by implementing the Con-
verter interface on org.jboss.seam.util.Conversions and registering
it using the static putConverter() method on that class. However, right
now you have to subclass SeamListener in order to install the converter
before Seam initializes.

In the case of the PasswordManager component, no conversion occurs since both
properties, digestAlgorithm and charset, are strings. But Seam can handle most of
the common conversations that you’d expect to be supported. Let’s look at a couple
more examples.

 Most golf courses have 18 holes (those that don’t have nine holes). Let’s use com-
ponent configuration to set a sensible default value for the numHoles property on a
transient Course instance:

<component name="newCourse" class="org.open18.model.Course">
 <property name="numHoles">18</property>
</component>

The property numHoles is a primitive integer. Seam performs a basic conversation in this
case using Integer.valueOf(String). You can expect the same conversion to be done
for all types represented by primitive wrapper classes (and thus have the valueOf
(String) method). Two additional types that Seam supports are java.lang.Class and
java.lang.Enum. A class is derived from a string using Class.forName(String) and an
enum is selected by matching the string against the literal value of the constant.

 Let’s assume that the type property on the Facility entity has been changed
from a string to the FacilityType enum defined as follows:

public enum FacilityType {
 PUBLIC, PRIVATE, SEMI_PRIVATE, RESORT, MILITARY;
}

You could set the default type to PUBLIC on the Facility prototype as follows:

<component name="newFacility" class="org.open18.model.Facility">
 <property name="type">PUBLIC</property>
</component>

The tricky conversion is that of Booleans, which Seam converts from a
string using Boolean.valueOf(String). This method only considers a
value true if it matches the string “true,” ignoring case. All other values
are interpreted as false.

WARNING

204 CHAPTER 5 The Seam component descriptor
Component configuration gets interesting when the initial value is an EL expression
since it’s capable of injecting a dynamic, contextual value. The value may even be an
instance of another Seam component. If the Spring-Seam bridge is configured, which
is covered in chapter 15 (online), you can even inject a Spring bean into a Seam com-
ponent using the EL. Let’s dig into EL property values and review some examples.
EXPRESSION LANGUAGE VALUES

It’s been pretty much hammered into your brain by this point that Seam relies heavily
on the EL as a means of getting a handle on a component instance or other context
variable. The EL’s API agnostic syntax is the reason Seam is able to unify such a wide
range of technologies in a straightforward way. So it should be no surprise that Seam
turns to the EL again for assigning dynamic property values. Using the EL to define
property values is a powerful concept for two reasons:

■ You can leverage existing knowledge of the EL.
■ Any value accessible via the EL can be assigned (not just component instances).

That’s right. Rather than inventing yet another XML vocabulary for wiring Java objects
together, Seam leverages the EL to establish references between components. You’ll
learn about component wiring in the next section. The EL can also be used for calcu-
lating a value and injecting the result. There’s really nothing new here, which is a
good thing. Let’s explore the mechanics of how the EL is handled as an initial prop-
erty value and when it is evaluated.

INFO In Spring, you have to choose the appropriate XML element depending
on what you’re injecting. For instance, to inject a reference to another
bean you use <ref> or <bean>. To assign a null value, you use <null>. In
Seam, all of those details are handled beneath the EL. A reference to
another component is written as #{componentName}, and to assign a null
value you use #{null}.

When you declare a property value using a value expression, Seam doesn’t evaluate
the expression immediately, but instead stores it in the component definition in raw
form. When the properties of a new component instance are being initialized, Seam
evaluates the value expression, performs any necessary conversion on the resolved
value (as described previously), and then assigns the value to the property.

 Think about the possibilities that this introduces. You can theoretically have a com-
ponent whose purpose is to provide a prepopulated contextual instance. For example,
when the member registration page is brought up, the transient Golfer instance can
be initialized with the current date and time assigned to the dateJoined property, sav-
ing the register() method from having to perform this work:

<component name="newGolfer" class="org.open18.model.Golfer" scope="event">
 <property name="dateJoined">#{currentDatetime}</property>
</component>

To set the value of the dateJoined property, you could supply any EL expression that
generates a java.util.Date. Saving you a few keystrokes, Seam provides a built-in
component named currentDatetime that supplies the current date and time—as

205Configuring component properties
produced by new java.sql.Timestamp()—when it’s looked up. This component
is one of several date-related components in the Seam Application Framework (the
others are currentDate and currentTime). You’ll learn about the Seam Application
Framework in chapter 10.

 Let’s get a little fancier. Many golf facilities have only one golf course that bears the
same name as the facility. Let’s set the name of the new course to the facility name
when creating a transient Course instance:

<component name="newCourse" class="org.open18.model.Course" scope="event">
 <property name="name">#{facilityHome.instance.name}</property>
</component>

There are several important points to be made about properties defined using value
expressions:

■ The component instance never sees the value expression, only the resolved value.
■ The value expression is resolved when the component instance is created.
■ The component instance won’t be notified if the underlying value of the value

expression changes after the component instance is created.

If you’ve used the JSF managed-bean facility, you should recognize that this is exactly
how JSF deals with value expression injections. While the component configuration
stores the expression, only the resolved value is passed on to the property.

 There are two exceptions to these rules. If the target property’s type is a Value-
Expression or a MethodExpression, Seam won’t evaluate the expression, even when the
properties of the component instance are being initialized. Instead, the expression
string is converted to an expression object (ValueExpression or MethodExpression)
and assigned to the property. The evaluation of the expression is left up to the compo-
nent. You can see an example of this scenario in the built-in Seam component
org.jboss.seam.security.Identity. The authenticateMethod property is of type
MethodExpression. The method expression is evaluated in the application logic to per-
form authentication against the credentials supplied in the login form. Assuming you’ve
defined a Seam component named authenticator with the method authenticate()
that handles authentication, you wire the authenticate method into the built-in com-
ponent using the following declaration:

<security:identity authenticate-method="#{authenticator.authenticate}"/>

The other exception is a bit of an anomaly (perhaps even a bug). EL notation in a
property value isn’t interpreted unless the EL appears as the first character. Otherwise,
Seam treats the value as a regular string, assigning it to the property unevaluated.
It’s the responsibility of the application logic to interpolate the string for any embed-
ded EL expressions after that. For example, you might want to define a contextual
message string:

<framework:created-message>
 You have successfully added #{course.name}.
<framework:created-message>

206 CHAPTER 5 The Seam component descriptor
One of the main benefits of using the EL is that it’s universal. You’ll learn in section 5.3.4
how to use this exact syntax to perform static wiring of components. The point I want
to make here is that you use a consistent approach for assigning any value, whether it
be a simple type, a basic object (e.g., a date), or an EL expression. In fact, next you’ll dis-
cover that the same is true for assigning collection and map values. While Seam does
introduce elements for building a collection of values, you can alternatively use the EL
to handle the assignment.
COLLECTIONS AND MAPS

There are two ways to assign a value to a property whose type is a collection, aside
from using an EL value expression. You can either use a flat string value, which Seam
will automatically slice and dice to extract the values, or you can specify each item
explicitly using nested XML elements. Obviously, the second option only works when
using the component descriptor. XML is also the only way to assign values to maps.
The value of each item can be a basic value or an EL value expression.

In order for you to use component configuration on a collection prop-
erty, the property must be a parameterized collection or an array. Seam
relies on the generic type information in the parameterized collection or
the array type to convert the individual values.

Let’s begin by looking at collections. Seam converts flat values into collections by split-
ting on all of the following characters:

■ Comma
■ Space or tab (\t)
■ End of line (EOL) character (\n, \f, \r)

Seam uses the flat value converter if the property type is a collection (which includes
both arrays and java.util.Collection types). The only time Seam doesn’t perform
this conversion is if the value is placed within a <value> element nested inside a
<property> or custom namespace element. Let’s try some examples, looking first at
when the conversion is used and then how to use the <value> element to avoid the
conversion.

 Assume that the property proStatus has been added to the Golfer entity to cap-
ture the golfer’s skill level—amateur, pro, or semi-pro. The available options are
stored in the proStatusTypes property on the RegisterAction component:

@Name("registerAction")
public class RegisterAction {
 ...
 private String[] proStatusTypes;

 public String[] getProStatusTypes() { return this.proStatusTypes; }
 public void setProStatusTypes(String[] types) {
 this.proStatusTypes = types;
 }
}

WARNING

207Configuring component properties
The options can be registered using XML as before. However, now the value is split on
the recognized delimiter characters before being assigned to the collection property
on the component. Here’s an XML-based example:

<component name="registerAction">
 <property name="pro-status-types">amateur pro semi-pro</property>
</component>

The property can also be assigned using an external property setting:

registerAction.proStatusTypes=amateur pro semi-pro

The options are converted into a list of JSF SelectItem objects in the registration
form using Seam’s <s:selectItems> component tag:

<h:selectOneMenu value="#{newGolfer.proStatus}">
 <s:selectItems var="_status" label="#{_status}" noSelectionLabel=""
 value="#{registerAction.proStatusTypes}"/>
</h:selectOneMenu>

The string-to-collection converter works great when the values don’t contain any of
the delimiter characters. But what happens when one of them does? Let’s consider an
example that demonstrates this problem and learn how to work around it.

 Assume that the property specialty has also been added to the Golfer entity to
capture the golfer’s forte. An array property named specialtyTypes is added to Reg-
isterAction to hold the available options. If any option contains a delimiter charac-
ter, we’ll have a problem using the flat property value syntax. To work around this
situation, we must declare each value using a child <value> element in XML:

<component name="registerAction" class="org.open18.action.RegisterAction">
 <property name="pro-status-types">amateur pro semi-pro</property>
 <property name="specialtyTypes">
 <value>Driving</value>
 <value>Chipping</value>
 <value>Putting</value>
 <value>Iron play</value>
 <value>Lookin' good</value>
 </property>
</component>

Let’s look at an example of configuring a multivalue property on one of Seam’s built-
in components. The following stanza registers a second page descriptor:

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:navigation="http://jboss.com/products/seam/navigation"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://jboss.com/products/seam/navigation
 http://jboss.com/products/seam/navigation-2.0.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.0.xsd">
 <navigation:pages>
 <navigation:resources>
 <value>/WEB-INF/pages.xml</value>

208 CHAPTER 5 The Seam component descriptor
 <value>/META-INF/pages.xml</value>
 </navigation:resources>
 </navigation:pages>
</components>

The nested <value> element syntax is used here since it’s enforced by the XML
Schema vocabulary. I show this example to make you aware of the fact that the XML
Schema for Seam’s built-in namespaces typically requires this formal syntax. The same
configuration can be specified in a seam.properties file as follows:

org.jboss.seam.navigation.pages.resources=/WEB-INF/pages.xml \
/META-INF/pages.xml

What I really like about how Seam handles multivalue types is that it doesn’t force you
to use a special syntax for different types of collections, such as <set> and <list>. Col-
lections are just collections. Maps do necessitate a special configuration element,
though, because of the extra dimension.

 Seam supports configuration of associative types—or to use the more familiar term,
maps. To make this work, you have to use both a <key> element and a <value> element
inside the <property> element. Unfortunately, maps can only be configured using XML.
Let’s assume that we want to associate codes to each of the specialties listed above. We
first have to change the specialtyTypes property to a java.util.Map. Then we can
define the key-value pairs using the following stanza:

<component name="registerAction"
 class="org.open18.action.RegisterAction">
 <property name="pro-status-types">amateur pro semi-pro</property>
 <property name="specialtyTypes">
 <key>DRIVE</key> <value>Driving</value>
 <key>CHIP</key> <value>Chipping</value>
 <key>PUTT</key> <value>Putting</value>
 <key>IRON</key> <value>Iron play</value>
 <key>LOOKS</key> <value>Lookin' good</value>
 </property>
</component>

You can also make specialtyTypes a java.util.Properties type and the same dec-
laration would work. Seam doesn’t force you to use distinct elements for different
types of associative types.
REPLACEMENT TOKENS

There’s one more level of abstraction that you can use when supplying property values.
Instead of using a value or value expression in the property declaration, you can use a
replacement token. Tokens are names that are surrounded by @ symbols.4 The value of
a token is read from the components.properties file at the root of the classpath and
applied to the component definition. The value of the token can even be an EL expres-
sion. Tokens make it easier to customize the values for different environments without
having to modify the descriptor itself. Note that the token has to represent the whole
property. It won’t work if you try to put the token inline in a string property.

4 In Seam 2.0, using tokenized values in the component descriptor would cause it not to validate. That has been
fixed in Seam 2.1 for commonly tokenized properties.

209Configuring component properties
 I cite the example that you’ll see most often used in a Seam application: toggling
debug mode. Assuming that you have the following property set in the compo-
nents.properties file:

debug=true

you can then use this key as a token value in the component descriptor:

<core:init debug="@debug@"/>

The value of the token can be a value expression, which will be subject to further
evaluation:

debug=#{facesContext.externalContext.request.serverName eq 'localhost'}

Although not as likely, the token could also represent a reference to another compo-
nent. That brings us to the topic of component wiring. I introduced the EL as a means
of assigning a property value, but let’s now look at the implications of those values
resolving to Seam component instances.

5.3.4 Wiring components together

The philosophy behind POJO (Plain Old Java Object) development is that components
don’t concern themselves with locating references to other components in the midst of
a business method call. Instead, those references are provided during initialization of
the component through a technique known as dependency injection, which Seam fully
supports. You may choose to adopt this approach if you intend to use your components
outside of Seam, perhaps in unit tests or because they’re part of a shared model. In
addition, it can be a performance optimization since this type of configuration is per-
formed up front rather than recurring during the lifetime of the component.

 In dependency injection, a component first declares that it has one or more
dependencies by exposing them as bean properties. The bean property provides the
type, name, and means of accepting the reference. The dependency may be another
component instance or a regular Java object. You then use some mechanism of declar-
ing how the reference is going to be found. The reference is then resolved and
injected into the bean property at runtime. Seam supports two styles of component
wiring, one that is static and one that is dynamic. Both styles use reflection to assign
values to either the fields or properties—setter methods—of a bean. The difference is
when it happens. Depending on the style of injection, the value is injected either
when the component instance is created or when a method on the component is exe-
cuted. Let’s sort out the two cases.
STATIC VS. DYNAMIC DEPENDENCIES

When you use component configuration, you’re performing static dependency injec-
tion. With static injection, Seam assigns a value to a field or property of a component
instance when it’s created. The value is specified using the EL variant of component
configuration. This style of injection is analogous to that used by other lightweight con-
tainers, such as Spring and the JSF managed bean facility. The assignment happens
once, drawing from resources available at the time the component is instantiated. After

210 CHAPTER 5 The Seam component descriptor
that point, the values of the fields and properties of the component instance aren’t
affected by this mechanism. What’s done is done. The properties get their shot again
when a new instance is created.

 Seam also supports a style of dependency injection that’s dynamic. This hook is
activated by placing the @In annotation above a field or JavaBean-style property “set-
ter” method. Annotation-based injections are resolved each time a method is invoked
on a component. This mechanism is the key to Seam’s inversion of control, which
you’ll learn about in depth in the next chapter.
A STATIC COMPONENT WIRING EXAMPLE

seam-gen applications include a static dependency injection for the purpose of assem-
bling the components that create an EntityManager instance. You’ll learn about
Seam’s persistence configuration in chapter 9. Right now, we’re focusing on the
mechanics of the wiring. The component descriptor from the Open 18 application
includes the following two stanzas from the persistence namespace:

<persistence:entity-manager-factory name="open18EntityManagerFactory"
 persistence-unit-name="open18"/>
<persistence:managed-persistence-context name="entityManager"
 entity-manager-factory="#{open18EntityManagerFactory}"
 auto-create="true"/>

The EntityManagerFactory manager component B is an application-scoped startup
component that bootstraps a JPA EntityManagerFactory, maintains a reference to it,
and closes it on application shutdown. The managed persistence context component C
manages a conversation-scoped extended persistence context (EntityManager
instance) for the lifetime of the conversation. Here’s how they’re assembled. When the
entityManager context variable is first resolved in a conversation, an instance of the
managed persistence context component is created and the EntityManagerFactory
component is wired into it, which is then used to create a new EntityManager instance.
This wiring only happens once, which works in this case since the reference (a wider-
scoped component) is only needed by the persistence manager context (a narrower-
scoped component) while it’s being initialized. Static injection is playing a configura-
tion role here.

 Using static injection, let’s now wire dependent component instances into the
RegisterAction component to remove the burden (and coupling) of it having to
look up these references itself. The focus of the logic shifts to registering the user. It
also makes the component more testable. In listing 5.5, the dependent components of
RegisterAction are exposed as private fields. We leverage the ability of Seam to inject
references into private fields to eliminate unnecessary getters and setters.

package org.open18.action;

import javax.persistence.EntityManager;
import org.open18.auth.*;
import org.open18.model.Golfer;

Listing 5.5 A component that relies on static injection of dependent components

B

C

211Configuring component properties
@Name("registerAction")
public class RegisterAction {
 private EntityManager entityManager;
 private FacesMessages facesMessages;
 private PasswordManager passwordManager;
 private Golfer newGolfer;
 private PasswordBean passwordBean;

 public String register() {
 if (!passwordBean.verify()) {
 facesMessages.addToControl("confirm",
 "value does not match password");
 return "failed";
 }
 newGolfer.setPasswordHash(
 passwordManager.hash(passwordBean.getPassword()));
 entityManager.persist(newGolfer);
 facesMessages.add("Welcome to the club, #{newGolfer.name}!");
 return "success";
 }
}

The next step is to wire the dependent components to the properties of this compo-
nent in the component descriptor:

<component name="registerAction">
 <property name="entity-manager">#{entityManager}</property>
 <property name="faces-messages">#{facesMessages}</property>
 <property name="password-manager">#{passwordManager}</property>
 <property name="new-golfer">#{newGolfer}</property>
 <property name="password-bean">#{passwordBean}</property>
</component>

While this refactoring drastically simplifies the component, there’s still room for
improvement. In the next chapter, you’ll replace the XML configuration with
annotations.

TIP If you’re familiar with Spring, you might be tempted to use static injec-
tion as the primary means of wiring your components together. I don’t
recommend that you standardize on this approach. For one, it requires a
ridiculous amount of XML. In general, XML should be reserved for infra-
structure configuration. Although not applicable in this example, you
also must ensure that you aren’t injecting a component from a shorter-
term scope into a component in a longer-term scope, as it results in
scope impedance. It’s much cleaner, safer, and Seam-esque to wire com-
ponents together using dynamic injection, declared using the @In anno-
tation, which you’ll learn to do in the next chapter.

With all this great knowledge of how to configure the properties of a component,
you’re ready to dress up your component prototypes with initial state so that they’ll
come into the world mature. However, there’s one more piece of information you
need to know about configuring components; without it, you run the risk of creating a
conflicting component definition.

212 CHAPTER 5 The Seam component descriptor
5.4 Component definitions vs. component configuration
The component descriptor can be used to define a new component, configure the
properties of an existing component, or define a new component and configure its
properties simultaneously. You have to be aware of what constitutes a component defi-
nition and when the <component> element is merely interpreted as a means of assign-
ing initial property values to a previously defined component. This section clarifies
the distinction and gives you strategies to kept the two separated.

5.4.1 Avoiding conflicts with an existing definition

It’s not permissible to have two components defined with the same name and prece-
dence, which was touched on briefly in the previous chapter. For now, let’s assume
that the precedence value isn’t being adjusted. Knowing that you can use the compo-
nent descriptor to both define and configure components, you can get into trouble if
Seam inadvertently tries to create a new component definition when your intention is
to assign initial property values to an existing component. Here’s the reasoning Seam
uses when it processes the declaration. If the <component> element defines both a
class attribute and a name attribute, it’s treated as a new component definition. If the
@Name annotation is also present on the class in this case, or there’s an equivalent com-
ponent definition in another descriptor, the following exception is thrown at applica-
tion startup:

java.lang.IllegalStateException:
Two components with the same name and precedence

If either the class attribute or the name attribute is excluded from the <component>
element, Seam treats that declaration as supplemental component configuration (for
instance, to enable autocreate) or a contribution of initial property values.

 If you’re configuring a class that isn’t a Seam component (it doesn’t have the
@Name annotation or the value of the @Install annotation is false), no worries. You
can define the component using the <component> element, specifying both name and
class. However, if the class that you want to configure is already a Seam component
(it has a @Name annotation and isn’t disabled by an @Install annotation), then you
have to make sure you don’t collide with the existing definition.

 On the other hand, a component definition declared using a component
namespace element is subject to different rules that protect it from conflicting with an
existing definition. There is reasoning behind this special treatment, but it also gives
motivation for using component namespaces. When Seam processes a namespace ele-
ment, the class attribute is implied from the name of the XML element. The same
goes for the name attribute if the @Name annotation is absent from the class. Since the
developer can no longer prevent violation of the unique class and name constraint,
Seam has to intelligently determine the intention of the declaration. If a component
definition already exists, Seam assumes that the goal is to assign component proper-
ties, not to define a new component. This explains how you’re able to safely configure
a built-in Seam component using a custom namespace element without fear of con-

213Component definitions vs. component configuration
flicting with the existing component definition that Seam declares using annotations.
In cases where a component definition doesn’t already exist, the namespace element
is considered a complete component definition.

 Let’s consider an example of how to resolve a conflicting component definition.
Assume that the PasswordManager has the annotation @Name("passwordManager").
The following XML stanza defines a conflicting Seam component for this compo-
nent name:

<component name="passwordManager" class="org.open18.auth.PasswordManager">
 <property name="digestAlgorithm">SHA-1</property>
 <property name="charset">UTF-8</property>
</component>

You can alter the root tag of this XML stanza so that it doesn’t collide with the existing
definition by making one of four changes:

1 You can use a custom element from the auth component namespace:
<auth:password-manager>

2 You can remove the class attribute:
<component name="passwordManager">

3 You can remove the name attribute:
<component class="org.open18.auth.PasswordManager">

4 You can set a higher precedence:
<component name="passwordManager" class="org.open18.auth.PasswordManager"
 precedence="25">

The last variation overrides the existing definition since its precedence (25) is higher
than the default precedence (20). Precedence values were covered in section 4.5.2 of
chapter 4.

 Of course, if you place the @Name annotation on a class and also define a compo-
nent for that class in the component descriptor using a different component name,
the result is two separate component definitions. But then again, you’re no longer
configuring an existing component. All that you need to be aware of is that you can’t
have two components defined that use the same name and precedence.

5.4.2 Dividing the configuration between annotations and XML

In the event that the component definition is overridden in XML, any attribute from
table 5.2 that isn’t defined in the XML declaration is inherited from its annotation
equivalent if present on the class. For instance, the XML definition can rely on the
scope defined in the @Scope annotation on the class without having to define the
scope in the XML. If the annotation @Scope(ScopeType.APPLICATION) were defined
on the class (but not @Name), that value would be inherited by the XML component
definition as if the scope attribute had been defined on the <component> element.
Basically, not all attributes need to be specified in the same place. If a setting is
defined both in the annotation and in the XML, the value in the XML always wins. This

214 CHAPTER 5 The Seam component descriptor
hybrid approach is one way to override the component definition in classes that you
don’t control.

 Now that you have studied defining and configuring components in great detail
and have been debriefed on how to avoid conflicts in component definitions when
using the component descriptor, you should feel comfortable configuring built-in
Seam components.

5.5 Configuring and enabling built-in components
The component descriptor is your primary means for configuring Seam. As much as I
hate to say that the component descriptor allows you to “program in XML,” the com-
ponent descriptor allows you to program in XML. Seam provides a lot of glue code for
solving common web application problems and for integrating disparate technolo-
gies. To take advantage of some of these features, you have to step in and configure that
code. This section explores what areas of Seam can be controlled, focusing on Seam’s
language support as a case study.

5.5.1 Using the component descriptor to control Seam

The component descriptor allows you to control Seam to accomplish the following
goals:

■ Configure Seam runtime settings —Seam has a lot of switches and levers that you can
use to control how it functions. To cite a couple of examples, you can enable
debug mode, disable transaction management, define the authentication
method, customize parameter names used to manage conversations and the con-
versation timeout period, specify the names of the resource bundles, or configure
the available themes. These components act as the central switchboard in Seam.

■ Activate a feature that is disabled by default —Some of the built-in components aren’t
useful to all applications (or may depend on an environment that isn’t always
available). Seam disables these components by default. The component descrip-
tor gives you an opportunity to enable them. To provide some examples, you can
enable jBPM, hook into the email service, or start the Spring container adapter.

■ Customize a component template —Seam provides a number of component tem-
plates. These are cookie-cutter components that you can customize for your own
application domain. Examples include the EntityManagerFactory and managed
persistence context (and Hibernate equivalents), a Seam Application Framework
object (Query, Home, and Controller), a JMS topic publisher or message sender,
or a Drools rules manager. These classes don’t bear the @Name annotation and
therefore aren’t components until you strike them into action by configuring
them in the component descriptor.

Occasionally the distinction between these goals becomes blurry, since you may be
activating and configuring a component or service at the same time. The main point
to take away is that Seam is highly configurable and the component descriptor is your
means of controlling that configuration. As you advance through this book, you’ll

215Configuring and enabling built-in components
keep coming back to this means of configuration, particularly to configure Seam’s
built-in components.

 I want to explore Seam’s resource bundle management as an example of compo-
nent configuration in practice. You’ll discover that Seam aggregates message keys
under a single built-in component. You’ll also learn how you can use component con-
figuration to register your own bundles, and use message keys to assign locale-specific
property values to a component.

5.5.2 Configuring Seam’s internationalization support

When an application needs to output a message, the proper approach is to have it use
a message key rather than use a hard-coded message string. The application then
looks up a value for that message key in the active resource bundle for the current
user at runtime. Typically, the keys are used to select locale-specific message strings.
Examples include labels, date and time patterns, and currency units. Resource bun-
dles also have applications that extend beyond locale, such as theme parameters and
deployment environment settings.

 Unfortunately, resource bundles are one of the most notoriously tedious, yet dis-
proportionally trivial mechanisms to configure in a web application. That’s because a
Java framework just wouldn’t be complete without internationalization (i18n) sup-
port. This aspiration has led to a situation where each framework wants to use its own
resource bundle and configuration of that bundle for providing i18n messages. As it
has done many times, Seam steps in to mop up this mess, giving you an unified map of
all the messages contributed by the various frameworks it integrates, making it worth
the effort of using i18n messages to your application. In this section, I’ll explain how
resource bundles work and show you how Seam makes them more accessible.
SEAM’S RESOURCE BUNDLE MANAGEMENT

Resource bundles are an application of the Java properties metadata format (i.e.,
java.util.Properties), which stores metadata in the form of key-value pairs. These
pairs are grouped under a common base name, referred to as the bundle name.
There are then off-shoots of the bundle name for each locale. Java works from the
most specific locale down to the root bundle name to locate a properties file. The
name of the file consists of the bundle name, followed by the current locale prefixed
with an underscore (_), followed by the .properties extension. If a file for the current
locale cannot be located, a file with the name of the bundle followed by the .proper-
ties extension is used.5

 For example, if the bundle were named messages and the current locale was US
English, Java would use the following search order to locate the key:

■ messages_en_US.properties
■ messages_en.properties
■ messages.properties

5 For a detailed description of how this works, refer to the JavaDoc for java.util.ResourceBundle: the
getBundle() method.

216 CHAPTER 5 The Seam component descriptor
Seam doesn’t do anything special here to reinvent the wheel. Instead, it just aggre-
gates contributions from multiple properties files. Seam bundles all of the following
resource bundles together under the built-in component name messages:

■ messages—the default message bundle
■ ValidatorMessages—Hibernate Validator messages (including defaults)
■ javax.faces.Messages—JSF message keys
■ Page-specific bundles defined in a Seam page descriptor

Note that message bundles declared using the <message-bundle> element in the
faces-config.xml descriptor aren’t included in this aggregate bundle. To append to
this built-in list, you instead declare your custom bundles in a Seam component
descriptor. Let’s say that you have a resource bundle named application and you
want to tie those message keys into Seam’s bundle. You register it as follows:

<core:resource-loader bundle-names="messages application"/>

Notice that I included the bundle named messages. If you override the bundleNames
property, you must restore the default bundle name, which is messages, if you want it
to be included. As an alternative, you could have declared each bundle name using
the nested collection syntax:

<core:resource-loader>
 <core:bundle-names>
 <value>messages</value>
 <value>application</value>
 </core:bundle-names>
</core:resource-loader>

At this point, the keys from the various bundles are merged into the collection of keys
in Seam’s aggregate resource bundle, which you can access using the context variable
name messages. Section 13.6 of chapter 13 shows how to enable multiple languages in
your application, how the default locale is chosen, and how to provide the user with
control over the locale used for their session. To wrap up this section, I’ll explain how
to use the message keys from this aggregate bundle.
USING MESSAGE KEYS IN THE APPLICATION LOGIC

The messages component can be used via an EL value expression. For instance,
instead of hard-coding the labels in the registration form, resource keys could be
used. First, define a key-value pair in the messages.properties (or locale-specific) file:

registration.firstName=First name

Then reference in the UI as follows:

#{messages['registration.firstName']}

You can also use message bundle keys to create a localized JSF message using the built-
in Seam component named facesMessages. Earlier, we used the following logic to
welcome the new golfer to the club:

FacesMessages().instance().add("Welcome to the club, #{newGolfer.name}!");

217Configuring and enabling built-in components
Let’s draw on a message key instead. Once again, define a key-value pair in the mes-
sage.properties (or locale-specific) file:

registration.welcome=Welcome to the club, {0}!

You then create a JSF message from this key and populate the indexed placeholder:

facesMessages.addFromResourceBundle("registration.welcome",
 newGolfer.getName());

You also have the option of putting EL notation directly in the message:

registration.welcome=Welcome to the club, #{newGolfer.name}!

In the next chapter you’ll learn how to inject references to Seam component
instances into properties of the class using annotations. You make the Seam
ResourceBundle component available to your class by injecting as follows:

@In ResourceBundle resourceBundle;

You can also inject the java.util.Map of message bundle keys directly:

@In Map<String, String> messages;

In addition to using the message keys in the application, you can reference them
when configuring the properties of a component.
USING MESSAGE KEYS IN COMPONENT CONFIGURATION

As you learned earlier, you can specify initial property values using EL notation. That
means you can assign a locale-specific value to a component property by consulting
the messages context variable. For instance, you can register the names of the spe-
cialty types respective to the current locale:

<component name="registerAction">
 <property name="specialtyTypes">
 <key>DRIVE</key> <value>#{messages['specialty.drive']}</value>
 <key>CHIP</key> <value>#{messages['specialty.chip']}</value>
 <key>PUTT</key> <value>#{messages['specialty.putt']}</value>
 <key>IRON</key> <value>#{messages['specialty.iron']}</value>
 <key>LOOKS</key> <value>#{messages['specialty.looks']}</value>
 </property>
</component>

These specialty keys would be defined in a properties file loaded by the ResourceBundle:

specialty.drive=Driving
specialty.chip=Chipping
specialty.putt=Putting
specialty.iron=Iron play
specialty.looks=Lookin' good

And with that, you can finally come up for air because you’ve mastered using the com-
ponent descriptor for defining and configuring components.

218 CHAPTER 5 The Seam component descriptor
5.6 Summary
Seam minimizes the need for XML but doesn’t eliminate it. In this chapter, you
learned that XML can be useful, and in some cases necessary, for defining and config-
uring Seam components. XML-based component definitions, which you learned are
declared in the Seam component descriptor using the <component> element and its
namespace-qualified derivatives, are equivalent to those defined using the annota-
tions covered in the previous chapter.

 You came to appreciate that Seam’s dedication to XML Schema makes configuring
built-in components type-safe and gives you an opportunity to define your own com-
ponent vocabulary. With component XML namespaces, your declarations can be vali-
dated against an XML Schema and the IDE can read the XML Schema to provide tag
completion. You saw many examples of these custom elements in use, both for defin-
ing components and configuring components properties.

 In addition to defining components, you learned how to use both XML and Java
properties to establish the initial state of an object after it’s instantiated by the Seam
container. You can now distinguish between an XML component definition and a dec-
laration that merely configures an existing component. If you aren’t aware of these
differences, you may encounter the error scenario in which two components with the
component name and precedence combination are defined.

 When you’re configuring a component, you can supply property values not only as
primitive values, basic Java objects, collections, and maps, but also as references to
other components, a process called “component wiring.” This chapter showed that
component wiring is a form of static dependency injection, where the references are
established at the time the component is instantiated, consistent with the dependency
injection used in Spring. In the next chapter, you’ll learn about dynamic dependency
injection provided by bijection, which injects property values each time the compo-
nent is invoked. You’ll also learn about other types of inversion of control, such as out-
jection (the other half of bijection), just-in-time context variable creation, component
events, and interceptors, which round out the foundation of Seam’s extensible inver-
sion of control. You’ll also get to discover two component descriptor elements left out
of this chapter that pertain to inversion of control: <factory> and <event>.

Absolute
 inversion of control
Inversion of control (IoC) is a pattern in aspect-oriented programming (AOP) that
espouses loose coupling, allowing the application to focus on consuming services
rather than locating them. Seam embraces the use of IoC not only to “wire” compo-
nents together but also to produce context variables and to enable components to
communicate with one another through event notifications. Often, when people
talk about IoC, they’re really talking about dependency injection (DI), one use of
IoC and the primary focus of this chapter.

 Dependency injection is a key concept in POJO-based development that keeps
components loosely coupled. In the previous chapter, you learned how static DI can
be used to establish references from a component instance to its dependent objects
during instantiation. In this chapter, you’ll learn about another assembly mechanism

This chapter covers
■ Wiring components together dynamically
■ Applying method interceptors
■ Raising and observing component events
■ Resolving context variables on demand
219

220 CHAPTER 6 Absolute inversion of control
in Seam that links a component instance to its dependencies when it’s invoked, a device
known as injection. To complement injection, outjection facilitates exporting state
from a component instance after the component is invoked, effectively producing con-
text variables that can be used elsewhere in the application.

 This chapter begins by introducing the four steps of bijection—injection, method
invocation, outjection, and disinjection. We then explore several derivatives of bijec-
tion. One such variant manages “clickable lists” in a way that’s completely transparent
to the business component. The key to bijection is that it’s dynamic, meaning it hap-
pens every time the instance is invoked, not just at creation time. Events, which you’ll
learn about next, go a step further toward decoupling components by allowing execu-
tion logic to jump from notifier to observer without an explicit reference between the
participating components. Events let you add features without disrupting well-tested
code or relieve a single method from trying to handle too many concerns. Going
beyond the built-in behavior that Seam weaves into components, you’ll learn how to
create custom interceptors to handle your own cross-cutting logic. Shifting back to the
subject of context variables, you’ll discover how to use factory and manager compo-
nents to produce variables requiring more sophisticated instantiation, typically with
the help of bijection. Let’s begin by exploring what makes bijection so unique.

6.1 Bijection: dependency injection evolved
Dependency injection is about as mainstream as MySpace or the iPod. Although it
may not be a hot topic at family gatherings (at least not mine), it’s the cornerstone of
POJO-based development. In DI, the container “injects” dependent objects into the
corresponding properties of a target object after instantiating it, establishing refer-
ences from the object to its dependencies (a process commonly referred to as bean wir-
ing). This strategy eliminates lookup logic within the object that might otherwise
make it reliant on a particular environment. The object is said to be loosely coupled
from the rest of the application. Unfortunately, it’s not loose enough.

 For as much as DI has been studied, discussed, and presented, it hasn’t changed
much since its emergence and suffers from several limitations. The first is that the
injections are static, meaning they’re applied only once, immediately following instan-
tiation of the object. As long as the object exists, it’s stuck with these initial references,
failing to reflect the changing state of the application over time. Another limitation of
DI is that it’s focused only on the assembly of objects. It would be just as useful for an
object to be able to contribute back to the container by transferring its state to one or
more scoped variables.

 These limitations highlight a general unawareness of context in the design. The
managed objects need to be made more aware of the application’s state and become
active participants.

6.1.1 Introducing bijection

Seam has responded to this call for change by introducing bijection. Under bijec-
tion, the wiring of dependencies is done continuously throughout the lifetime of a

221Bijection: dependency injection evolved
component instance, not just when the instance is created. In addition to injecting
values, bijection supports outjecting values. Outject? Pencil it into your dictionary—it’s
a new term. Outjecting is the act of promoting the value of a component property to
a context variable where it can be picked up by another component or referenced in
a JSF view, a page descriptor, or even a jBPM business process definition.

 The combination of injection and outjection is known as bijection. Bijection is
managed by a method interceptor. Injection occurs prior to the method being
invoked, and outjection occurs when the invocation is complete. You can think of the
context variables participating in this interaction as flowing through the component
as it’s invoked. Injection takes context variables from the Seam container and assigns
them to properties on the target instance, and outjection promotes the value of its
properties to context variables. Figure 6.1 provides a high-level conceptual diagram of
this mechanism.

 Before you put your dictionary away, I’ll mention that Seam also disinjects values
from a component. In this step, any property that received an injection is assigned a
null value. Disinjection is Seam’s way of tying up loose ends. Seam can’t keep the
references up to date while the component instance is idle, so the values are cleared
to avoid state from lingering. The injections are restored the next time the compo-
nent is invoked.

NOTE Bijection modifies the state of the component instance. Therefore, calls
to intercepted methods must be synchronized. Fortunately, Seam
efficiently synchronizes all components except for those in applica-
tion scope.

Although bijection may share some similarities with traditional DI, it’s genuinely a new
approach that makes context a primary concern. As you read through this section,
you’ll explore, in detail, how the bijection process works, how it affects the relation-
ship between components, and how to put it to use.

Injections

Outjections

Component
Instancemethod()

pr
op

er
ty

pr
op

er
ty

pr
op

er
ty

pr
op

er
ty

Seam Container

Context
Variables

Caller

Context
Variables

Figure 6.1 Bijection wraps
a method call, performing
injection before the call and
outjection afterward.

222 CHAPTER 6 Absolute inversion of control
6.1.2 Bijection on the golf course

Before diving into the technical aspects of bijection, I want to start off with an analogy.
When you’re playing in a golf tournament, you want all of your focus on your game.
To help avoid distractions, you are provided a caddy, who acts as your assistant. The
role that the caddy plays between each stroke of the ball parallels that of bijection. In
this analogy, you are the component, the golf club is the dependent object, and the
stroke is the method call.

 As you approach your golfball, in whatever context it may be lying—the green, the
fairway, a sand trap, on top of a warehouse, or the woods—you aren’t holding the golf
club that you need to take your stroke. The golf club is your dependency. To satisfy
this dependency, your caddy injects the golf club that’s appropriate for the context—a
wood, iron, wedge, or putter—into your hands. You are now ready to swing. Striking
the ball is the action, or, in the case of bijection, the method invocation. After taking
your stroke, the ball is outjected and lands in another context on the course—hope-
fully avoiding bodies of water and sand traps. Outjection occurs as the result of a
method call. Once the shot is taken, the caddy disinjects the club, reclaiming the
dependency that was previously handed to you, and stores it in your bag for later use.
You walk away from the original spot of the ball the way you arrived, empty handed.
(You may still hold state, like your scorecard, but not the dependency.)

 The caddy lets you concentrate on your golf game, rather than on the routine of
carrying the clubs, cleaning them, and remembering not to leave one behind. It’s an
inversion of control. In the same way, bijection allows you to concentrate on the busi-
ness logic rather than rounding up dependent objects needed to perform the logic
and distributing results afterward. As with DI, bijection makes components easy to
test in isolation or reuse since there’s no tight coupling to a container-specific
lookup mechanism.

 With a general understanding of how bijection works, let’s dig into the technical
details of how you can add this capability to your components.

6.1.3 Activating bijection

When Seam instantiates a component, it registers a handful of method interceptors
on the instance, an AOP technique for applying cross-cutting concerns. One of those
interceptors manages bijection. Like all method interceptors, the bijection intercep-
tor is triggered each time a method is called on the instance, referred to here as the
target method. The bijection interceptor wraps the call to the target method, per-
forming injections before the target method proceeds and then outjections, followed
by disinjections, after the target method executes—all of which takes place before the
method returns to the caller.

 The properties that participate in bijection are designated using annotations. The
most common bijection annotations are @In and @Out, which define injection and
outjection points, respectively. Derivatives of these annotations also exist, but they’re
processed in fundamentally the same way. For now, we’re going to focus on @In and
@Out. Here’s the first version of the ProfileAction component, which uses both @In

223Bijection: dependency injection evolved
and @Out. It selects a Golfer instance by ID from the injected EntityManager and
then promotes the instance to a context variable that can be accessed from the view.
Assume for now that the golfer ID is passed to the view() method defined below by a
parameterized expression bound to a UI command button.

@Name("profileAction")
public class ProfileAction {
 @In protected EntityManager entityManager;
 @Out protected Golfer selectedGolfer;

 public String view(Long golferId) {
 selectedGolfer = entityManager.find(Golfer.class, golferId);
 return "/profile.xhtml";
 }
}

While this component may look straightforward at first glance, upon further examina-
tion you may question how the @In and @Out properties work, knowing that annota-
tions are just metadata. What happens is that Seam scans for @In and @Out
annotations when the component is registered and caches the metadata. The bijec-
tion interceptor then interprets this metadata when a method is called on an instance
and applies bijection to its properties.

 When the bijection interceptor traps a call to
a component method, it first iterates over the
bean properties on the component marked with
an @In annotation and helps those properties
find the values for which they are searching. If
all the required @In annotations are satisfied,
the method call is allowed to proceed. From
within the method, the property values that were
initialized via injection can be accessed as if they
had been there all along.

 If the method throws an exception, bijection
is interrupted and control is turned over to the
Seam exception handler. If the method com-
pletes without exception, the bijection intercep-
tor postprocesses the method call. This time, it
iterates over the bean properties marked with an
@Out annotation and promotes the value of
these properties to context variables in the Seam
container. Finally, the properties that received
injections are cleared, wiping the slate clean for
the next invocation. The bijection process just
described is illustrated in the sequence diagram
in figure 6.2.

 That should give you enough technical
details to convince your boss that you know what

Caller invokes component method

Inject dependencies into component
properties marked with @In

Proceed with method call

Outject values of component
properties marked with @Out

Disinject values from component
properties marked with @In

Return to caller

Bijection Interceptor

Figure 6.2 The bijection interceptor
traps a method call on a component
instance and performs the four steps of
bijection—injection, method invocation,
outjection, and disinjection.

224 CHAPTER 6 Absolute inversion of control
bijection is, but you may need to see some examples to become comfortable using it.
You’ll also need to figure out how Seam locates a value to inject and which context
variable is used when a property is outjected. Without these key details, bijection
remains a bit mystical.

 Most of the time, you’ll be using the injection piece of bijection. Let’s put a spin on
a well-known phrase by saying “no component is an island” and explore how injection is
used to “wire” components together dynamically.

6.2 Dynamic dependency @In-jection
Implementing business logic typically involves delegating work to other components.
A familiar delegate that shows up in nearly every database-oriented application is the
persistence manager (e.g., JPA EntityManager or Hibernate Session), which is used
to persist entities or read their state from the database. In the previous chapter, you
used component configuration to perform this injection—a form of static DI. That’s
fine if you’re injecting a stateful component into a short-lived component or injecting
a stateless component. However, as soon as you start using stateful components that
interact with other stateful components, you need a mechanism that keeps the refer-
ences up to date. Rather than trying to distinguish between the two cases, the recom-
mended way of hooking components together in a Seam application is to use
bijection. That way, you can always be sure the component will adapt to changes in
the application’s state.

6.2.1 Declaring an injection point

Annotations come into play when configuring bijection as they did when defining
Seam components. The @In annotation, summarized in table 6.1, is placed above a
bean property of a component—either a field or a JavaBean-style property “setter”
method. Seam uses reflection to assign a value to properties marked with @In during
the first phase of bijection.

Table 6.1 The @In annotation

Name: In

Purpose: Indicates a dependency on a context variable, which should be satisfied via injection

Target: METHOD (setter), FIELD

Attribute Type Function

value String (EL) The context variable name or value expression used to locate a
value to inject. If this attribute is not provided, the name of the
property is used as the context variable name. Default: the property
name.

create boolean Indicates that Seam should attempt to create a value if the con-
text variable is missing or null. If the value attribute uses EL
notation or is the name of an autocreate component, the create
flag is implicitly true. The create flag cannot be used if a scope
is specified. Default: false.

225Dynamic dependency @In-jection
The value attribute on the @In annotation can be the name of a context variable or an
EL value expression, or it can be omitted. If the value attribute is omitted, the most com-
mon case, the name of the context variable to search for is implied from the name of
the property (according to JavaBean naming conventions). By providing a context vari-
able name in the value attribute, the name of the context variable to search for can be
different than the name of the property into which it is injected. If the value attribute
uses EL notation, it is evaluated and the resolved value is injected into the property.

 Common use cases for the @In annotation include injecting a persistence man-
ager, a JSF form backing bean, or a built-in JSF component. All three types are needed
by the RegisterAction component, which was created in chapter 4. Listing 6.1 shows
the RegisterAction component using @In to supply all the dependent components
needed to perform registration. The @Logger and @In annotations are placed inline
to conserve space.

package org.open18.action;

import org.jboss.seam.annotations.*;
import org.jboss.seam.faces.FacesMessages;
import org.jboss.seam.log.Log;
import org.open18.auth.*;
import org.open18.model.Golfer;
import javax.persistence.EntityManager;

@Name("registerAction")
public class RegisterAction {
 @Logger private Log log;

 @In protected FacesMessages facesMessages;
 @In protected EntityManager entityManager;
 @In protected PasswordManager passwordManager;
 @In protected Golfer newGolfer;
 @In protected PasswordBean passwordBean;

 public String register() {
 ...
 entityManager.persist(newGolfer);
 facesMessages.add("Welcome to the community, #{newGolfer.name}!");
 return "success";
 }
 ...
}

Attribute Type Function

required boolean A flag that specifies whether or not to enforce that the value being
injected is non-null. Default: true.

scope ScopeType The context in which to look for the context variable. The scope is
disregarded if the value uses EL notation. Default:
UNSPECIFIED (hierarchal context search).

Listing 6.1 The registration component refactored to use dynamic injection

Table 6.1 The @In annotation (continued)

Injects log at
component creation

Injects delegates
at invocation
time

Activates
navigation rule

226 CHAPTER 6 Absolute inversion of control
With these changes in place, you should be able to run the RegisterGolferIntegra-
tionTest and verify that the tests pass just as before. The fixture for the test remains
the same—only now, Seam wires the context variables into the component under test
dynamically using bijection.

 There are several permutations for how Seam resolves the context variable to
inject. Let’s step through the decision process that occurs during the first phase of
bijection.

6.2.2 The injection process

The decision process for performing an injection is illustrated in figure 6.3. You can
see that this process has two main branches: one where the value attribute of the @In
annotation is expressed in EL notation, and one where the value attribute is the con-
text variable name or a context variable name is implied. Use this diagram to follow
along with the discussion.

Process @In property

Assign value to
property

Value attribute
specified?

Value attribute
uses EL notation?

Scope specified? Create attribute
true?

Found non-null value?

Throw runtime
exception

Evaluate expression

Use name of property
 as context variable

 name

Use value attribute as
context variable

name

Retrieve value from
specified scope

Perform hierarchical
search for context

variable

If context variable
supports auto-create,
it will be initialized as

needed

Attempt to initialize
context variable

Value required?

yes

no

Value non-null?

Create attribute
true?

Throw required
exception

yes

no, 1x

no

yes no

yes

no

no

yes yes

no

Value required?

Throw required
exception

yes

no

yes

yes

no

Figure 6.3 The decision process Seam follows when injecting a value into an @In property

227Dynamic dependency @In-jection
Let’s begin by considering the case
where the value attribute of the @In
annotation is a context variable name. A
few subtle differences exist between this
case and when the value attribute of the
annotation uses EL notation.

 Seam first looks to see if a scope is spec-
ified in the annotation. If so, Seam looks
for the context variable name in this
scope. If a scope isn’t provided, Seam
performs a hierarchical search of the
stateful contexts, starting from the nar-
rowest scope, ScopeType.EVENT,1 and con-
tinuing all the way to the broadest scope,
ScopeType.APPLICATION, as illustrated in
figure 6.4. The search stops at the first
non-null value that it finds and assigns that value to the property of the component.
Keep in mind that a context variable can hold any value, not just a component instance.

 If the hierarchical context search fails to resolve a non-null value for a context vari-
able, Seam attempts to initialize a value, but only if the following two conditions are met:

■ The context variable name matches the name of a component.
■ The create flag is true on the @In annotation or the matched component supports

autocreate.

If these conditions are met, Seam instantiates the component, binds the instance to a
context variable, then injects it into the property marked with the @In annotation.
Note that the instance may come from a factory component, covered in section 6.7.1.
If the context variable name doesn’t match the name of a component, there’s nothing
for Seam to create and therefore the value of the property remains null.

 Before finishing its work, Seam validates against the required flag on @In. Requir-
ing a value protects against a NullPointerException. If the required flag is true, and
Seam wasn’t able to locate a value, the runtime exception RequiredException is
thrown. There is one exception to this rule. Required flags are never enforced on life-
cycle methods (this is true for both injection and outjection), though bijection does
still take place. In any case, if the required flag is false or not enforced, the property
remains uninitialized if Seam can’t locate a value.

TIP If you find yourself making heavy use of the required flag to disable
required injections (and later outjections), it’s an indication that you’re
trying to make the component do too much. Refactor your monolithic
component into smaller, more focused components and use bijection or
static injection to allow them to collaborate.

1 Technically, the narrowest scope is the METHOD context, which is discussed in section 6.4.

Event

Page

Conversation

Session

Business Process

Application

Lo
ok

up
 O

rd
er

Figure 6.4 The order in which the contexts
are scanned when Seam searches for a context
variable

228 CHAPTER 6 Absolute inversion of control
When the value attribute uses EL notation, the semantics are much simpler. The work
of locating a value is delegated to the EL variable resolver. The same validation against
the required flag is performed as in the non-EL case.

 If all such injections for a component succeed, the method invocation proceeds.
Before you check the @In annotation from your list of Seam concepts mastered, let’s
consider how the dynamic nature of the injection allows you to mix scopes and prop-
erly handle nonserializable data.

6.2.3 Mixing scopes and serializability

As you know, every time a method on a
component is invoked, Seam performs
the lookup to resolve a value based on the
information provided in the @In annota-
tion. This dynamic lookup allows you to
inject a component instance stored in a
narrow scope into a component instance
stored in a wider scope. Figure 6.5 shows
a narrow-scoped component instance
being injected into a wider-scoped component instance at each invocation. If injection
were to only happen when the wider-scoped component instance was created, the
injected instance would be retained beyond the lifetime of its scope.

 Let’s pose this scenario as a question, plugging in actual scope names. What would
happen if a request-scoped variable were to be injected into a session-scoped object
via static DI? Recall that static DI occurs only once: when the object is created. In this
situation, as the request-scoped variable changes between HTTP requests, the session-
scoped object retains the original value of the request-scoped variable and never gets
updated. This describes the behavior of most other IoC containers in existence today.
By using Seam’s dynamic DI, the same property on a session-scoped component would
always reflect the value of the request-scoped variable from the current request
because the injection is reapplied each time the component is invoked. Additionally,
the value isn’t retained beyond the end of the request since Seam breaks the refer-
ence by disinjecting the value once the method call is complete.

 Let’s consider another difficult scenario that’s cleared up thanks to the dynamic
nature of Seam’s DI: mixing nonserializable objects with serializable objects (a serializ-
able object is an instance of any class that implements java.io.Serializable). If a
nonserializable object is injected into the property of a serializable session-scoped
object, and that property isn’t cleared prior to session passivation, the session storage
mechanism will get tripped up by the nonserializable data. You could, of course, mark
the field as transient so that the value would be automatically cleared, hence allowing
the session to properly passivate. However, the real problem is that once the session
is restored, the transient field remains null, acting as a land mine in the form of a
NullPointerException that may be triggered by an unsuspecting block of code.

 Applying the @In annotation to the field solves both parts of the aforementioned
problem. To begin with, the value assigned through the @In annotation is cleared in the

Invocations over Time

Event-Scoped
Component

Session-Scoped Component
@In @In @In

Event-Scoped
Component

Event-Scoped
Component

Figure 6.5 A narrow-scoped component is
injected into a wider-scoped component.

229Dynamic dependency @In-jection
last phase of bijection, after the method on the component is invoked. Right out of the
box, injections are transient without you having to add the transient keyword on all the
fields marked with @In. But the real power of injection is that the injected values are
restored prior to the next method call. This continuous injection mechanism allows
objects coming out of passivation to be reinflated. Thus, disinjection paired with sub-
sequent injections should alleviate a common, yet trite, pain point that arises when work-
ing with both session replication and the reactivation of a session after a server restart.

 But the @In annotation isn’t the only type of injection that Seam supports. Next we
look at a couple of domain-specific injection variants.

6.2.4 Injection variants

Seam supports several additional annotations for marking dynamic injection points.
The two you’ll learn about in this section are @RequestParameter and @Persistence-
Context. The first is used to inject an HTTP request parameter and the second an
EntityManager (JPA). Technically, the Java EE container handles injecting the
EntityManager into a property annotated with @PersistenceContext, but Seam fol-
lows that up with a second injection pass. Later on, you’ll learn about two more injec-
tion annotations in the section covering JSF data model selection. Of all the bijection
annotations, @RequestParameter is probably the easiest to grasp, so let’s start there.
INJECTING A @REQUESTPARAMETER

The @RequestParameter annotation is used to inject an HTTP request parameter into
the property of a component, retrieved either from the query string or the form data.
You either specify a parameter name explicitly in the value attribute or let Seam
imply the parameter name from the name of the property. Unlike @In, however, a
value is never required.

 You can, of course, inject a request parameter into a string or string array property,
since request parameters are inherently strings. Going a step further, if the property’s
type is not a string or string array, Seam converts the value before injecting it using the
JSF converter registered for that type. If no converter is associated with the property’s
type, Seam throws a runtime exception. As a reminder, JSF converters implement the
javax.faces.convert.Converter interface and are registered in faces-config.xml or
by adding the @Converter annotation to a Seam component class.

 The @RequestParameter annotation is a convenient alternative to page parameters
for creating RESTful URLs. In fact, this approach is more “Seam-like” because it uses
an annotation rather than XML. The one benefit of page parameters that you lose,
however, is Seam rewriting links to propagate page parameters to the next request.

 In the Open 18 application, we want to create a page that displays a golfer’s profile,
which will be prepared by the ProfileAction component. Let’s design it so that the ID
of the golfer to display is passed to the URL using the request parameter golferId:

http://localhost:8080/open18/profile.seam?golferId=1

The golferId request parameter can be injected into this component by placing the
@RequestParameter annotation over a property with the same name. This injection
takes place whenever a method on the ProfileAction component is invoked.

230 CHAPTER 6 Absolute inversion of control
Therefore, the golferId property can be used in the load() method to look up the
corresponding Golfer entity using the JPA EntityManager:

@Name("profileAction")
public class ProfileAction {
 @In protected EntityManager entityManager;
 @RequestParameter protected Long golferId;

 protected Golfer selectedGolfer;

 public void load() {
 if (golferId != null && golferId > 0) {
 selectedGolfer = entityManager.find(Golfer.class, golferId);
 }

 if (selectedGolfer == null) {
 throw new ProfileNotFoundException(golferId);
 }
 }
}

We have the load() method invoked when the /profile.seam path is requested by mak-
ing this method a page action for the corresponding view ID in the page descriptor:

<page view-id="/profile.xhtml">
 <action execute="#{profileAction.load}"/>
</page>

The motivation for using a page action is to ensure that the profile can be retrieved
before committing to rendering the page. If an instance of Golfer is found, it’s stored
in the selectedGolfer property. However, if the golferId request parameter doesn’t
produce a Golfer instance, a custom runtime exception named ProfileNotFound-
Exception is thrown. This exception causes Seam to throw up a 404 error page, along
with a message stating that the profile could not be found, which happens because the
exception class is annotated with @HttpError:

@HttpError(errorCode = HttpServletResponse.SC_NOT_FOUND)
public class ProfileNotFoundException extends RuntimeException {
 public ProfileNotFoundException(Long id) {
 super(id == null ? "No profile was requested" :
 "The requested profile does not exist: " + id);
 }
}

That’s as far as we go with this example right now. You still need to learn how to pro-
mote the value of the selectedGolfer property to a context variable that can be
accessed from the view, which the next section covers.

 Seam isn’t alone in its support for dynamically injecting values into annotated
properties. Java EE has its own set of annotations for declaring what the spec terms
a “resource injection.” For the most part, Seam stays out of the way and lets the
container handle the task. But Seam does get its hands dirty with the @Persistence-
Context annotation.
AUGMENTING THE @PERSISTENCECONTEXT

The @PersistenceContext annotation is a Java EE annotation that marks a property
on a Java EE component that should receive a container-managed EntityManager

231@Out-jecting context variables
resource injection. After the EntityManager is injected by the Java EE container but
before the method invocation proceeds, Seam wraps the EntityManager in a proxy
object and injects it again. The proxy adds EL value expression support to Java Persis-
tence Query Lanaguage (JPQL) queries. But otherwise, the life cycle of the Entity-
Manager is controlled by the Java EE container. The @PersistenceContext annotation
is explained more in chapter 8 and the EntityManager proxy in chapter 9. Keep in
mind that this annotation is only relevant for Java EE managed components (e.g., JSF
managed beans or EJB session beans).

 Let’s pause for a moment to take a look around because you are now standing at
the ridge of where DI ends and bijection continues. Looking behind you, you see that
bijection has evolved DI by making the injection dynamic. Looking forward, you see
that there’s a whole other side of this pattern that has never before been explored. It’s
the flip side of injection known as outjection. Let’s explore it!

6.3 @Out-jecting context variables
Outjection is a way of pushing state held by a component out to the Seam container. You
can think of a component as the parent and the properties as its children. Outjection
is like sending the child off (perhaps kicking it out) to live in the world on its own. The
parent (the component) exports the child (the property) to a new address (the context
variable). Other people (components) can visit that child at the new address without
consulting the parent. The property value is now associated with its own context variable
that puts it on equal footing with other components in the Seam container.

 An outjection point is declared by adding the @Out annotation, summarized in
table 6.2, to a bean property—a field or JavaBean-style “getter” method. After a compo-
nent method is invoked, the value of the property is used to create a context variable or
bind to one that already exists. If a name isn’t provided in the value attribute, the name
of the property is used. As with the @In annotation, the value attribute on the @Out
annotation can be used to make the name of the context variable different from the
property name. Note that the @Out annotation doesn’t support EL notation as @In does.

Table 6.2 The @Out annotation

Name: Out

Purpose: Instructs Seam to assign the value of the property to the target context variable after a

method on the component is invoked

Target: METHOD (getter), FIELD

Attribute Type Function

value String The name of the context variable to which the value of the prop-
erty should be bound. Default: the property name.

required boolean A flag that indicates whether to enforce that the value to be out-
jected is non-null. Default: true.

scope ScopeType The context in which to store the context variable. Default: the
scope of the target component or the scope of the host compo-
nent if the context variable name isn’t the name of a component.

232 CHAPTER 6 Absolute inversion of control
The outjection process is not as complex as the injection process. However, there are
still decisions Seam must make before assigning the value of the property to a context
variable.

6.3.1 The outjection process

Figure 6.6 shows the outjection process. As you can see, three main decisions are
made in this process: the context variable name to use, the scope in which to store the
context variable, and whether to permit a null value. Let’s step through this process.

 The trickiest part to understand is how Seam infers a scope if one is not stated
explicitly. If you specify a scope in the @Out annotation, Seam assigns the value of the
property to a context variable in that scope. The name of the context variable is either
the name of the property or the override specified in the value attribute of the @Out
annotation. A context variable can’t be bound to the stateless context, so @Out doesn’t
permit use of this scope.

 If a scope isn’t specified, Seam first attempts to locate a component with the same
name as the target context variable. If one exists, and its type is equivalent to the

Process @Out property

Assign value to
context variable

Value non-null? Value required? Throw required
exception

Scope specified?

Variable name
match name of a

component?

Property type match
component type?

Derive context variable
name from value

attribute or name of
property

Use scope of
component

Use scope of host
component

Value non-null?

Remove context
variable

Throw runtime
exception

no yes

noyes

yes

yes

no

no

no

yes

yes

no

Figure 6.6 The decision process Seam
follows when outjecting the value from
an @Out property

233@Out-jecting context variables
property’s type, the property value is outjected to the scope of that component. Note
that the matching component may have been defined using the @Role annotation.
Roles effectively centralize the target scope of an outjection, rather than defining it at
the outjection point. If the context variable name doesn’t match the name of a com-
ponent (or component role), Seam uses the scope of the host component (i.e., the
component on which this property resides). If the scope of the host component is
stateless, Seam chooses the event scope instead.

 In the final step, Seam processes the required flag. If the required flag is true (the
default) and the value being outjected is null, Seam throws the runtime exception
RequiredException. Recall that required flags are implicitly false on life-cycle methods.

 Let’s look at a couple of use cases where outjection is useful.

6.3.2 Outjection use cases

Outjection is useful for accomplishing two goals. You can use it to expose the model to
the view as a result of executing an action method, or you can use it to push data into
a longer-term scope so it’s available on subsequent requests. Let’s look at the two cases
in turn.
PREPARING THE MODEL FOR THE VIEW

The view isn’t very useful without data to display. Preparing this data is typically the
responsibility of the page action or the action method triggered from the previous page.
In Struts, you usually pass the model to the view by assigning values to HttpServlet-
Request attributes in the action. Managing variables in this way can be quite cumber-
some and couples your code tightly to the Java Servlet API.

 Before abandoning the Servlet API, let’s find a compromise that loosens this cou-
pling and makes the code less cumbersome. In chapter 4, you learned that Seam nor-
malizes the servlet contexts under a single API. You can inject one of these contexts
directly into a Seam component using bijection. A context behaves like a map, where
the keys are the context variable names. You can add a context variable to the event
scope with the following setup:

@In protected Context eventContext;

public void actionMethod() {
 eventContext.set("message", "Hello World!");
}

Although this approach works, there’s a cleaner, more declarative way of accomplish-
ing the same task. You simply mark properties with the @Out annotation that you want
to have placed into the target context and your job is done. Here’s the same code tak-
ing a declarative approach:

@Out(scope = ScopeType.EVENT) protected String message;

public void actionMethod() {
 message = "Hello World!";
}

Here you see that outjection decouples the context variable assignment from the busi-
ness logic in the action. (The scope attribute on the @Out annotation is only required

234 CHAPTER 6 Absolute inversion of control
if the target scope is different from the scope of
the host component.) As far as the view is con-
cerned, it doesn’t care how the context variable
was prepared.

 Let’s complete the golfer profile example
started earlier by making the selected golfer
available to the /profile.xhtml view. The goal is
to create the output shown in figure 6.7.

 To extract the value of the selectedGolfer
field from the ProfileAction component
when the load() method is invoked, we add
the @Out annotation above the field. The value
of the field is then assigned to the equivalently
named context variable in the event context:

@Name("profileAction")
public class ProfileAction {
 @Out protected Golfer selectedGolfer;
 ...
 public void load() { ... }
}

The selectedGolfer context variable can then be referenced in value expressions in
the /profile.xhtml page as shown here:

<h1>#{selectedGolfer.name}</h1>
<rich:panel>
 <f:facet name="header">Profile</f:facet>
 <s:decorate template="layout/display.xhtml">
 <ui:define name="label">Gender</ui:define>
 #{selectedGolfer.gender}
 </s:decorate>
 <s:decorate template="layout/display.xhtml">
 <ui:define name="label">Birthday</ui:define>
 <h:outputText value="#{selectedGolfer.dateOfBirth}">
 <s:convertDateTime pattern="MMMM dd, yyyy"/>
 </h:outputText>
 </s:decorate>
 ...
</rich:panel>

The other use case for outjection is to propagate state.
KEEPING DATA IN SCOPE

Just because a field is outjected doesn’t mean it has to be used in the view. It’s quite
reasonable to outject a value just so that it can be injected into a component on a
subsequent request. Say goodbye to hidden form fields and the mentality of having to
manually propagate variables from one request to the next. Instead, you simply use
outjection to put a context variable on a shelf (a long-term scope such as the page,
conversation, or session scope) and pull it down when you need it again. In this case,
outjection decouples the mechanism of preserving state from the business logic. This
technique is especially useful in conversations, which are covered in chapter 7.

Figure 6.7 A golfer’s profile page. The
data is supplied by an outjected context
variable.

235@Out-jecting context variables
When you began reading this chapter, you may have thought bijection a bit mysteri-
ous. However, with the information covered up to this point, I doubt you’ll forget how
bijection works. If for some reason you do, just remember that injections happen
before a component method is invoked and outjections happen after the method call
is complete. Lastly, the injections are cleared just before the method returns. Repeat it
to yourself. That way, when you see the error message “@In attribute requires non-null
value” or “@Out attribute requires non-null value,” you’ll know what Seam is trying to
tell you. If all else fails, just ask your golf caddy. Now let’s use bijection to make lists in
JSF “clickable.”

6.3.3 Built-in @DataModel support

In JSF, UIData components, such as <h:dataTable>, are backed by a special collection
wrapper called a data model. A data model is a way for JSF to adapt various types of
collections to the UI component model in a consistent way and to support capturing a
row selection made by the user. The collection wrappers extend from the abstract
class javax.faces.DataModel and support the major collection types. Seam builds on
this set by adding support for the Query component from the Seam Application
Framework. The Query component manages the result of a JPQL/HQL query, which
Seam retrieves and wraps in a ListDataModel. You’ll learn about the Query compo-
nent in chapter 10. The mapping between the collection types and their wrappers is
shown in table 6.3.

Table 6.3 The corresponding JSF data model wrapper for each type of collection

Native Collection JSF DataModel Wrapper javax.faces.model.*

java.util.List ListDataModel

Array ArrayDataModel

java.util.Map MapDataModel

java.util.Set SetDataModel

org.jboss.seam.framework.Query ListDataModelwraps Query#getResultList()

Storing component instances out of Seam’s reach
You should not store a reference to a component instance in a place where Seam
can’t manage it, such as inside a collection. It should only be stored in a context
variable.

An object ceases to be an instance of a Seam component when you manage it
yourself. While storing it out of Seam’s reach won’t cause an error, Seam stops
intercepting its methods, and thus services such as bijection and events are no
longer applied to it.

If you need collection semantics, you should store the name of the component instead,
then look up each instance when you need it using Component.getInstance().

236 CHAPTER 6 Absolute inversion of control
So what do these wrappers have to do with bijection? To properly prepare collection
data to be used in a UIData component, you should wrap it in a JSF data model. Why
should you have to deal with this drudgery in your business logic? This task sounds
like something the framework should handle. Seam developers agree. For this pur-
pose, they created the @DataModel annotation, summarized in table 6.4. The @Data-
Model is used in place of the @Out annotation for outjecting one of the collection
types listed in table 6.4. Before the value of the @DataModel property is assigned
to the context variable during outjection, it’s first wrapped in the correct JSF Data-
Model implementation.

Let’s use Seam’s data model support to display a
list of newly registered golfers on the home page,
which will be made clickable so that a user can
view the golfer’s profile. The goal of this section is
to produce the output shown in figure 6.8.

 The business logic is responsible for fetching
the list of new golfers. We let Seam handle the
details of wrapping that collection in a JSF Data-
Model and exposing it to the view by adding the
@DataModel annotation, a variant of the @Out
annotation, to the newGolfers field:

@Name("profileAction")
public class ProfileAction {
 @DataModel protected List<Golfer> newGolfers;
 ...
}

Of course, that’s not enough for the newGolfers field to be outjected—heck, it’s not
even populated. First, we need a method that populates this collection. Then, we need
to figure out how to activate outjection. Let’s reuse the ProfileAction component.
We add the method findNewGolfers() to load the list of new golfers from the data-
base. To keep things interesting, we perform a little quick and dirty randomization on
the list:

Table 6.4 The @DataModel annotation

Name: DataModel

Purpose: Wraps a collection in a JSF DataModel and outjects the resulting value

Target: METHOD (getter), FIELD; must be one of the collection types in table 6.3

Attribute Type Function

value String The name of the context variable under which the value of the
wrapped collection should be stored. Default: the property name.

scope ScopeType The context in which to place the wrapped collection. The only per-
missible value is ScopeType.PAGE. Default: inherits scope from
component or ScopeType.EVENT if component is stateless.

Figure 6.8 The list of new
golfers prepared as a JSF data
model as a result of outjection

237@Out-jecting context variables
@Name("profileAction")
public class ProfileAction {
 protected int newGolferPoolSize = 25;
 protected int newGolferDisplaySize = 5;

 @Out(required = false) protected Golfer selectedGolfer;
 @DataModel protected List<Golfer> newGolfers;
 ...
 public void findNewGolfers() {
 newGolfers = entityManager
 .createQuery(
 "select g from Golfer g order by g.dateJoined desc")
 .setMaxResults(newGolferPoolSize)
 .getResultList();

 Random rnd = new Random(System.currentTimeMillis());

 while (newGolfers.size() > newGolferDisplaySize) {
 newGolfers.remove(rnd.nextInt(newGolfers.size()));
 }
 }
}

As you’ve learned, when a method on a Seam component is executed, such as
findNewGolfers(), bijection takes place. That means once the invocation of this
method is complete, the value of the newGolfers field is going to be wrapped in a
JSF DataModel and outjected to the equivalently named context variable of the event
scope. The event scope is chosen since that is the scope of the host component and
the scope isn’t explicitly specified.

 Notice that the required attribute on the @Out annotation above the selected-
Golfer property is now set to false. This directive is necessary since the find-
NewGolfers() method doesn’t assign a value to selectedGolfer and bijection would
otherwise complain that it isn’t set. This situation often arises when you use the same
component for more than one purpose. If you find yourself making excessive use of
the required directive, that’s an indication that the component is trying to do too
much and that you should divide it into smaller, more focused components.

 Once the findNewGolfers() method is invoked, the JSF view will have access to
the collection of new golfers using the value expression #{newGolfers}. The UIData
component that renders the list of golfers (in this case, <rich:dataList>) sees a
ListDataModel rather than the java.util.List:

<rich:panel>
 <f:facet name="header">Cool New Golfers</f:facet>
 <rich:dataList var="_golfer" value="#{newGolfers}">
 #{_golfer.name}
 </rich:dataList>
</rich:panel>

TIP You may notice in this code snippet that I prefix the iteration variable
(the golfer) with an underscore (_). I recommend this coding style to
make it clear that the variable is local to the iteration loop and to avoid
conflicts with existing context variables.

238 CHAPTER 6 Absolute inversion of control
The only remaining question is, “When is the findNewGolfers() method invoked?”
We want to execute this method eagerly when the home page is requested, not as a
result of a user-initiated action. Once again, we use a page action:

<page view-id="/home.xhtml" action="#{profileAction.findNewGolfers}"/>

Now, whenever the home page is requested, the findNewGolfers() method prepares
the newGolfers context variable for the view. With the @DataModel annotation, you
never have to think about the JSF DataModel interface; it’s completely transparent.
Seam even takes care of reinitializing the context variable whenever a change is
detected in the underlying collection. Your component is free to use properties that
are native Java collection types. Your UI component sees the outjected data as the
appropriate DataModel wrapper class. Where this pays off is in capturing a row selec-
tion from the DataModel, again without having to tie your component to the JSF API.
MAKING A @DATAMODELSELECTION

Presented with a list of golfers, the user of the application will want to interact with
that list. One common use case is “clickable lists.” To continue with our example, the
user clicks on the name of one of the golfers in the table and the application brings
up the golfer’s profile. This mechanism is a contrast to using a RESTful URL, though
the two can coexist.

 In a clickable list, the user is performing an action on the data associated with the
row that receives the event. One such action is drilling down, which is demonstrated
here. Other actions include deleting and editing. The only limitation is that this
mechanism can be applied to only a single row at a time.

 How do you know which row was clicked? Seam works in conjunction with JSF to
take care of these details. One of the reasons for using a DataModel in a UIData com-
ponent is so that JSF can correlate an event triggered from a row in the table with the
data used to back that row. Seam can take the data from the selected row and inject it
into the component receiving the action using one of two @In-style annotations.

 Clickable lists are effortless in Seam thanks to the @DataModelSelection annota-
tion. The @DataModelSelection annotation injects the value of the selected row in a
collection previously outjected by the @DataModel annotation and assigns it to the
corresponding component property. Seam also supports capturing the index of the
selected row using the @DataModelSelectionIndex annotation. You place either of
these two annotations, summarized in table 6.5, on a separate property of the same
component in which the @DataModel annotation is defined. Of course, the property
annotated with @DataModelSelection must have the same type as the items held in
the collection, while the property annotated with @DataModelSelectionIndex must
be a numeric type.

 Seam will put two and two together and assign the value of the selected row in the
UI to the property annotated with @DataModelSelection, or the index of the selected
row to the property annotated with @DataModelSelectionIndex. This selection occurs
by triggering an action on a row of a UIData component such as <h:dataTable>.

239@Out-jecting context variables
Let’s build on the example of the list of new golfers by first making the names click-
able. First, we enhance the ProfileAction component to include a method named
view() that will be used to select a golfer from the new golfer list. This method will
eventually be bound to a UI command component to enable the selection:

<h:commandLink value="#{_golfer.name}" action="#{profileAction.view}"/>

The implementation of the view() method is shown in listing 6.2, along with several
changes to the class that are highlighted in bold to support this new use case. The
RESTful logic presented earlier is left intact so that both use cases can be supported.

package org.open18.action;

import org.jboss.seam.ScopeType;
import org.jboss.seam.annotations.*;
import org.jboss.seam.annotations.web.RequestParameter;
import org.jboss.seam.annotations.datamodel.*;
import org.open18.ProfileNotFoundException;
import org.open18.model.Golfer;
import javax.persistence.EntityManager;
import java.util.*;

@Name("profileAction")
@Scope(ScopeType.CONVERSATION)
public class ProfileAction {
 protected int newGolferPoolSize = 25;
 protected int newGolferDisplaySize = 5;

 @RequestParameter protected Long golferId;

 @DataModelSelection
 @Out(required = false)
 protected Golfer selectedGolfer;

 @DataModel(scope = ScopeType.PAGE)
 protected List<Golfer> newGolfers;

 public String view() {
 assert selectedGolfer != null &&
 selectedGolfer.getId() != null;
 return "/profile.xhtml";
 }

Table 6.5 The @DataModelSelection and @DataModelSelectionIndex annotations

Name: DataModelSelection/DataModelSelectionIndex

Purpose: Captures the selected row (or row index) of the corresponding JSF DataModel

Target: METHOD (setter), FIELD

Attribute Type Function

value String The context variable name of the DataModel. Default: the name of the
@DataModel property on the same component, if there is exactly one.

Listing 6.2 A component that supports a clickable list of golfers

Injects selected golfer,
stores in conversation

Stores golfers in UI
component tree

240 CHAPTER 6 Absolute inversion of control
 public void load() {
 if (selectedGolfer != null &&
 selectedGolfer.getId() != null) {
 return;
 }

 if (golferId != null && golferId > 0) {
 selectedGolfer = entityManager.find(Golfer.class, golferId);
 }

 if (selectedGolfer == null) {
 throw new ProfileNotFoundException(golferId);
 }
 }

 public void findNewGolfers() {
 newGolfers = ...;
 }
}

An important change had to be made to the ProfileAction component to support
clickable lists. The @DataModel property is now scoped to the page context (i.e.,
ScopeType.PAGE) rather than the event context. In order for @DataModelSelection
to capture the selected row, the original @DataModel collection must be available on
postback. If the collection changes, it may cause the wrong row to be selected. This
happens because the row index captured by the event no longer points to the correct
row in the collection on postback. If the collection disappears altogether, the result
will be a “ghost click” (see the accompanying sidebar). The latter happens because
the portion of the JSF component tree that held that event is discarded and thus the
event doesn’t fire. Regardless of how hard Seam searches, it won’t be able to locate the
data model selection and the @DataModelSelection and @DataModelSelectionIndex
annotations are helpless. UIData components (e.g., <h:dataTable>) depend on the
underlying data to be stable during subsequent requests. To guarantee that the collec-
tion remains stable, you can store it in the UI component tree by scoping @DataModel
to the page context, as we’ve done in this example. Always remember this point when
dealing with UIData components. You have to get your DataModel to make the leap
from render to postback. In the next chapter you’ll learn how conversations are even
better suited to deal with this problem since they can carry data across an arbitrary
number of postbacks and even non-JSF requests.
Finally, we add an <h:commandLink> around the name of each golfer, which will
invoke the view() method on ProfileAction when clicked:

<h:form>
 <rich:panel>
 <f:facet name="header">Cool New Golfers</f:facet>
 <rich:dataList var="_golfer" value="#{newGolfers}">
 <h:commandLink value="#{_golfer.name}"
 action="#{profileAction.view}"/>
 </rich:dataList>
 </rich:panel>
</h:form>

Skips RESTful logic
when golfer selected

241@Out-jecting context variables
When the view() method is invoked, Seam takes the selected row from the @DataModel
collection, newGolfers, and injects it into the corresponding @DataModelSelection
property, selectedGolfer. Seam makes this association automatically since both prop-
erties reside on the same component. If there were more than one @DataModel prop-
erty on the component, it would be necessary to specify the context variable name used

Ghost clicks
One utterly frustrating problem of JSF that Seam alleviates is the ghost click. A
ghost click happens when the portion of the UI component tree that queued a UI
event is dropped.

Upon reading this explanation, you might be thinking, “Isn’t that a bug?” Sadly, it
isn’t. Certain branches of the UI component tree are processed dynamically. If the
structure of the tree isn’t reproducible, there’s a chance that the behavior will be
lost. An example of where this can happen is in any branch controlled by a compo-
nent in the UIData family. The UIData components are unique because they are
data driven. Let’s consider how UIData components are handled and how it can
result in portions of the tree being dropped.

JSF walks the UI component tree during rendering. When it encounters a UIData
component, it iterates over the collection in the DataModel that’s bound to the
component to render each row. The component tree is then saved in the session
or serialized and sent along with the response. Although the data is a critical part
of how UIData components operate, JSF stores only the UIData components
themselves, not the underlying data.

When the component tree is restored on postback, JSF walks the UI component
tree again, looking for events (among other things). Events triggered on a UIData
component are associated with the index of the activated row. When JSF arrives at
the UIData component, it again iterates over the data model to process each row,
lining up events with the row index. If the data model changes prior to the restore
stage, the event may be correlated with the wrong row. Worse, if the data disap-
pears, any event associated with that portion of the tree is silently discarded. The
result is a ghost click.

The lesson here is that JSF expects the collection wrapped by the DataModel to
remain stable between render and postback. The easiest way to guarantee the sta-
bility of the collection is to store it in the UI component tree. In Seam, you store a
context variable in the UI component tree by scoping it to the page context. This
approach accomplishes the same task as the <t:saveState> tag from the Toma-
hawk project. As another option, third-party UIData components typically offer a
built-in “save state” attribute. The most flexible option is to bind the data model to
a long-running conversation.

To truly appreciate how maddening a ghost click can be, you have to be the victim
of it. The profile example in this chapter gives you an opportunity to research the
problem in a lab environment where your job—or contract—isn’t on the line.

242 CHAPTER 6 Absolute inversion of control
by the @DataModel property in the value attribute of the @DataModelSelection anno-
tation in order for the correlation to be made. Failure to make this distinction results
in a runtime exception. The @DataModel property and the @DataModelSelection prop-
erty must always reside on the same component.

 In JSF, you have to use a command link or button to perform a data model selec-
tion using the pattern just described. That means a POST form submission occurs.
What’s worse is that JSF submits the form using JavaScript. If you don’t care how the
job gets done, the combination of a page-scoped @DataModel, @DataModelSelection,
and a JSF command component is a grand slam. However, if you need to allow the
user to open the data model selection link in a new tab or window, you may need to
take the solution a step further. Currently, if the user right-clicks on the golfer name
and tries to open the profile in a new tab or window, the home page will load rather
than the profile page. To allow users to achieve the desired result, the data model
selection must be passed along with the URL. JSF doesn’t support this feature, but
Seam does.
DATA MODEL SELECTION WITH SEAM COMMAND COMPONENTS

The command components in the Seam UI component library, <s:link> and
<s:button>, support data model selections, despite the fact that they don’t submit a
form or restore the JSF UI component tree like the JSF command components. In pre-
vious chapters, you learned that it’s possible to use the Seam command components
to execute actions and perform navigation, so you know they are already quite capa-
ble. They can also emulate the data model selection feature of JSF through the use of
two URL parameters, dataModelSelection and actionMethod, which are processed by
the Seam phase listener and used to inject the data from the selected row into a
@DataModelSelection or @DataModelSelectionIndex property. An example is pro-
vided in a moment.

 The Seam command component tags aren’t quite a drop-in replacement for the
JSF command components. They don’t restore the JSF UI component tree, which
means that the page-scoped data isn’t propagated. For our example, this means that
the page-scoped newGolfers data model is left behind. Thus, to allow formless data
model selection using the Seam command components, the data model must be
stored in a longer-lived scope.

 There are two synchronized scopes that you can use as an alternative to the page
scope: session and conversation. Generally, I recommend using the conversation
scope. But since we haven’t explored conversations—and by that I mean long-running
conversations—we go with the session scope for now. I encourage you to come back
and play with this example after you have mastered conversations in chapter 7.

 Your first instinct might be to set the scope of the @DataModel annotation to
ScopeType.SESSION. However, that won’t work in this case since you can’t explicitly
outject a data model to the session scope (only to the page scope). Therefore, it’s nec-
essary to put the ProfileAction component in the session scope so that the @Data-
Model annotation inherits the session scope from the component:

243@Out-jecting context variables
@Name("profileAction")
@Scope(ScopeType.SESSION)
public class ProfileAction {
 @DataModel
 protected List<Golfer> newGolfers;
 ...
}

You can follow this change with a switch from the <h:commandLink> tag to <s:link>:

<s:link value="#{_golfer.name}" action="#{profileAction.view}"/>

An example of a URL generated by this component tag is as follows:

/open18/home.seam?dataModelSelection=_golfer:newGolfers[0]

 ➥&actionMethod=home.xhtml:profileAction.view

The URL indicates that the first entry in the newGolfers collection is to be used as the
data model selection and that the view()method on the component named profile-
Action is to be executed. The user is then directed to the view ID returned by view().
If view()were to return an outcome value rather than a view ID, JSF would consult the
navigation rules to determine the next view.

 These extra steps to support the Seam command components may seem like too
much work, in which case you may just want to stick with the JSF command compo-
nents. You may want to consider ways to select a row in a @DataModel context variable
without the use of @DataModelSelection.
OTHER APPROACHES TO DATA MODEL SELECTION

As an alternative to using the @DataModelSelection annotation, you can pass the con-
text variable of the current row to the action method using a parameterized method
expression, supported by the JBoss EL. To use this feature, the data model must remain
available until the next request, as with the data model selection. Again, the options
are page, session, or conversation scope with a long-running conversation. With the
scope of the data model set appropriately, you can pass the _golfer context variable
as an argument to the view() action method as follows:

<h:commandLink value="#{_golfer.name}"
 action="#{profileAction.view(_golfer)}"/>

The signature of the action method would need to change to accept the parameter:

public String view(Golfer golfer) {
 this.selectedGolfer = golfer;
 return "/profile.xhtml";
}

The benefit of using the parameterized EL is that it allows you to pass a property of the
row data rather than the row data itself. For instance, you could pass the golfer’s user-
name instead:

<h:commandLink value="#{_golfer.name}"
 action="#{profileAction.view(_golfer.username)}"/>

244 CHAPTER 6 Absolute inversion of control
To go in a completely different direction, you could use a RESTful URL to select the
golfer. In this case, you’re using the @DataModel just for rendering purposes, so it
doesn’t need to survive across the redirect. Instead, the information required to
retrieve the golfer is placed directly in the URL using a link parameter:

<s:link value="#{_golfer.name}" view="/profile.xhtml">
 <f:param name="golferId" value="#{_golfer.id}"/>
</s:link>

After having seen these options, you have to decide for yourself whether you like the con-
venience of the JSF data model selection or whether you prefer the RESTful URL. Unfor-
tunately, the @DataModelSelection is really just a hindrance when you’re trying to
create a RESTful URL. My advice is that unless you have a strong use case for supporting
a RESTful URL, you should leverage the productivity gain that the page-scoped @Data-
Model, @DataModelSelection, and JSF command component combination affords you.

 Bijection can be powerful and convenient, but if applied at the wrong time, it can
throw a wrench into the works. In the next section, you’ll learn how to exert some con-
trol over when bijection is used and when Seam applies this reservation automatically.

6.4 Bypassing bijection
Bijection is one of the most powerful and compelling features of Seam. But with great
power often comes great confusion. It’s just as valuable to know when bijection is not
used as to know when it is. In this section, we look at which method calls do not trig-
ger bijection and also how to disable it when it’s getting in your way.

6.4.1 Internal method calls

As established earlier, bijection is implemented as a method interceptor. Method
interceptors are applied around method calls that are invoked on proxy objects.
When you ask the Seam container for a component instance—perhaps through an EL
expression or an injection—what you get back is a proxy of the instance. Therefore,
any method call invoked on that proxy is going to pass through the method intercep-
tors and, in turn, trigger bijection.

 However, method interceptors are blind to what goes on within the target
method. As far as the interceptor is concerned, the target method is a black box.
Inside of the intercepted method, you’re dealing with the raw instance of the compo-
nent when you refer to the implicit variable this. Local method calls (i.e., methods
on the same class) aren’t observed by the method interceptors, and therefore, bijec-
tion isn’t wrapped around them. If you have a strong grasp of how method intercep-
tors work, this fact should come as no surprise to you. However, for those with less
exposure to method interceptors, the distinction between the two circumstances may
not be so obvious.

 Let’s return to the RegisterAction component to see an example of an internal
method call. We want to verify that the username chosen by the new golfer is available.
The method isUsernameAvailable() on RegisterAction performs the check and

245Bypassing bijection
emits an error message if the username is already in use. The modified RegisterAction
component is shown in listing 6.3 in abbreviated form. Note that the internal call to the
isUsernameAvailable() method doesn’t trigger bijection.

package org.open18.action;
import ...;

@Name("registerAction")
public class RegisterAction {
 @In protected EntityManager entityManager;
 @In protected FacesMessages facesMessages;
 @In protected Golfer newGolfer;
 ...

 public String register() {
 ...
 String username = newGolfer.getUsername();
 if (!isUsernameAvailable(username)) {
 facesMessages.addToControl("username",
 Username is already taken");
 }
 ...
 }

 public boolean isUsernameAvailable(String username) {
 return entityManager.createQuery(
 "select m from Member m where m.username = :username")
 .setParameter("username", username)
 .getResultList().size() == 0;
 }
}

Just remember that when a component is asked to do work by some other part of the
system, the communication takes place through the proxy, so bijection will occur
before and after the method call. However, any method that the component invokes
on itself—an internal method call—isn’t going to benefit from or be afflicted by any
interceptor-provided functionality, such as bijection.

 I chose the words “benefit” and “afflicted” in that last statement for a reason. There
are times when you need method interceptors to be applied on a method, even if that
method happens to reside on the same component. There are also circumstances when
allowing the method interceptors to execute would be problematic. First, I’ll explain
how to get a reference to the proxy of the current instance to make the method
call appear as if it’s originating from outside the component. Then, you’ll learn why
Seam skips bijection if the method is reentered while execution of the target method
is still proceeding.

6.4.2 The mystical method context

I’ll admit that I omitted details earlier when I said that the event scope is the narrow-
est scope in Seam, but trust that it was for your own good. In truth, it’s because the

Listing 6.3 An internal method call that checks whether the username is available

Doesn’t trigger
bijection

Attaches message
to username field

246 CHAPTER 6 Absolute inversion of control
narrowest scope, method, is intended strictly for internal use. So technically, the event
scope is the narrowest public scope and I get to retain my integrity.

 If the method scope is part of the internal Seam API, why mention it? I bring it
up to raise awareness of its impact and to transition to my next point. Before a
method call on a component begins, Seam binds the unproxied instance of the com-
ponent to the component name in the method context. After the method call, this
context variable is cleared. The reason this assignment is done is to avoid invalid
behavior in the case of recursive calls. But don’t worry about the details; let’s look at
the consequence.

 As you are now fully aware, interceptors aren’t applied to internal method calls.
For that, you need to invoke the component instance the way the rest of the system
sees it (i.e., through the proxy). Recall from chapter 4 that you can look up a compo-
nent instance using the Seam API as follows:

(RegisterAction) Component.getInstance("registerAction")

Normally, this call would give you the component instance and its entourage of
method interceptors. However, if this call is made from within the RegisterAction
component, the unproxied instance is returned instead since it’s found in the narrow-
est scope, method. So even if you invoke the isUsernameAvailable() method on the
result of this lookup, the method interceptors won’t be applied:

((RegisterAction) Component.getInstance("registerAction"))
 .isUsernameAvailable(newGolfer.getUsername())

However, you can get the proxied instance by specifying the component’s context:

(RegisterAction) Component.getInstance("registerAction", ScopeType.EVENT)

It’s very important to keep this little tool in your emergency kit because I can assure
you that a time will come when you need to get a handle on the proxy and, in turn,
trigger the interceptors.

 With the method context out in the open, it’s time to move on to the next point:
reentrant method calls. Believe it or not, even if you looked up the RegisterAction
component using the trick I just showed you and called the isUsernameAvailable()
method on it, bijection still wouldn’t be applied. Read on to discover why.

6.4.3 Reentrant method calls

A reentrant method call is as simple as it sounds: the component is reentered while it’s
in use. To be more specific, a method is called on the proxy while a method on the
instance is still executing. You just saw an example of this in the previous section.
Within the RegisterAction component, the instance of the RegisterAction compo-
nent was retrieved through the Seam API and a method called on it:

(RegisterAction) Component.getInstance("registerAction", ScopeType.EVENT)
 .isUsernameAvailable(newGolfer.getUsername())

You might also see this situation if you’re implementing a visitor or double dispatch pat-
tern, where the collaborator component reaches back through the proxy to execute a

247Bypassing bijection
method on the component. So what does all this have to do with bijection? One of the
golden rules of bijection reads as follows:

At no time during the execution of a component’s method is bijection applied to that
component a second time.

This point goes back to the mechanics of bijection, which taught you that bijection
encompasses a method call and doesn’t do anything while the method is executing.
Bijection occurs before and after every method call on a Seam component instance,
but only if the method call isn’t a reentrant method call.

 The motivation for skipping bijection on reentrant method calls is twofold:

■ It reduces overhead.
■ It keeps the state of the component instance stable and consistent.

As for the first point, there’s no reason to apply injections again if they’ve already
happened. However, there’s hardly any reason to mention the first point in view of
how critical the second point is. Bijection alters the state of the instance. Although
injection might simply be redundant, or at worse inject a different value than what
was injected originally, that’s not the biggest impact. The most drastic change occurs
in the final step of bijection: disinjection, which wipes away the injections that were
applied. If this were to happen while the original method call is still executing, it
would have a disastrous effect (i.e., NullPointerException mania). So it’s important
that Seam be cognizant of the reentrant method call and not allow it to trigger bijec-
tion. Consequently, this also explains why method invocations on Seam components
must be synchronized. Otherwise, two threads calling the same component simulta-
neously would cause the problem just described. If you can’t synchronize the call,
don’t use bijection.

 Let’s consider a simple example from Open 18 to illustrate when this situation may
occur in a more natural scenario. Before a golfer can register, two validation checks
must be performed. The application needs to ensure that the username requested by
the registering golfer is available and that the email address entered isn’t already in
use to avoid a duplicate registration. Let’s introduce the GolferValidator compo-
nent, to which these validations can be delegated. However, the GolferValidator is
just a coordinator. The validation checks just described are hosted on the Register-
Action component. So we have a double dispatch going on here. Rather than getting
bogged down in the code, let’s look at a diagram. Figure 6.9 illustrates how three
method calls are made to the RegisterAction component when the user submits the
registration form, yet bijection is only applied to the register() method call.

 Setting the log level to TRACE reveals that Seam acknowledges the reentrant call:

intercepted: registerAction.register
intercepted: golferValidator.validate
intercepted: registerAction.isUsernameAvailable
reentrant call to component: registerAction (skipping bijection)
intercepted: registerAction.isEmailRegistered
reentrant call to component: registerAction (skipping bijection)

248 CHAPTER 6 Absolute inversion of control
This discussion of reentrant method calls is technical, but it’s important to under-
stand why Seam forgoes the use of bijection even if a method is being invoked on the
proxy of the component instance.

 With the exception of JPA entity classes, bijection is applied to all Seam compo-
nents. However, certain isolated components have no use for bijection. In these cases,
you likely want to forgo bijection outright. You can tell Seam not to intercept method
calls on a component using a special annotation.

6.4.4 Disabling bijection by disabling interceptors

Since bijection is provided by a method interceptor, you can avert bijection by dis-
abling the interceptors on a single method or on the entire component. You instruct
Seam not to apply interceptors by adding the @BypassInterceptors annotation, sum-
marized in table 6.6, at the class or method level. The method-level annotation is a
good way to optimize one area of the code without cutting out the benefits of inter-
ceptors from the component as a whole.

Unfortunately, if you disable interceptors, you end up stripping away all the other inter-
ceptor-based functionality, not only bijection. Such features include declarative conver-
sation controls, transaction management, and event handling, to name a few. Just be
aware that by disabling interceptors, you may get more than you bargained for.

NOTE Adding @BypassInterceptors to a component doesn’t disable life-cycle
methods. Life-cycle methods are those annotated with @Create, @Post-
Construct, @Destroy, or @PreDestroy that are covered in section 4.5.5
of chapter 4.

Table 6.6 The @BypassInterceptors annotation

Name: BypassInterceptors

Purpose: If applied to a method, disables all the interceptors that are wrapped around a single

method call. If applied to a component, it has the same effect as applying it to every

method on the component.

Target: TYPE (class), METHOD

isEmailRegistered()

validate()

isUsernameAvailable()

RegisterAction GolferValidatorBrowser Window

register()

Reentrant Method

boolean

Figure 6.9 An example of two
reentrant method calls on the
RegisterAction component
made by the collaborator
component GolferValidator

249Component events
What’s the motivation for disabling interceptors? By no means are interceptors pun-
ishing to the runtime execution speed of your code, but they do consume extra cycles.
If you know that you don’t need the functionality provided by interceptors, you might
as well disable them. If you’re using a Spring bean as a Seam component, explained in
chapter 15 (online), disabling Seam’s interceptors makes sense if equivalent function-
ality is already covered by Spring’s interceptors.

 In the Open 18 application, the PasswordBean component has no use for intercep-
tors as it merely holds data and validates its internal state. It’s safe to disable intercep-
tors entirely:

@Name("passwordBean")
@BypassInterceptors
public class PasswordBean { ... }

Another useful place to disable interceptors is on core object methods such as
toString():

@BypassInterceptors
public String toString() {
 return new StringBuffer()
 .append(getClass().getName()).append("[")
 .append("password=").append(password).append(",")
 .append("confirm=").append(confirm)
 .append("]").toString();
}

The toString() method, as well as equals() and hashCode(), don’t benefit from the
functionality provided by the interceptors. If anything, the interceptors just get in the
way. For instance, required values enforced by @In and @Out might cause the
toString() method to be aborted, which can mask real problems when you’re trying
to debug.

 While interceptors can sometimes be overzealous, the functionality they provide
is essential for decoupling business logic from boilerplate lookup code. One such
area where interceptors help to simplify code and cut out tight coupling is when a
component wants to send a notification to other components so they have a chance
to act.

6.5 Component events
Dynamic injection helps decouple components because it eliminates explicit lookups
for dependent objects. However, the components still interact with one another
directly. This arrangement works well when the components are all working to accom-
plish a common goal, as is the case with the registration example. However, in cases
where tangential logic must be performed, perhaps even to spawn an asynchronous
operation, events may be a better option. Events offer a way for components to pass
messages to one another. They provide separation of concerns, make components eas-
ier to test in isolation, and can even remove a hard dependency on an API such as JSF.

 Events can be raised by a component or generated during any page-related activity.
These events are passed through the Seam container, which acts as the messaging

250 CHAPTER 6 Absolute inversion of control
mediator. Seam’s event support works much like a messaging service such as JMS.
There are both producers and consumers. When an event is raised, it’s posted to the
Seam container. Seam then looks for registered observers for that event and notifies
them by executing the registered methods.

6.5.1 Raising an event from a component

Events can be raised from within a Seam component either using the Seam Events
API—the built-in Events component—or using an annotation. The Events API offers
the most flexibility, but it does tie your code to that API. The annotation @RaiseEvent,
on the other hand, allows you to control event creation declaratively.
USING THE EVENTS API
The Events API supports passing an arbitrary number of parameters to the observer
when an event is raised. Passing data gives the observer a chance to access the data
available within the scope of where the event was raised without having to be present.

 The default behavior is to notify observers of the event immediately. It’s also possible
to schedule events. Seam supports both synchronous and asynchronous scheduling. In
the synchronous case, you can schedule that an event be fired when a transaction com-
pletes or only when it completes successfully. The asynchronous scheduler allows you to
supply either an EJB 3 Timer schedule or a Quartz Cron schedule, depending on which
asynchronous dispatcher you’re using in your application.

 Let’s consider an example. The marketing department has requested that we
gather statistics when members register and when they cancel the registration form so
the effectiveness of the registration process can be determined. The requests from
marketing are ever-changing. Rather than disrupt our nicely tested registration logic,
we want to put this extra logic in an observer. That way, when the next feature request
is handed down from marketing, we can just take on another observer, once again
avoiding disrupting working code.

 Modify the register() method of the RegisterAction component to raise the
golferRegistered event once the new golfer has been persisted successfully:

public String register() {
 ...
 entityManager.persist(newGolfer);
 Events.instance().raiseEvent("golferRegistered");
 ...
 return "success";
}

If we want to ensure that the logic performed by the collateral code operates in a sep-
arate transaction (so as not to jeopardize the transaction used to persist the new
golfer), we can schedule this event to be fired after successful completion of the cur-
rent transaction:

@In private Events events;

public String register() {
 ...

251Component events
 entityManager.persist(newGolfer);
 events.raiseTransactionSuccessEvent("golferRegistered");
 ...
 return "success";
}

You can also pass any number of parameters to the observer:

public String register() {
 ...
 entityManager.persist(newGolfer);
 events.raiseTransactionSuccessEvent("golferRegistered", newGolfer);
 ...
 return "success";
}

The observer could get a handle on the newGolfer using bijection, but the event
parameter offers more clarity and, thus, it’s easier for a fresh set of eyes to understand
what’s going on with the code—self-documenting code is always a good thing.

 One compelling use of the Seam Events API is to develop a mechanism for prepar-
ing status messages that’s agnostic of UI technology, as opposed to using the Seam
FacesMessages component. The event would include the message and severity, and
the observer would register the message with the UI framework. Before you run off to
develop this idea, I should let you know that Seam 2.1 supports creating technology-
agnostic status messages.

 Before moving on to observers, let’s look at how to raise events declaratively.
USING @RAISEEVENT

The @RaiseEvent annotation, summarized in table 6.7, offers the most convenient way
to raise an event from a component, but you give up control over when the event is
raised. Observers are notified of an event raised by the @RaiseEvent annotation upon
successful completion of the component method on which the annotation resides.

If you recall, successful completion means either the method is void or it returns a
non-null value and no exceptions were thrown. The events are fired after successful
completion of the method because, like bijection, it’s implemented as an interceptor.
This interceptor wraps the transaction interceptor, so if your transaction is configured
to complete (commit or roll back) after successful completion of the method, the
event will be raised after the transaction completes—though you still don’t have the
granularity of distinguishing between a commit and a rollback.

Table 6.7 The @RaiseEvent annotation

Name: RaiseEvent

Purpose: Raises a component event, which is passed on to registered observers upon successful com-

pletion of the component method

Target: METHOD

Attribute Type Function

value String[] One or more event names to be raised. Default: the method name.

252 CHAPTER 6 Absolute inversion of control
 With that, let’s change the previous example so that the raising of the golfer-
Registered event is declared as metadata:

@RaiseEvent("golferRegistered")
public String register() {
 ...
 entityManager.persist(newGolfer);
 ...
 return "success";
}

The @RaiseEvent annotation can be used to raise an arbitrary number of events. How-
ever, it can’t be used to pass arguments to the observer (at the time of this writing).
Thus, @RaiseEvent is good when you just want to notify observers that something has
happened. If information is critical to understanding the event, you’ll likely want to
use the Events API.

 With all of these events floating around out there, you must learn how to observe
them.

6.5.2 Defining an event @Observer

Events are observed by component methods or EL method expressions that you have
registered as observers. An observer can be registered using the @Observer annota-
tion or by attaching an event to an EL method expression in the component descrip-
tor. Let’s explore the @Observer annotation first.

 The @Observer annotation, summarized in table 6.8, can be added to a method of
any Seam component. It can observe one or more events by name, specified in the
value attribute. By supplying the create attribute, you can also specify whether to
have the observer component created if it doesn’t exist at the time the event is raised.
This flag is equivalent to the autocreate functionality on components.

 Although it’s possible to capture multiple events in the same method, you have to
remember that an event can pass arguments, thus dictating the signature of the
observer. You can’t use the same method to observe multiple events if the type and
amount of arguments passed by the events vary. You would be much better off refac-
toring the observation logic into multiple methods in this case.

Table 6.8 The @Observer annotation

Name: Observer

Purpose: Registers a component method to observe events by name. The method can accept argu-

ments if the producer passes arguments along with the event.

Target: METHOD

Attribute Type Function

value String[] One or more event names to be observed. Default: none.

create boolean Controls whether the observer component is created if it doesn’t
exist at the time the event is raised. Default: true.

253Component events
Let’s observe the golferRegistered event and record it for the marketing team’s sta-
tistics. Instead of going through the exercise of setting up an entity and database
table, we just throw in some logging statements:

@Name("registrationBookkeeper")
@Scope(ScopeType.APPLICATION)
public class RegistrationBookKeeper {
 @Logger private Log log;
 private int cnt = 0;

 @Observer("golferRegistered")
 synchronized public void record(Golfer golfer) {
 cnt++;
 log.info("Golfer registered – username: " + golfer.getUsername());
 log.info(cnt + " golfers have registered since the last restart");
 }
}

Since the record() method is a component method, it will trigger bijection, which
can be useful for injecting the EntityManager when you build the real implementa-
tion. You can also register the observer using the component descriptor. The latter is
useful if you can’t add the @Observer annotation to the class—perhaps because it
can’t be modified—or to have non-Seam components observe events. To do so, you’d
add the following declaration in the component descriptor:

<event type="golferRegistered">
 <action execute="#{registrationBookkeeper.record(newGolfer)}"/>
</event>

You can specify any number of actions to be executed for a single event. Notice that in
this case, we’re taking advantage of the JBoss EL to pass an argument to the method
expression. At the time the event is raised, the newGolfer context variable is still in
scope, so it’s possible to reference it for the purpose of passing it to the observer.

 Let’s look at another way that events are triggered: tying them to page events.

6.5.3 Raising events on page transitions

Events can be declared in the page descriptor, allowing them to be tied to any page-
related activity such as a page render or navigation transition. The <raise-event> ele-
ment can be nested in any of these nodes: <page>, <navigation>, or <rule>. As with
the @RaiseEvent annotation, it’s not possible to pass parameters using this approach.

 Let’s implement the marketing department’s request to capture cases when the
registration form is canceled. To do this, we trigger an event on a navigation rule:

<page view-id="/register.xhtml">
 <navigation>
 <rule if-outcome="cancel">
 <raise-event type="registrationCanceled"/>
 <redirect view-id="/home.xhtml"/>
 </rule>
 </navigation>
</page>

254 CHAPTER 6 Absolute inversion of control
You’ll also want to ensure that the cancel button on the registration page, /regis-
ter.xhtml, is changed to send the cancel outcome:

<h:commandLink value="Cancel" action="cancel" immediate="true"/>

Events are also useful for notifying observers when a page is going to be rendered.
PAGE EVENTS IN PLACE OF PAGE ACTIONS

In chapter 3, you used a page action to preload data before rendering the page. Since
the goal is to observe and perform logic for the render event, it would be more appro-
priate—and self-documenting—to raise an event and have a component method
observe it. Let’s use this approach to preload the list of facilities on the facility direc-
tory page:

<page view-id="/FacilityList.xhtml">
 <raise-event type="facilityList.preRender"/>
 ...
</page>

Next, the @Observer annotation is applied to the preloadFacilities() method to
watch for this event:

@Observer("facilityList.preRender")
public void preloadFacilities() {
 getResultList();
}

Even before you start producing your own events, you have a whole slew of built-in
events that are raised by the Seam container. You may find that your first steps with
events will be observing Seam’s built-in events.

6.5.4 Built-in events

Events are one of the richest parts of Seam. If you had a nickel for every event that
Seam raised, you’d surely be a rich developer. Listing every event that Seam raises
would eat a gratuitous amount of space. I encourage you to consult the Seam refer-
ence documentation for a comprehensive list. Here’s a list of some of the events that
Seam raises:

■ Seam container initialized
■ Context variable assignment (added, removed)
■ Component life-cycle events (created, destroyed)
■ Scope events (created, destroyed)
■ Authentication events
■ Transaction events (before complete, commit, rollback)
■ Exception events (handled, not handled)
■ Conversation, page flow, business process, and task boundaries
■ JSF phase transitions (before, after)
■ JSF validation failed
■ User preference change (theme, time zone, locale)

255Custom method interceptors
In certain cases, such as when a context variable is modified, the event raised includes
the name of the subject. For instance, when the context variable newGolfers is added
to the page scope, the name of the events that are raised are

■ org.jboss.seam.preSetVariable.newGolfers
■ org.jboss.seam.postSetVariable.newGolfers

In some cases, the subject is also passed as an argument to the event, such as when a
component instance is created. When the profileAction component is created, the
event org.jboss.seam.postCreate.profileAction is raised and the profileAction
instance is sent as an argument. Observing this event allows you to place your post-
create logic for a component on a different component entirely:

@Name("profileActionHelper")
public class ProfileActionHelper() {
 @Observer("org.jboss.seam.postCreate.profileAction")
 public void onCreate(ProfileAction profileAction) { ... }
}

In chapter 11, you’ll learn how events can be used to minimize the disruption when
requiring users to log in by capturing the current view before sending them to the
login page and returning them to the captured page after successful authentication.
You’ll also use the postauthentication events to tune the HTTP session timeout as a
way of managing memory.

 Events are one way of separating concerns so that each component can focus on a
specialized task, yet those individual tasks can be brought together using the event-
observer pattern. Another way to decouple components and apply cross-cutting con-
cerns is to use interceptors. The next section covers how interceptors are handled by
both EJB 3 and Seam.

6.6 Custom method interceptors
As you’ve learned, Seam makes liberal use of method interceptors to weave functional-
ity into components, an application of AOP. While AOP is extremely powerful, concepts
such as pointcuts and advice are overly complex for many applications and can over-
whelm developers. Seam and EJB 3 truly simplify AOP by making it straightforward to
register cross-cutting logic, thus adding to the behavior Seam provides. Seam even
aids in stereotyping the cross-cutting concern, allowing it to be applied declaratively. In
this section, you’ll learn about Seam’s interceptor support and how it correlates with
EJB 3 interceptors.

6.6.1 Two sides to the interceptor coin

Both Seam and EJB allow you to intercept calls to methods of a component by register-
ing one or more interceptors on the component. Unlike other EJB features that Seam
brings to a non-Java EE environment, Seam’s interceptor support is not just a clone of
what EJB offers. Seam introduces client-side interception, stateless interceptors, and
stereotypes. While only Seam’s interceptors can be applied to a JavaBean component,

256 CHAPTER 6 Absolute inversion of control
its interceptors complement the EJB 3–style interceptors on Seam session bean com-
ponents. Let’s take a quick look at EJB 3 interceptors, and then contrast them with the
interceptor support that Seam provides.
EJB 3 INTERCEPTORS

The only requirement for defining an EJB interceptor is that the class have a method
with the following signature:

@AroundInvoke
public Object methodName(InvocationContext ctx) throws Exception { ... }

The name of the method is arbitrary. The InvocationContext provides access to
information about the intercepted method and component. Within the method, you
can invoke the intercepted method using the following call:

ctx.proceed();

That’s pretty much all there is to an interceptor method. The @AroundInvoke method
intercepts all business methods on the component to which it’s applied. You can inter-
cept life-cycle methods of the component by defining additional methods on the
interceptor class annotated with the Java EE life-cycle annotations, described in sec-
tion 4.5.5 in chapter 4. The life-cycle interceptor methods use the same signature as
the @AroundInvoke method.

 Interceptors are applied in an EJB component in one of three ways:

■ The EJB component is its own interceptor.
■ The interceptor is applied at the class level.
■ The interceptor is applied at the method level.

The first option is probably the easiest to understand. The @AroundInvoke method is
placed on the EJB component that it intercepts. In this case, the component is inter-
cepting itself. You typically only use this solution while prototyping an interceptor,
because it provides little in the way of separation of concerns.

 The other two options are likely what you will use long term. In this case, the inter-
ceptor class is registered on the component using the @Interceptors annotation,
which accepts a list of interceptor classes. This annotation can be applied at the class
or method level. When applied at the class level, every business method is intercepted
by the @AroundInvoke method on the interceptor class, and the life-cycle methods are
intercepted by the corresponding life-cycle method on the interceptor:

@Interceptors(RegistrationInterceptor.class)
public class RegisterActionBean implements RegisterAction { ... }

When applied at the method level, the @AroundInvoke method on the interceptor is
only applied to that particular method:

public class RegisterActionBean implements RegisterAction {
 @Interceptors(RegistrationInterceptor.class)
 public String register() { ... }
}

257Custom method interceptors
In either case, the interceptor is external to the component and provides good separa-
tion of concerns. Note that the interceptor class doesn’t have to be an EJB component
itself. As I mentioned, EJB interceptors are pretty straightforward. Let’s take a look at
how Seam interceptors differ.
SEAM INTERCEPTORS

Seam interceptors differ from EJB interceptors in several ways. The first is cosmetic.
Seam provides synonyms for the @AroundInvoke annotation and the Invocation-
Context that can be used when the EJB API isn’t available. The synonyms also work
in a Java EE environment, so it makes no difference which ones you choose. To inter-
cept life-cycle methods, though, you must use the Java EE life-cycle annotations.
Aside from cosmetic differences, a Seam interceptor class appears the same as an EJB
interceptor class.

 With that out of the way, we can get into the interesting differences:

■ Seam interceptors can be stateful or stateless.
■ Seam interceptors can be applied on the client or the server.
■ Seam interceptors are applied to a component as a stereotype.

The fact that Seam interceptors can be stateful or stateless addresses one of the main
shortcomings of EJB interceptors and emphasizes Seam’s commitment to stateful com-
ponents. If the interceptor is stateful, it’s bound to the lifetime of the component to
which it’s applied. Otherwise, Seam registers a singleton instance of the interceptor.
The second difference is made possible by the fact that a Seam session bean compo-
nent is a double proxy. Seam proxies the EJB instance and intercepts method calls
before proceeding with the method on the session bean. Then, on the server, EJB
applies its set of interceptors before proceeding with the business method. Seam is
able to apply its interceptor on either side of the fence because Seam registers itself as
an EJB interceptor. The final difference deals with how Seam interceptors are regis-
tered. Before we get to stereotypes, let’s see how Seam is able to customize the behav-
ior of an interceptor.

6.6.2 Defining a Seam interceptor

I mentioned earlier that, aside from the synonym types, the signature of a Seam inter-
ceptor class looks no different than an EJB interceptor class. If that’s the case, Seam
makes the interceptor stateful and invokes it on the client side. If you want to tune
either of these two properties, you need to add the @Interceptor annotation to the
interceptor class.
CUSTOMIZING YOUR INTERCEPTOR

The @Interceptor annotation supports two properties, stateless and type, which
control whether the interceptor is stateless or stateful and whether it’s invoked on
the client or the server. If the interceptor is applied to a JavaBean component, the
value of the type attribute isn’t relevant. Here’s an example of a stateless, client-
side interceptor:

258 CHAPTER 6 Absolute inversion of control
@Interceptor(stateless = true, type = InterceptorType.CLIENT)
public class StatelessClientSideInterceptor {
 @AroundInvoke public Object aroundInvoke(InvocationContext ctx) {
 ctx.proceed();
 }
}

One of the main benefits of using a Seam interceptor is to make it stateful, so I
encourage you to take advantage of this feature. This allows you to safely store data
in the interceptor between method calls just as you would the stateful component
it’s intercepting.

 The interceptor type you choose depends on the call stack in which you want your
interceptor to execute. If you want to short-circuit the call to the EJB component or
wrap the work performed in the EJB container, you need to use a client-side intercep-
tor. For instance, you can retry a call to an EJB component (or other remote service) in
the event of a failure. On the other hand, if you want the interceptor to execute within
the EJB interceptor call stack—duking it out with the other interceptors installed on
the EJB session bean—a server-side interceptor is appropriate. The server-side intercep-
tor is sufficient if you’re simply adding behavior to the method invocation.

 Having decided how to author your interceptor, you need to learn how it’s applied
to a Seam component. Paying attention here is important because the way Seam inter-
ceptors are registered with a Seam component differs from how EJB interceptors are
registered with an EJB component. While Seam provides a synonym annotation for
@Interceptors, you do not apply it directly to the component class as when you’re reg-
istering EJB interceptors.
INTERCEPTORS AS STEREOTYPES

The @Interceptors annotation is a meta-annotation, meaning it must be added to an
annotation, not directly to a class. That annotation is then declared on the compo-
nent class and the interceptor from the annotation is carried through to the compo-
nent. Building on the earlier example, we first define an annotation to host the
RegistrationInterceptor:

@Target(TYPE)
@Retention(RUNTIME)
@Interceptors(RegistrationInterceptor.class)
public @interface RegistrationAuditor {}

Next, the annotation is added to RegisterAction JavaBean component:

@Name("registerAction")
@RegistrationAuditor
public class RegisterAction { ... }

There are two reasons for this level of indirection. First, it’s how Seam is able to isolate
interceptors so that they can be applied on the client side rather than handled by the
EJB container on the server side. If they were registered directly with the class, the EJB
container would try to gain control. But there’s a more compelling reason, which is
design oriented.

259Factory and manager components
 Annotations that describe the semantics of a class are known as stereotypes. If
you’re familiar with UML, the concept is much the same. With the EJB 3 model, the
@Interceptors annotation placed directly on the class doesn’t tell you much about
why it is there and what the interceptors do. In Seam, the interceptors are added to a
custom annotation. When this annotation is added to the component class, it
describes the behavior that it brings without exposing the mechanism by which that
behavior is applied. You see this pattern used heavily in JSR 299 (Web Beans).

 Just as events and interceptors offer a way to loosely couple sequential logic and
apply cross-cutting logic, factory and manager components offer a way to loosely cou-
ple the creation of context variables. Let’s explore how these special components help
to build on Seam’s inversion of control principles.

6.7 Factory and manager components
Sometimes, there’s more to a context variable than first meets the eye. Up to this
point, you’ve learned that requesting a context variable from the Seam container may
spawn an instance of a component with the same name. After the instance is resolved,
you still have to access its properties or methods to get to the actual data. Factory and
manager components allow you to use context variables to produce the underlying
data, rather than just a component instance. When the context variable is requested, a
data provider is invoked—typically a method on a Seam component—and the return
value is bound to the context variable. Thus, the value of a context variable bound to
factory or manager components is said to be calculated. A factory component is a gen-
eralization of a @Factory method, and a manager component is any component that
has one, and only one, @Unwrap method.

 What makes factory and manager components interesting is that they act just like
regular components; they use bijection, they can be injected into another component
using @In, and they can be referenced in EL bindings. Let’s begin by exploring the fac-
tory component.

6.7.1 A context variable @Factory

The factory component is a bit of a misnomer. Technically, it’s just a data provider—a
component method or EL expression—that can bind a value to a context variable
when the context variable is requested. Factory components are useful for creating
context variables lazily, such as from a JSF view, as opposed to being outjected from an
action method.
WHY FACTORIES ARE NEEDED

Before we dive into factories, I want to clarify the benefit they provide over just using a
JavaBean-style “getter” method on a component to retrieve data (such as the list of
new golfers). What you must understand is that the EL resolver is very persistent about
resolving value expressions. If you put logic in a getter method, it may get called a
ridiculous number of times in one request. In a JSF view, there are a lot of places
where you need to repeatedly access a calculated value to perform such tasks as condi-
tional rendering (checking whether a collection is empty, perhaps), and the branches

260 CHAPTER 6 Absolute inversion of control
of the UI component tree where these expressions are located are each visited several
times during the JSF life cycle. It’s just a natural part of how JSF and the EL work.

 There’s no harm in using a getter method in a value expression as long as the
method simply returns the internal state of an object. However, if that method per-
forms logic, especially logic that accesses the database, this can result in a significant
performance problem. A factory component allows you to calculate the value once
and bind the result to a context variable. Subsequent requests for that context vari-
able use the previously calculated value rather than running the logic again. This
immediately solves the problem just cited. Always be wary of putting heavyweight logic
in getter methods and instead use factories. The performance-conscious folks will be
thankful to you.

 That explanation should get you excited about learning more about factories. Let’s
see what types of data providers can serve as factories and then dive into the process.
FACTORY DATA PROVIDERS

As we discussed earlier, when a context variable is requested, Seam tries to locate it in
one of the available contexts. When that search turns up empty, and the lookup is
operating with the create option, Seam turns to initializing a value. I’ve held back
some of the details of how this value is produced. Before looking for a matching com-
ponent definition to instantiate an instance, Seam first seeks out a volunteer to pro-
duce a value. This volunteer is known as a factory. A factory can be implemented using
one of the following providers:

■ A Seam component method, marked with the @Factory annotation
■ An EL value or method expression, configured in the component XML descriptor

The reason these delegates are called factories is because they “manufacture” values
for the context variables they represent. When a factory is resolved, the factory pro-
vider is invoked and the return value is bound to the factory name in the designated
scope. If the factory produces a null value, Seam moves on to the next step in the
lookup process.

 Here’s an example of a value expression factory defined in the component
descriptor:

<factory name="course" value="#{courseHome.instance}"/>

When the context variable course is requested, this value expression is resolved and
the result is bound to the corresponding variable name in the event scope (the event
scope is the default scope for <factory>). Similarly, the factory product can be
resolved from a method expression. Here, the findNewGolfers() method populates
the newGolfers context variable, later defined as an annotation-based factory:

<factory name="newGolfers" method="#{profileAction.findNewGolfers}"/>

A factory data provider supports autocreate functionality just like a component,
allowing it to be resolved even when the corresponding context variable is requested
in lookup only mode. Unlike a component, factories can create any value, not just

261Factory and manager components
component instances. In fact, the result of a factory can be injected into the property
of a component using @In:

@In(create = true) Course course;

In this case, course may be the name of a component or the name of a factory. The
injection point doesn’t know the difference. It just depends on what’s available. Facto-
ries support autocreate, so the create attribute on @In isn’t necessary if autocreate is
enabled on the factory. There are, of course, subtle differences between a component
and a factory, but they are small enough that it’s reasonable to refer to factories as com-
ponents. Let’s consider what happens when a context variable associated with a factory
is requested.
THE FACTORY PROCESS

The factory process is illustrated in figure 6.10. While this process can get fairly
involved, it essentially follows one of three approaches to produce a context variable:

■ Return a value, which Seam then assigns to the context variable
■ Outject the context variable
■ Assign a value to the context variable in the factory method

To start, you probably just want to have the factory method return a value. You may
find, however, that you want to cache the factory result in a property. In that case, you
make the factory method return void and outject the property in which the result is
stored. Outjection is also useful if you want to wrap the result in a @DataModel. The
final option highlights the fact that the factory process ensures that the context vari-
able is still null before assigning a value to it using either of the first two strategies.

 Whew! There sure is a lot going on in the factory process. Don’t let it overwhelm
you, though. There just happens to be many different ways to use a factory, which is
why the diagram has so many steps. The best strategy is to pick the variation that works
best for you and stick with it.

 If you only take away three points about a factory, make them these:

■ A factory provider is invoked when the context variable it represents is accessed
and the context variable is missing or its value is null.

■ A factory can either assign the context variable itself (explicitly or as a result of
outjection) or return a value that’s to be assigned to the context variable.

■ A factory can trigger bijection if the factory provider is a component method
(and bijection is not disabled on that method).

One of the side effects of a factory whose data provider is a component method is that
it triggers bijection. It’s convenient to have access to injected values within the
method, but where things get interesting is during outjection. As stated earlier, if the
factory method has a void return value, Seam relies on outjection to populate the con-
text variable that the factory represents. However, additional properties may also be
outjected at the same time. So when a factory is resolved, other context variables may
just suddenly appear.

262 CHAPTER 6 Absolute inversion of control
Throw runtime
exception

Context variable
requested

Non-null value
found?

Look for context variable
in Seam contexts using

hierarchial context search

no

yes

Factory exists
for context
variable?

Return null value

Factory is
component
method?

Invoke component method

Bijection Interceptor

Injections

Outjections

Evaluate value expression or
invoke non-component

method

Look for context variable
in Seam contexts

(may have been outjected)

Non-null
value

found?

Use value from factory,
even if null

Scope provided?
Assign value to
context variable

in provided scope

Return value of
context variable

no

no

yes

yes

no

no

yes

component method,
method expression,
or value expression

Figure 6.10 The process that Seam follows to look
up a context variable backed by a factory component

263Factory and manager components
Once you get the factory process under your belt, you’ll find yourself using factories
all the time. Let’s see how a factory can be used to prepare the list of new golfers on
demand.
INITIALIZING CONTEXT VARIABLES ON DEMAND

Earlier, I showed you how to expose the collection of the newest golfers in the form of
a JSF DataModel using a page action. Page actions are useful in small quantities. Once
the page starts to get reasonably complex, the number of page actions can balloon out
of proportion if used to prepare context variables needed in the page. A better solu-
tion is to allow each variable to be initialized on demand by using a factory.

 One way to define a factory is by placing the @Factory annotation, summarized in
table 6.9, above a component method. This method is called whenever the context
variable, whose name is provided in the value attribute of the annotation, needs to
be initialized.

Let’s designate the findNewGolfers() method as a factory rather than as a page
action. The @Factory annotation above the findNewGolfers() method in listing 6.4
declares this method as the factory for the newGolfers context variable. Seam invokes
this method whenever the context variable is null or missing. However, since the
method’s return type is void, Seam expects the context variable to be populated as a
result of outjection.

@Name("profileAction")
public class ProfileAction {
 protected int newGolferPoolSize = 25;
 protected int newGolferDisplaySize = 5;

 @RequestParameter protected Long golferId;

 @In protected EntityManager entityManager;

 @DataModelSelection
 @Out(required = false)

Table 6.9 The @Factory annotation

Name: Factory

Purpose: Marks a method as a factory for a context variable. Used to supply a value when an uninitial-

ized context variable is requested.

Target: METHOD

Attribute Type Function

value String The name of the context variable that this factory method initializes.
Default: Bean property name of method.

scope ScopeType The scope where the context variable is set. The scope should not be

used when the factory method is void. Default: inherited from the
host component, or the event scope if the component is stateless.

autoCreate boolean Indicates that this factory should initialize the context variable, even
when requested in lookup-only mode. Default: false.

Listing 6.4 A factory component that produces a list of new golfers

B

264 CHAPTER 6 Absolute inversion of control
 protected Golfer selectedGolfer;

 @DataModel(scope = ScopeType.PAGE)
 protected List<Golfer> newGolfers;

 public String view() {
 return "/profile.xhtml";
 }

 @Factory("newGolfers")
 public void findNewGolfers() {
 newGolfers = entityManager.createQuery(
 "select g from Golfer g order by g.dateJoined desc")
 .setMaxResults(newGolferPoolSize)
 .getResultList();

 Random rnd = new Random(System.currentTimeMillis());

 while (newGolfers.size() > newGolferDisplaySize) {
 newGolfers.remove(rnd.nextInt(newGolfers.size()));
 }
 }
}

The first time the #{newGolfers} value expression is encountered in the JSF view, the
newGolfers context variable is uninitialized. Seam will turn to the @Factory method D
to resolve a value. Before the method proceeds, the EntityManager property B is
injected. The method then uses the EntityManager to query the database for the newest
golfers E, shuffles the result, and pares it down to the configured display size F. Out-
jection is then applied, which initializes the newGolfers context variable as a JSF Data-
Model C. Seam then returns control to the view renderer, which uses the newly formed
data model to render the <rich:dataList>.

 Here are some rules that you should be aware of when using a factory method:

■ If a scope isn’t specified for a factory method that returns a value, the scope of
the host component is used, or the event if the host component is stateless.

■ A factory method with a defined scope can’t allow a value with the same name
to be outjected as a result of the call.

■ If a factory method doesn’t specify a scope, and both a value is outjected and
the factory returns a value, the outjected value takes precedence over the value
returned by the factory method.

The @Factory annotation on a component method is the only way to designate a fac-
tory in Java code. To use a method- or value-binding expression, you must declare the
factory in the component descriptor using <factory>. As a quick reminder:

<factory name="newGolfers" method="#{profileAction.findNewGolfers}"/>

But a more common use of <factory> is for creating component aliases.
FACTORIES AS ALIASES

Factories that are scoped to the stateless context and are mapped to an EL value
expression are referred to as aliases. Earlier, you saw an alias that resolves to the get-
Instance() method on the CourseHome component, defined here to be stateless:

<factory name="course" value="#{courseHome.instance}" scope="stateless"/>

C

D

E

F

265Factory and manager components
Since the stateless context doesn’t retain the value after lookup, the alias is resolved
each time the factory name is requested, making it a shortcut for a more complex
expression.

TIP I prefer to scope aliases to a real context, such as the event scope, to
avoid unnecessary, redundant lookups. As long as the target value won’t
change during the lifetime of the context in which the alias is stored, it’s
a safe bet.

Another typical use of an alias is to provide a terse name for a fully qualified context
variable name. All of the built-in Seam components use namespaces, which make
their names very long. You can abbreviate a fully qualified component name using an
alias, as I’ve done here for the built-in FacesMessages component:

<factory name="facesMessages"
 value="#{org.jboss.seam.faces.facesMessages}"
 scope="stateless" auto-create="true"/>

But guess what? Most of the built-in components, such as this one, can already be ref-
erenced by their unqualified names, making this factory unnecessary. Seam sets up
this alias by importing the context variable prefix in the component descriptor using
the <import> tag, which you learned about in the previous chapter:

<import>org.jboss.seam.faces</import>

You can declare imports for your own component names as well. As a reminder,
imports defined in the component descriptor are applied globally for a project. If you
only want to import a context variable prefix in the context of a single Java class or
package, you can do so using the @Import annotation, summarized in table 6.10.

Let’s assume the context variable name of the GolferValidator component is
org.open18.validation.golferValidator. We can import its namespace prefix into
the RegisterAction component using @Import:

@Name("registerAction")
@Import("org.open18.validation")
public class RegisterAction {
 ...
 @In protected GolferValidator golferValidator;
 ...
}

Table 6.10 The @Import annotation

Name: Import

Purpose: Imports a context variable prefix to allow components having that prefix to be referenced

using their unqualified component names

Target: TYPE (class), PACKAGE

Attribute Type Function

value String[] A list of context variable prefixes that are used to qualify component
names after trying with the unqualified name. Default: none (required).

266 CHAPTER 6 Absolute inversion of control
We can also import it for all components in the org.open18.action package by apply-
ing the @Import annotation to the package-info.java file in that package:

@Import("org.open18.validation")
package org.open18.action;
import org.jboss.seam.annotation.Import;

Note that just as in the Java package system, it’s possible to refer to a context variable
in the same namespace as the current component by referring to that variable using
its unqualified name. If you named the RegisterAction component org.open18.
action.registerAction, you could refer to it from another component whose name
is prefixed with org.open18.action using the name registerAction.

 So you can see that factories are a powerful and flexible feature of Seam. They
help to close gaps when data is needed in an arbitrary location, such as a component
buried deep inside a JSF view or as an injected dependency that needs to perform pre-
requisite work. Factories allow context variables to be dynamic, boasting more mean-
ing than what is observed at first glance. Another type of component that helps make
context variables dynamic is the manager component.

6.7.2 Components that @Unwrap

The @Unwrap annotation acts like a magician’s handkerchief. You see the handker-
chief go into the hand, but when the hand opens, you get something entirely differ-
ent. This trick is called a manager component. A manager component has exactly one
method that is marked with the @Unwrap annotation. When a manager component’s
name is requested from the Seam container, an instance of the component is located
or created, and then “unwrapped” before it’s returned to the caller, thus beginning
the handkerchief trick. During the unwrap stage, the @Unwrap method is executed
and the return value of the method is passed on to the requester in place of the com-
ponent itself. Indeed, the manager component is a slippery little devil. A summary of
the @Unwrap annotation is shown in table 6.11.

The @Unwrap method differs from the @Factory method in that it is stateless, meaning
it’s invoked every time the host component’s name is accessed. Because it’s stateless,
the return value of the creation method isn’t bound to the context variable, as with a
factory. Instead, the context variable stores the instance of the manager component,
which is the only stateful part. To get to the actual value, the @Unwrap method must be
called. Obviously, you have to be careful about what you put into the @Unwrap method
since it’s going to end up being called many times.

 The manager component is more powerful than the factory component for these
reasons:

Table 6.11 The @Unwrap annotation

Name: Unwrap

Purpose: Identifies the method whose return value is used in place of the com-

ponent instance itself when the component name is resolved

Target: METHOD

267Factory and manager components
■ It’s a real component (the factory is only a pseudocomponent).
■ Its properties can be configured just like any other component.
■ It can have life-cycle methods (@Create, @Destroy).
■ The @Unwrap method is called every time the component name is accessed.
■ It can hold internal state.
■ It can observe events that can trigger updates to its state.

As its name suggests, a manager component is good at managing data. The data
stands in for the component when the component is accessed or injected using @In,
but otherwise it behaves just like any other component. You can think of a manager
component as a sophisticated alias, where the @Unwrap method is responsible for look-
ing up the value of the alias. What makes the manager component compelling is that
it can alias an object that isn’t accessible via a value- or method-binding expression.
One such example from the Seam API is the manager component that retrieves the
JSF FacesContext instance, a static method on the FacesContext class:

@Name("org.jboss.seam.faces.facesContext")
@Scope(ScopeType.APPLICATION)
public class FacesContext {
 @Unwrap public javax.faces.context.FacesContext getContext() {
 return javax.faces.context.FacesContext.getCurrentInstance();
 }
}

Another example from the Seam API is a manager component that retrieves the cur-
rent date:

@Name("org.jboss.seam.framework.currentDate")
@Scope(ScopeType.STATELESS)
public class CurrentDate {
 @Unwrap public Date getCurrentDate() {
 return new java.sql.Date(System.currentTimeMillis());
 }
}

The manager component offers a convenient way to make Java constants, enum val-
ues, and other static method return values accessible via the EL. Manager components
are also good for loading resources such as a Hibernate SessionFactory, a Java mail
session, or a JMS connection. In fact, Seam uses manager components for all of these
resources. It would be possible to create regular components for these resources and
then register an alias that returns the value of the method that retrieves the runtime
configuration, but the @Unwrap method saves you the extra step. If you’ve ever used
one of Spring’s factory beans, a manager component is the same idea.

 Let’s put the manager component into practice by using it to maintain the list of
new golfers shown on the home page. You see, we’re hoping that Open 18 is going to
be a big success and as a result, a lot of people are going to be hitting the home page.
We don’t want every single hit to result in a database query or it could hurt perfor-
mance. While we could certainly get a faster database server, it’s prudent to take the

268 CHAPTER 6 Absolute inversion of control
burden off the database, especially since we’re repeatedly asking it the same question
(who are the new golfers?).

 Listing 6.5 shows a manager component that maintains a cache of the new golfers
in the application scope. Any time a new golfer registers, it observes the golferRegis-
tered event and refreshes the cache.

package org.open18.action;

import org.jboss.seam.ScopeType;
import org.jboss.seam.annotations.*;
import org.open18.model.Golfer;
import javax.persistence.EntityManager;
import java.util.*;

@Name("newGolfersList")
@Scope(ScopeType.APPLICATION)
public class NewGolfersList {
 private int poolSize = 25;
 private int displaySize = 5;

 @In protected EntityManager entityManager;

 protected List<Golfer> newGolfers;

 public void setPoolSize(int poolSize) {
 this.poolSize = poolSize;
 }

 public void setDisplaySize(int displaySize) {
 this.displaySize = displaySize;
 }

 @Create
 public void onCreate() {
 fetchNewGolfers();
 }

 @Unwrap
 public List<Golfer> getNewGolfers() {
 return newGolfers;
 }

 @Observer(value = "golferRegistered", create = false)
 synchronized public void fetchNewGolfers() {
 List<Golfer> results = entityManager.createQuery(
 "select g from Golfer g order by g.dateJoined desc")
 .setMaxResults(poolSize).getResultList();

 Collections.shuffle(results);

 Random random = new Random();
 while (results.size() > displaySize) {
 results.remove(random.nextInt(results.size()));
 }

 newGolfers = results;
 }
}

Listing 6.5 A component that manages the collection of new golfers

B

C

D

E

269Factory and manager components
The golfers are fetched when the component is first created C and whenever a new
golfer registers E. Manager components support bijection B just like any other com-
ponent. Every time the component name, newGolferList, is accessed, the @Unwrap
method D is called and the cached list of golfers is returned.

 You may notice that this component exposes two configuration properties, pool-
Size and displaySize, which control how many golfers are selected from the data-
base and how many are displayed, respectively. To change the defaults, use the
following component configuration:

<component name="newGolfersList">
 <property name="poolSize">10</property>
 <property name="displaySize">3</property>
</component>

If we swapped out the newGolfers on the home page with the newGolfersList, we’d
lose the ability to capture a selection using a command link. It isn’t possible to create
clickable lists using a manager component alone (without some creative backbreak-
ing). Manager components are designed to maintain data, not to serve as an action
bean or data model selector. Therefore, we still need a factory to provide a value for
the newGolfers property on ProfileAction to keep the current functionality. Instead
of querying for golfers in the ProfileAction, the newGolfersList manager compo-
nent will be consulted to get the list. The relevant changes to ProfileAction are
shown in listing 6.6.

@Name("profileAction")
public class ProfileAction {
 ...
 @In (create = true) protected List<Golfer> newGolfersList;

 @DataModel(scope = ScopeType.PAGE)
 protected List<Golfer> newGolfers;
 ...

 @Factory("newGolfers")
 public void fetchNewGolfers() {
 newGolfers = newGolfersList;
 }
}

The clickable list of new golfers works just as it did before. The only change is that the
manager component now provides the list of new golfers rather than performing the
entity query directly in the factory method. The best part about this design is that the
manager now acts as a data access object (DAO), separating the data access logic from
the business logic and making the components easier to test in isolation.

 Factory and manager components act as just-in-time variable assignment. Your
code references a context variable as if it has already been set and then one of two del-
egates, either the factory or the manager, creates it, just in time for you to make use of
it. But what makes it even better is that the method has access to injected resources to
help it create the variable.

Listing 6.6 A factory component that uses a manager component as a data provider

Uses list maintained by
manager component

270 CHAPTER 6 Absolute inversion of control
6.8 Summary
This chapter championed Seam for delivering a much-needed technology update to
inversion of control by making injections dynamic and introducing the concept of
outjection—the two sides of bijection. You hardly need to be reminded now that bijec-
tion occurs every time a method on a Seam component is invoked, so not only are
dependency references kept up to date, but it’s also possible to inject data from a nar-
row scope into a component stored in a wider scope.

 You learned how you can inject components, request parameters, and value
expressions into the bean properties of a Seam component. You also learned that
property values can be pushed back out into a Seam context, allowing them to be
accessed by other components or in a JSF template. You learned that, when pushing
out collections, Seam can wrap them in a JSF DataModel to be used in a UIData com-
ponent. Seam can also capture the selection from that UIData component and inject
it into another property on the component on a subsequent postback.

 You discovered that there’s a lot more to the component retrieval process than
what appears at first glance. Often, context variable names resolve to component
instances, but they can also be fed by a factory method or value expression or even
resolve to the return value of a delegate method on manager components.

 To accomplish the pinnacle of inversion of control, you learned that it’s possible to
cut the ties between components completely while still being able to establish a linear
flow of logic by allowing the Seam container to mediate component event notifica-
tions and trigger custom interceptors. Both make it easy to apply cross-cutting con-
cerns to objects without jeopardizing their status as POJOs.

 The exchange of context variables in the Seam container is very rich, yet for most
uses, is confined to a couple of commonly used annotations. Injecting, outjection, and
resolving of context variables is crucial for exchanging data between components and
the view. In the next chapter, you’ll learn how conversation annotations and page flow
definitions help to propagate state across requests. The factory component also gets
additional limelight, playing a key role in launching a conversation. The promise of
improved state management mentioned in chapter 4 is given substance in the next
chapter, so read on because the most exciting parts of Seam are yet to come.

Part 3

Seam’s state management

Part 1 presented the motivation for why Seam was created and demonstrated
ways it simplifies development of web applications. You used seam-gen to quickly
put together a Seam-based application and agile development environment.
Part 2 got into the guts of Seam by teaching you to define and configure compo-
nents and getting them to communicate. What sets Seam apart from other web-
oriented frameworks is its focus on state management. This term may not mean
much to you right now, but trust that it plays a key role in what you’ll learn to
master in the next three chapters: conversations, page flows, the extended per-
sistence context, application transactions, and entity home components.

 Chapter 7 introduces conversations as a way to effectively string together
requests. You define conversation boundaries using a familiar declarative
approach. You also learn to orchestrate a conversation with a page flow and to
let the user multitask using workspaces.

 Chapter 8 puts conversations aside initially to cover Java persistence, the ORM
mechanism that translates Java objects to and from database records. The end of
the chapter sees a return to state management when the extended persistence
context in EJB 3 is introduced. This construct ensures persistent objects remain
managed so that updates to the database require no programming, related
objects can be fetched on demand, and database reads are kept to a minimum.

 In chapter 9, you learn that conversations provide the perfect vehicle for
extending the persistence context. This chapter introduces Seam-managed per-
sistence as an alternative to its complement in Java EE, with a number of exten-
sions weaved in. More important, propagation of the persistence context is
handled transparently, a relief from complex rules in EJB 3. Seam also offers a
unique approach to transactions by wrapping them around each request and
facilitating application transactions that span multiple requests.

 In chapter 10, you get to bring together everything you have learned about Seam
and perform rapid development using the Seam Application Framework. This chap-
ter helps you appreciate how much you have matured as a Seam developer through-
out this part.

The conversation:
 Seam’s unit of work
Seam helps establish a rich user experience by stretching the boundaries of a unit
of work to cover a use case—a determinate interchange between the user and the
application. In this chapter, you’ll learn how Seam’s conversation context can host
the working set of data needed to support this interchange. Seam’s conversation is
contrasted with traditional state management techniques, demonstrating how it
both relieves the burden of handling this task and gives multipage interactions a
formal representation in a web application. Conversations open the door to more
advanced state management techniques—such as stateful page flows, nested con-
versations, and workspaces—that further enrich the user experience.

 Conversations are one of Seam’s crowning features, touching many areas of the
framework and bridging earlier chapters with those that lie ahead. In fact, CRUD

This chapter covers
■ Managing state with a conversation
■ Controlling long-running conversations
■ Switching between workspaces
■ Defining stateful page flows
273

274 CHAPTER 7 The conversation: Seam’s unit of work
applications created by seam-gen use conversations to manage the use case of adding
and modifying an entity instance. To witness conversations in action before beginning
this chapter, you can study them at work in the Open 18 application. This chapter
starts off by defining a use case and then explores how aligning it with a stateful con-
text can improve the user’s experience.

7.1 Learning to appreciate conversational state
After returning from your golf getaway, you learn that, in your absence, someone has
been having fun at your expense, courtesy of your credit card number. To reclaim
your assets, you have to endure the disparate customer service process deployed by
your bank. I’m sure this exchange will strike a familiar chord.

 “How can I help you?”
 You take this cue to launch into your rant about being a victim of fraud, your

whereabouts during the previous week, and which charges you’re disputing.
 A brief pause is interrupted by, “Can I have your account number?”
 Your momentum is temporarily interrupted as you wait for your call to be logged.

The agent then informs you that you need to be transferred to the fraud department,
which is properly equipped to deal with this matter. There’s no chance to object as the
switch happens without delay. A new voice appears on the other end of the line.

 “How can I help you?”
 Sigh. Time to start over from the beginning.
 You began the day a victim of fraud. Now you have become a victim of a stateless

process. Critical information about your situation failed to make the leap from the cus-
tomer service representative to the fraud representative. This mishap could have been
avoided had the two representatives
engaged in a conversation during
the switch to retain a record of your
story. Unfortunately for you, they
don’t see the big picture. As soon as
you’re handed off, there’s another
call to answer.

 That’s exactly how requests
are handled in a web application,
which rests atop a stateless protocol
(HTTP). The result is that data
tends to be dropped between page
requests, blind to the ongoing use
case. Seam acknowledges that all
requests occur in the scope of a con-
versation, that a conversation can
span multiple requests, and that
conversations are subsets of a user’s
session, as illustrated in figure 7.1.

Page 1 Page 2 Page 3

request scope

conversation scope

request scope request scope

session scope

response

requestreq
ue

st

res
po

ns
e request

response

Figure 7.1 The conversation scope ties together
individual requests, but is more granular than the session.

275Learning to appreciate conversational state
 Through use of conversations, Seam supports building stateful interactions that
bridge the gap between requests. As a result, state can be tracked until the user’s goal
is accomplished, not just to satisfy an atomic step along the way.

7.1.1 Redefining the unit of work

You may think of a unit of work in terms of a database transaction. The story just told
is faithful to this definition at the expense of the caller’s time. This short-lived unit of
work is problematic because it’s not stateful (in the long-running sense). Seam rede-
fines the unit of work by looking at it from the user’s perspective, coining what is
known as a conversation. During a conversation, database transactions, page requests,
and other atomic units of work may come and go, but the overall process isn’t deemed
complete until the user’s goal is accomplished. In a conversation, the state is said to be
extended. In the next chapter, you’ll learn that the persistence context can also be
extended to match this timetable.

 The linkage between page requests in a conversation is established through the
use of a special token and a partitioning of the HTTP session, which you’ll learn about
in section 7.2. The conversation’s lifetime is controlled by declarative boundary condi-
tions, covered in section 7.3. First, I want to focus on the challenge of establishing a
well-defined stateful context in a web application and how this task has been tradition-
ally handled. You could go so far as to say that propagating state in a web application is
a downright burden. After studying some of the alternatives, I’ll segue into how
Seam’s conversation provides relief.

7.1.2 The burden of managing state

All applications have state, even those classified as stateless (e.g., RESTful applica-
tions). Some applications stash state away in server-side contexts such as the HTTP ses-
sion scope or the JSF page scope. So-called stateless applications just weave state into
the URL or hide it away in hidden form fields. A majority of applications likely use a
mix of these strategies. The real question is, as users traverse from one page to the
next, how much support do they get from the framework for managing and accessing
that state?

 I’m sure that in the past you have worked very hard to save data between requests and
subsequently prepare it for use in the business logic. Whether you wrote one of those
applications that has more hidden form fields than visible ones or one with as many
Struts ActionForm classes as business components, you have felt the burden of manag-
ing state. That’s not to say that RESTful URLs, hidden form fields, request parameters,
or cookies aren’t viable. It’s just that when they are means to an end, where the end is
to restore the state from the previous request, they cause a lot of work. Seam attempts
to make state readily available in contexts that closely represent the life cycle of that state
(i.e., a use case). Not only does the conversation context blend state between requests
for the duration of a use case, it avoids destroying the identity of objects as a result of
serialization, which is the main problem with the traditional approaches.

276 CHAPTER 7 The conversation: Seam’s unit of work
PASSING DATA THROUGH THE REQUEST

One approach to propagating state is to send it along as part of the request in one of
these forms:

■ Request parameters (i.e., hidden form fields or the query string)
■ As part of the URL (e.g., /course/view/9)
■ Browser cookies

All of these options work by disassembling some server-side object into bite-sized
chucks, tunneling those parts through the request as string values, then reassembling
the objects on the server, as figure 7.2 illustrates. There are times when a RESTful URL,
request parameter, or cookie is the right tool for the job. However, if you’re working
with any decent-size set of data, having to prepare this translation on every request is
downright tedious.

You learned in chapter 3 that Seam’s page parameters offer some relief here by auto-
matically translating objects to and from HTTP request parameters on a per-page basis.
The downside to page parameters is that they are hardwired to the page definition. Since
a page may be used in more than one set of circumstances, the configuration could result
in data being propagated even when you don’t need it; or worse, it gets in the way.

 The biggest drawback of parameter-based propagation in general is that the server-
side object loses its identity when it passes through this funnel. The object that’s built
on the server, beyond the request boundary, is a clone of the original object, possibly
even a partial one. This cloning process makes it impossible to transfer a resource that
relies on its identity being maintained, such as a persistence manager or managed
entity instance. For an object’s identity to be preserved, the object must be stored in a
server-side context, such as the JSF UI component tree (which requires server-side state
saving), the HTTP session, or as you’ll soon learn, the conversation. Then it’s only nec-
essary to pass a token to the server to restore the context and the objects it contains.
STASHING STATE IN THE JSF UI COMPONENT TREE

You learned in chapter 4 that the root of the JSF UI component tree has an attri-
bute map that can be used to save data across a JSF postback. Seam’s page context
and the <t:saveState> component tag from the MyFaces Tomahawk library both

Server-side
Object

Server-side
Object Clone

Outbound
Request

Parameters

Inbound
Request

Parameters

Request Boundary

Figure 7.2 Passing an object using request parameters is akin to teleportation.

277Learning to appreciate conversational state
offer transparent access to this map, among alternatives. As elegant as these abstrac-
tion layers may be, it doesn’t diminish the fact that this map is merely the JSF equiv-
alent of hidden form fields.

 Using the UI component tree as a stateful context has problems that match those
cited previously. First, you must reestablish the set of variables in the page context when
the UI component tree is rebuilt (which happens during any postback request that
issues a redirect or renders a different view). The second problem is that the UI com-
ponent tree doesn’t guarantee that the identity of the objects will be maintained. JSF
state saving can be done either on the client side or the server side. When client-side
state saving is used, the restored objects are clones of the originals, having the same
problem as passing parameters through the request. If you don’t have control over the
state-saving setting, it’s best not to rest an object’s identity on such unstable ground.

 The challenge of maintaining object identity is often solved by using the HTTP
session.
STORING DATA IN THE HTTP SESSION

The HTTP session can be used to store arbitrarily complex objects while preserving
their identity. This context is shared by all browser tabs and windows that restore the
same session token and typically lasts on the order of hours or days. While this storage
mechanism sounds ideal, it’s unfortunately too good to be true. The main downfall of
the HTTP session is that it quickly becomes a tangled mess of data that consumes
excessive amounts of memory and complicates multiwindow application usage. Let’s
explore these issues.

 The HTTP session is well suited for data that you want to retain across all requests
made by a given user, such as the user’s identity. However, the session isn’t a good
place to store data for a specific use case. It may seem harmless when the user is
accessing the application from a single window—but what happens when the user
spawns multiple tabs or windows? Because the session identifier is stored as a cookie in
the user’s browser, and most browsers share cookies between tabs and windows
(herein referred to as tabs), the result is that the multiple tabs naively share the same
session data. If the application doesn’t recognize this sharing, it can cause data to be
manipulated in conflicting ways.

NOTE The session identifier can also be passed through the URL, known as URL
rewriting. When URL rewriting is used, links that contain the same ses-
sion identifier restore the same session, even if opened in a new tab.

Consider the use case of updating a golf course record. Assume that the golf course is
stored in the HTTP session while it’s being modified. If you select a course to modify in
one browser tab and then select a different course to modify in a second tab, the sec-
ond course selection on the server overwrites the first. When you click Save in the first
tab, assuming the changes are applied directly to the record in the session, you inad-
vertently modify the second course instance. Things get even trickier if you’re working
with a multipage wizard, since the leakage of data can be less apparent. Yet another
problem is that data in the session isn’t protected from concurrent use, so if two
requests try to access session data simultaneously, it can lead to a race condition.

278 CHAPTER 7 The conversation: Seam’s unit of work
 The most severe problem with the session scope is that it is mostly unmanaged. If
objects continue to build up in the session, and there’s no application-provided gar-
bage collector to clean it out, memory leaks that impact the performance of the appli-
cation will occur, thus affecting all of the users.

 It’s possible to work around the aforementioned problems by using the session
with care or by putting in synchronization and locking code to prevent collisions, but
that’s a burden on you as a developer. In general, heavy use of the session scope is a
common source of bugs, and the unexpected behavior it causes is often difficult to
reproduce in a test environment.

NOTE Cookies have the combined problem of request parameters and session
data. They only store string data, capped at a fixed size (~4K), and they
cannot be partitioned by use case. Their utility is in identifying a repeat
visitor or storing basic user preferences.

Although the existing storage options are workable, they aren’t well suited for main-
taining an isolated working set of data for a use case. Clearly there is room for a better
solution. Surprisingly enough, that solution lies in the HTTP session. Despite my hav-
ing just bashed the session for its weaknesses, it’s not all bad. It simply needs to be par-
titioned and better managed. That’s exactly what Seam does. The conversation
context is designed to be a well-behaved abstraction layer over the HTTP session.

7.2 The conversation context
The conversation context is one of two Seam contexts introduced to serve business-
world time frames as opposed to servlet life cycles (the other is the business process
context). From reading the previous section, you should have a clear picture as to a
conversation’s purpose. In this section, you’ll learn how it’s maintained.

7.2.1 Carving a workspace out of the HTTP session

The conversation context is carved out of
the HTTP session to form an isolated and
managed memory segment, as illustrated in
figure 7.3. Seam uses the conversation con-
text as the home for a working set of con-
text variables.

 You may shudder at the mention of using
the HTTP session to store the conversation,
given the problems cited in the last section.
However, a conversation doesn’t suffer from
the same problems as its parentage. First and
foremost, the lifespan of a typical conversa-
tion is on the order of minutes, whereas a ses-
sion can last on the order of hours. This
difference is made possible by the fact that a
conversation has its own distinct life cycle,

Conversation Workspaces

HTTP Session

id=1 id=2

id=3 id=4

Figure 7.3 Conversation workspaces are
isolated segments of the HTTP session, each
assigned a unique identifier.

279The conversation context
which Seam manages. Each conversation can have its own timeout period, which
defaults to the global timeout setting, covered in section 7.3.5. Additionally, concurrent
conversations are kept isolated, unlike session attributes, which just get jammed
together in a single map.

 Since conversations are stored in the session, two requirements must be met:

■ Conversation-scoped components must implement java.io.Serializable.
■ The session timeout, defined in web.xml, must exceed all conversation timeouts.

A conversation has a clear set of life-cycle boundaries that coincide with the boundar-
ies of a use case. When the user triggers a condition that begins a conversation, a new
managed area of the HTTP session is sectioned off and dedicated to that conversation.
A unique identifier, known as the conversation id, is generated and associated with this
region of the session. The conversation id is passed on to the next request as a request
parameter, hidden form field, or JSF view root attribute. Fortunately, propagation of
the conversation id is handled transparently in a Seam application. As a result of the
conversation id and session token being sent together to the server, the conversation
is retrieved from the session and associated with the request.

NOTE Although the HTTP session is used as the storage mechanism for a con-
versation, understand that the memory footprint is strikingly low because
conversations are aggressively managed. There’s no chance of them lin-
gering on to cause memory leaks.

The conversation context is an ideal place to store data that’s needed over the extent
of several pages. It leverages the session’s ability to store arbitrarily complex objects
while preserving object identity, but doesn’t suffer from memory leaks or concurrency
problems. What makes conversations truly unique is that they remain isolated from
one another.
SOLVING THE MULTIWINDOW CONCURRENCY PROBLEM

Let’s revisit the scenario in which different golf course records are being edited in sep-
arate browser tabs. This time around, we’ll assume that a conversation is being used to
manage each use case. The user begins by selecting a golf course in the first tab, which
starts a new conversation and presents the user with an update form. The user then
switches to the second tab and selects a different course, again resulting in a conversa-
tion being created and the rendering of an update form. Each tab now has its own
conversation. The user then switches back to the first tab and clicks Save. The form
values from that tab are sent to the server along with the conversation id. On the
server, the conversation context is retrieved from the session using the conversation
id. The course instance is pulled out of that conversation, the form values are applied
to it, and finally it’s synchronized to the database.

 Although the two tabs are serving the same use case, with the same context variables,
the data is kept isolated. Conversations don’t suffer from leaky behavior because they
aren’t shared across all tabs and windows like the session. Instead, a conversation can be
reserved for a single tab and restored on each request by passing the conversation id.
As such, activity occurring in one tab doesn’t affect other tabs (that use different

280 CHAPTER 7 The conversation: Seam’s unit of work
conversations). Although conversations prevent unwanted sharing of data between sep-
arate use cases, sharing data across multiple requests in the same use case is a desirable
feature of the conversation.
A BUSINESS TIER CACHE

The conversation context provides a natural caching mechanism that’s readily con-
trolled from the application, allowing cached data to be relinquished or refreshed in
accordance with the business logic. You can even provide the user with controls that
force the data to be refreshed on demand. If the conversation is abandoned, it’s not long
before this state is cleaned up by Seam (unlike with state stored in the HTTP session).

 Caching data is critical because it avoids redundant data inquiries. If you cache
database result sets, it means that you don’t have to consult the database again when
there’s no expectation that the data has changed. You should take advantage of this
opportunity because, of all the tiers in your application, the database tier is the least
scalable. Don’t abuse the database by repeatedly asking it to retrieve the same data
over and over again. When the application fails to track data that it was already fed, it
hurts the performance of both the database and the application.

 Reducing load on the database is one of the primary concerns of an ORM. An ORM
supports two levels of caching. The first-level cache, known as the persistence context,
holds the collection of all entities retrieved by a single persistence manager, which
you’ll learn about in chapters 8 and 9. If the persistence manager is scoped to the con-
versation, then the ORM works naturally to reduce database load.

 The second-level ORM cache is shared by the persistence managers and holds per-
sistent objects previously loaded through any persistence context. It is used as a way to
reduce traffic between the application and the database. Employing an intelligent
algorithm, it attempts to keep the cache in sync with the changes made to the data-
base. However, regardless of how good this logic is, within the scope of a use case, it
lacks the business-level insight to know exactly when data should be considered stale.
Expecting the second-level cache to make up for the application’s inability to retain
data is a misuse of the technology.

 The need for a stateful context acting as an intermediary between the browser and
the database is especially important in the world of Web 2.0, where Ajax requests are
sent to the server at a rate that far exceeds the previous usage pattern of web applica-
tions. Requests that leverage the conversation context save database hits and are faster
since they’re returning data that’s held close at hand. The conversation plays another
important role in Ajax: preventing the requests from accessing data concurrently.
PREVENTING CONCURRENCY PROBLEMS
Seam serializes concurrent requests that access the same conversation. This means only
one thread is allowed to access a conversation at any given time. In pre–Web 2.0 appli-
cations, this might help deal with a double submit, but when Ajax starts firing off
requests like they are going out of business, the likelihood of your data entering an
inconsistent state as a result of concurrent access dramatically increases. Seam keeps
those Ajax requests in line, so you can be confident that conversation-scoped data won’t
be modified by a second incoming request while the first request is being served.

281Establishing conversation boundaries
 Conversations fit very naturally with Ajax. The combination of serialized access
and stateful behavior drastically minimizes the risk of using Ajax in your application.
With these mechanisms in place, you can rest assured that performance and data con-
sistency won’t suffer. You’ll learn more about how well Seam and Ajax fit together in
chapter 12.

 Having explored ways in which the conversation context solves the need for a user-
focused stateful context, let’s examine the types of data you might typically store in a
conversation as you prepare to use it.

7.2.2 What you might store in a conversation

The conversation provides a way for data to be stashed away during user “think”
time—the time after the response is sent to the browser but before the user activates a
link or submits a form. Additional information is accumulated in the conversation as
the user moves from screen to screen. There are four classifications of data that a
working set is used to store, all of which are demonstrated in this chapter:

■ Nonpersistent data —An example of nonpersistent data is a set of search criteria
or a collection of record identifiers. The user can establish the state in one
request and then use it to retrieve data in the next. This category also includes
configuration data (such as the page flow definition).

■ Transient entity data —A transient entity instance may be built and populated as
part of a wizard. Once the wizard is complete, the entity instance is drawn from
the working set and persisted.

■ Managed entity data —The working set provides an ideal way to work with data-
base-managed entity data for the purpose of updating its fields. The entity
instance is placed into the working set and then overlaid on a form. When the
user submits the form, the form values are applied to the entity instance that’s
stored in the working set (whose object identity has been preserved) and the
changes are flushed to the database transparently.

■ Resource sessions —The conversation context offers an ideal mechanism for
maintaining a reference to an enterprise resource. For instance, the persis-
tence context (a JPA EntityManager or Hibernate Session) can be stored in
the conversation to prevent entity instances from becoming detached prema-
turely. The next several chapters focus on how conversations benefit persis-
tence management.

In this section you learned what we mean when we say conversation: a context for keep-
ing data in scope for the duration of a use case and a means of enabling stateful
behavior in your applications. The next step is to learn about the conversation life
cycle and how to control conversations by defining conversation boundaries.

7.3 Establishing conversation boundaries
The conversation context is unique from other Seam contexts you have used so far in
that it has explicit boundaries dictated by application logic, as opposed to implicit

282 CHAPTER 7 The conversation: Seam’s unit of work
boundaries that correlate with a demarcation in the servlet or JSF life cycle. The
boundaries of the conversation context are controlled using conversation propaga-
tion directives. This section introduces these directives and demonstrates how they’re
used to transition the state of a conversation and effectively manage its life cycle.

7.3.1 A conversation’s state

A conversation actually has two states: temporary and long-running. There is also a
third state, nested, which is a characteristic of the long-running state. Nested conversa-
tions are covered in section 7.4.2. Right now, I want to focus on the first two states.

 Switching the state of a conversation is referred to as conversation propagation. When
you set the boundaries of a conversation using the conversation propagation direc-
tives, you’re not initiating and destroying the conversation, but rather transitioning it
between a temporary and long-running state.
TEMPORARY VS. LONG-RUNNING CONVERSATIONS

Most of the time, when people talk about Seam conversations, they’re referring to
long-running conversations. The discussion in the early part of this chapter pertains to
long-running conversations. A long-running conversation remains active over a series
of requests in correlation with the transfer of the conversation id. In the absence of a
long-running conversation, Seam creates a temporary conversation to serve the current
request. A temporary conversation is initialized immediately following the Restore View
phase of the JSF life cycle and is destroyed after the Render Response phase.

 You can think of a temporary conversation as achieving the same result as the flash
hash in Ruby on Rails: transporting data across a redirect. In Seam, the temporary con-
versation carries conversation-scoped context variables across a redirect that may occur
during a JSF navigation event. This works by maintaining the temporary conversation
until the redirect is complete. So to clarify, a temporary conversation is destroyed after
the Render Response phase ends, even if it’s preceded by a redirect. The most popular use
of a temporary conversation is to keep JSF messages alive during the redirect-after-post
pattern, assuming those messages are registered using Seam’s built-in, conversation-
scoped FacesMessages component.

 The other purpose of a temporary conversation is to serve as a seed for a long-
running conversation. A long-running conversation is nothing more than a temporary
conversation whose termination has been postponed. This postponement lasts from
the time the begin conversation directive is encountered up until the end conversation
directive is met. Instead of just surviving a navigation redirect, a long-running conver-
sation is capable of surviving a whole series of user interactions. Only when the con-
versation reacquires the temporary state is it scheduled to be terminated. In Seam,
every request is part of a conversation. You just have to decide how long you want that
conversation to last.
CONVERSATION PROPAGATION DIRECTIVES

Learning to use long-running conversations involves learning the conversation propa-
gation directives, listed in table 7.1, and how they transform a temporary conversation
to and from a long-running conversation. You can think of conversation propagation

283Establishing conversation boundaries
directives serving a parallel purpose for a conversation as transaction propagation
directives do for a transaction.

 The conversation propagation directives can be applied using the following
means:

■ Method-level annotations
■ UI component tags
■ Seam page descriptor
■ Seam conversation API
■ Stateful page flow descriptor (end conversation only)

These variants are provided to accommodate different usage and design scenarios,
allowing you to establish conversation boundaries where it makes the most sense in
your application. You’ll learn to use the conversation propagation directives in the
next section.

 The conversation propagation directives dictate the life cycle of the conversation.
Figure 7.4 diagrams this life cycle, showing how the state of the conversation changes
during the request as a result of encountering a conversation propagation directive.

 Let’s step through the diagram in figure 7.4. At the start of the request, a long-
running conversation is restored if the conversation id is detected among the request
parameters. If the conversation id is absent or invalid, Seam initiates a new, temporary
conversation. At any point during the processing of the request, the conversation may
change state as the result of encountering a conversation propagation directive. The
begin directive transitions a temporary conversation to long-running. The join direc-
tive has the same effect as begin, except that it can enter into an existing long-running
conversation, whereas the begin directive raises an exception in this case. The nest
directive can also begin a long-running conversation, but if one exists, a new conversa-
tion is created, temporarily suspending the existing one. The end directive sends the
long-running conversation back to its temporary state. At the end of the request, the
temporary conversation is destroyed, whereas the long-running conversation is tucked

Table 7.1 A list of the conversation propagation directives

Propagation type Description

begin Promotes a temporary conversation to a long-running conversation. An exception is
thrown if a long-running conversation is already active.

join Promotes a temporary conversation to a long-running conversation. No action is
taken if a long-running conversation is already active.

end Demotes a long-running conversation to a temporary conversation.

nest If a long-running conversation is active, suspends it and adds a new, long-running
conversation to the conversation stack. If a long-running conversation is not active,
promotes the temporary conversation to a long-running conversation.

none Abandons the current conversation. The previous conversation is left intact and a
temporary conversation is created to serve the incoming request.

284 CHAPTER 7 The conversation: Seam’s unit of work
away in the HTTP session to be retrieved by a subsequent request. Although not
shown, if the conversation being restored is invalid or has previously timed out, the
user is notified and forwarded to a fallback page if one is configured.

 Seam uses a built-in component to keep track of the conversation’s state, including
its relationships to nested and parent conversations. It’s important to know that this
component exists as you’ll often find that you need to reference it.
THE CONVERSATION COMPONENT

Seam maintains the state of the conversation in an instance of the built-in conversation-
scoped component named conversation. This component provides a wealth of infor-
mation about the current conversation in the form of properties and exposes methods
for acting on the conversation. These properties and methods are listed in table 7.2.

 The most important property on the conversation component is the conversation
id, which is typically accessed using the value expression #{conversation.id}. The
conversation id is used to restore the conversation from the session at the beginning
of a request. You’ll see this expression used often in this chapter. The properties on
the conversation component aid in making decisions about navigation or rendering

Long-running
 conversation

 detected?

Create temporary
 conversation context

Restore long-running
 conversation context

no

yes

Response sent

Is conversation
 long-running?

Store conversation
 context in session

no

yes

Process actions,
 events, validations,
 navigation, redirects

Promote to long-running

Demote to temporary;
restore parent if nested

begin

end

no change

Internal JSF Life Cycle Phases

Render response

processing complete

Push to conversation
 stack; begin nested

nest

Restore view

Propagation
change

 requested?

JSF Request

Destroy conversation
context

Figure 7.4 How the conversation propagation directives affect the conversation during a request

285Establishing conversation boundaries
Table 7.2 The properties and methods on the built-in conversation component

Property Type Description

id String A value that identifies this conversation. This value is typi-
cally numeric, though business key identifiers are also
supported.

parentId String The conversation id of the parent conversation of this
nested conversation.

rootId String The conversation id of the primary (top-level) conversation
of this nested conversation.

description String The descriptive name of the conversation evaluated from
the expression value specified in the <description>
node of the page entry.

viewId String The last JSF view ID that was rendered while this conversa-
tion was active.

timeout Integer The timeout period that must elapse after its last use for
this conversation to be automatically garbage collected.

longRunning boolean A flag indicating whether this conversation is long-running.

nested boolean A flag indicating whether this conversation is nested.

Method Purpose

redirect() Switch back to the last known view ID for the current conversation.

endAndRedirect() End the current nested conversation and redirect to the last known view
ID for its parent conversation.

endBeforeRedirect() End the current conversation and set the before redirect flag to true.
Does not trigger an automatic redirect.

end() End the current conversation and set the before redirect flag to false.
Does not trigger an automatic redirect.

leave() Step out of the current conversation. A new temporary conversation
will be initialized and used for the duration of the request.

begin() Start a new long-running conversation only if one is not already active.
This method is equivalent to using the join directive.

reallyBegin() Start a new long-running conversation without checking if one already
exists. This method is equivalent to to using the begin directive.

beginNested() Start a nested conversation by branching off the current long-running
conversation. If a long-running conversation is not active, an exception
will be thrown.

pop() Switch to the parent conversation, leaving the current conversation
intact. Does not trigger an automatic redirect.

redirectToParent() Switch to the parent conversation, leaving the current conversation
intact, and redirect to the last known view ID for the parent conversation.

286 CHAPTER 7 The conversation: Seam’s unit of work
markup conditionally. The methods on the conversation component can change the
conversation’s state and are often used as page actions or as the action method on
links and buttons.

 With this component in hand, you’re now ready to learn how to define the conver-
sation boundaries. As you read through the next couple of sections, I encourage you
to study the options you have for defining these boundaries, decide on a favorite
approach, and try to adhere to it a majority of the time. Just because you can define
each boundary a handful of ways doesn’t mean you should use every single variation,
at least not without good reason.

7.3.2 Beginning a long-running conversation

To demonstrate the use of a long-running conversation, let’s work through an exam-
ple of a multipage wizard that captures information about a golf course and adds it to
the Open 18 directory. Entering data for a golf course can be quite intimidating, so a
wizard is used to break up the form into short, logical steps, shown in figure 7.5. Each
box in figure 7.5 represents a screen with a form to fill out. As the user moves from
screen to screen, the information from previous screens must be accumulated and
stored so that it’s available when the final screen is complete and the course is per-
sisted to the database.

The textbook choice for starting conversations such as the golf course wizard is to add
the @Begin annotation to the action method that spawns the wizard. However, there
may be times when you need to start a conversation from a GET request, in which case
either the <begin-conversation> page descriptor tag or a UI component tag is a
more appropriate choice. The latter two may be attractive to you if you prefer to keep
your navigation controls out of Java code or you need more fine-grained control over
the conversation boundaries. As you read through this section, keep in mind that you
need to begin the conversation only once, so these options are mutually exclusive.
Let’s start by looking at how to use the @Begin annotation.

Method Purpose

root() Switch to the root level conversation, leaving the current conversation
intact. Does not trigger an automatic redirect.

redirectToRoot() Switch to the root level conversation, leaving the current conversation
intact, and redirect to the last known view ID for the root conversation.

Table 7.2 The properties and methods on the built-in conversation component

Select facility
Basic information

 (name, grass types,
 designer, year built)

Description
Par and handicap for

 each hole Tee set information Tee distances

*
Figure 7.5 The wizard allows the user to enter a new golf course into the directory.

287Establishing conversation boundaries
AN ANNOTATION-BASED APPROACH

One of the method interceptors that Seam wraps around components is the Conver-
sationInterceptor. This interceptor looks for the @Begin annotation on the compo-
nent method that’s being invoked. If it finds one, it converts the temporary conversation
to long-running if the method completes successfully. See the accompanying sidebar.

The @Begin annotation is outlined in table 7.3. The pageflow attribute is used to initi-
ate a stateful page flow and is covered in section 7.6. The flushMode attribute is used
to switch the flush mode of the persistence context when the conversation begins and
can be used to initiate an application transaction as covered in chapter 9.

Let’s use the @Begin annotation to initiate a long-running conversation for the course
wizard by placing it on the addCourse() method. This method is invoked at the start of
the course wizard, beginning a long-running conversation. It also outjects the course
property into the conversation context, making it available throughout the wizard:

Table 7.3 The @Begin annotation

Name: Begin

Purpose: Instructs Seam to convert the temporary conversation to a long-running or nested state after
this method is invoked successfully. See the sidebar “Seam’s definition of success.”

Target: METHOD

Attribute Type Function

join boolean A true value allows this method to be invoked even when the con-
versation is already long-running. If the value is false, and the con-
versation is long-running, an exception is thrown. If the conversa-
tion is temporary, this attribute doesn't apply. Default: false.

nested boolean A true value suspends the conversation, if it is long-running, and
starts a new, nested long-running conversation. If the conversa-
tion is temporary, it is simply converted to long-running. This attri-
bute is mutually exclusive with join. Default: false.

pageflow String The name of the page flow descriptor that is to be used to man-
age the stateful navigation for this conversation. Default: none.

flushMode FlushModeType Changes the flush mode of the Seam-managed persistence con-
texts in this conversation when the conversation begins. Default:
AUTO.

Seam’s definition of success
For many of Seam’s annotations that designate an action to be performed, such as
@Begin and @End, Seam only performs the action if the method completes success-
fully according to Seam’s definition of success. For Seam to consider a method call
successful, it must return without throwing an exception and it must return a non-null
value unless it's a void method.

288 CHAPTER 7 The conversation: Seam’s unit of work
@Name("courseWizard")
@Scope(ScopeType.CONVERSATION)
public class CourseWizard implements Serializable {
 @In protected EntityManager entityManager;
 @RequestParameter protected Long facilityId;
 @Out protected Course course;

 @Begin public void addCourse() {
 course = new Course();
 course.setFacility(entityManager.find(Facility.class, facilityId));
 }
}

To start the course wizard, the user navigates to the detail page of a facility, then clicks
a command button that calls the addCourse() method and passes the id of the facility:

<s:button action="#{courseWizard.addCourse}" value="Add course...">
 <f:param name="facilityId" value="#{facilityHome.instance.id}"/>
</s:button>

The following navigation rule is defined to advance the user to the first screen in the
wizard:

<page view-id="/Facility.xhtml">
 <navigation from-action="#{courseWizard.addCourse}">
 <render view-id="/coursewizard/basicCourseInfo.xhtml"/>
 </navigation>
</page>

The @Begin annotation isn’t limited to action methods. You can also add it to a method
used as a page action; combine it with a life-cycle annotation, such as @Create; or tie it
to a @Factory method. These options allow the long-running conversation to start at var-
ious points in the Seam life cycle. Remember, it doesn’t matter when the state of the con-
versation changes during the request, but rather what the state of the conversation is
when the request is complete.

 Instead of using a UI command button to activate the addCourse() method, you
could trigger this method by registering it as a page action on the opening screen in
the wizard:

<page view-id="/coursewizard/basicCourseInfo.xhtml"
 action="#{courseWizard.addCourse}"/>

In this case, when the servlet path /coursewizard/basicCourseInfo.seam?

facilityId=3 is requested in the browser, the addCourse() method is invoked and a
long-running conversation is started. The benefit of using a page action is that it can
start a long-running conversation from a bookmarked page or direct link, rather
than waiting for a JSF postback. Starting a conversation from a page request may
require additional logic either to prevent excessive conversation creation or to
enable conversation joining, both of which are covered later on.

 You also have the option of defining a factory method for the course context vari-
able. When the course context variable is looked up by the first screen in the wizard
through a factory, a long-running conversation can be started:

Outjects to
conversation context

Begins long-running conversation

289Establishing conversation boundaries
@Begin @Factory("course")
public void initCourse() {
 course = new Course();
 course.setFacility(entityManager.find(Facility.class, facilityId));
}

Factory methods are a good place to start conversations because they don’t require
user interaction, nor do they require XML to be defined in the page descriptor. The
same goes for the @Create life-cycle method. You can also have the conversation begin
the very first time the CourseWizard component is accessed:

@Begin @Create
public Course initCourse() {
 course = new Course();
 course.setFacility(entityManager.find(Facility.class, facilityId));
}

If you fancy those angled brackets, you might instead find the page descriptor to be an
ideal place to begin a long-running conversation, which we look at next.
A PAGE-ORIENTED APPROACH

One way to start a long-running conversation in a page-oriented manner is by using a
@Begin method as a page action. However, the task of starting a long-running conver-
sation when a page is requested is so common that Seam includes two built-in options.
You can either use the method-binding expression #{conversation.begin} in a page
action or nest the <begin-conversation> page descriptor tag with a <page> node.
The <begin-conversation> tag can also be used during a page transition.

 Let’s start by applying the <begin-conversation> tag to a page transition. We’ll
assume that the command button shown earlier is activated, but the action method
doesn’t have the @Begin annotation. Instead, the following navigation rule will start a
long-running conversation, then direct the user to the first screen in the wizard:

<page view-id="/Facility.xhtml">
 <navigation from-action="#{courseWizard.addCourse}">
 <begin-conversation/>
 <redirect view-id="/coursewizard/basicCourseInfo.xhtml"/>
 </navigation>
</page>

If you want to preclude the use of the command button, you can instead declare the
long-running conversation to begin when the /coursewizard/basicCourseInfo.xhtml
view ID is requested. This is done either by using the begin() method on the built-in
conversation component:

<page view-id="/coursewizard/basicCourseInfo.xhtml"
 action="#{conversation.begin}"/>

or by nesting the <begin-conversation> tag directly inside the <page> node:

<page view-id="/coursewizard/basicCourseInfo.xhtml">
 <begin-conversation/>
</page>

290 CHAPTER 7 The conversation: Seam’s unit of work
If a fine-grained page descriptor is associated with the first screen of the wizard,
/coursewizard/basicCourseInfo.page.xml, you could exclude the view-id attribute,
thus simplifying the declaration to

<page>
 <begin-conversion/>
</page>

The only downside of using the built-in page action alone is that you can’t perform
“prep work” in a component method before the first page is rendered. The
addCourse() method, for instance, initializes and outjects the course context vari-
able. The built-in page action is best suited for simply “turning on” a conversation.

 The page descriptor offers a lot of control for defining conversation boundaries
because you can distinguish between initial requests, postbacks, and even action
method outcomes. However, you may want to be able to associate the start of a long-
running conversation with a link or button directly. For that, you can use any of the tags
from Seam’s JSF component library to control the boundaries of the conversation.
A UI COMPONENT TAG APPROACH

As a third option, you can begin a long-running conversation using one of Seam’s UI
component tags. You can either enhance an existing UI command component with con-
versation propagation capabilities by adding a nested <s:conversationPropagation>
tag, or you can use one of Seam’s command components, <s:link> or <s:button>, both
of which have native support for conversation propagation. The propagation value,
assigned using the type attribute on the <s:conversationPropagation> tag and the
propagation attribute on the command tags, can be any of the values listed in table 7.1,
and is therefore not limited to beginning a long-running conversation.

 Seam reads a request parameter named conversationPropagation to decide how
to address the current conversation. This request parameter is passed either through
the query string of the URL or in the POST data. Rather than having to add this param-
eter yourself, you can use the component tags cited here to add it for you, which
abstracts away the name so that it’s not hard-coded in your source code. If you need to
use a custom UICommand component or submit a JSF form when starting the conversa-
tion, you can add a nested <s:conversationPropagation> tag to any UI command com-
ponent tag to give it conversation propagation abilities. Let’s assume the facility list page
includes a link in each row to start the course wizard for that facility (citing a slightly dif-
ferent use case here), passing the iteration variable, _facility, as a parameter:

<h:commandButton action="#{courseWizard.addCourse(_facility)}"
 value="Add course...">
 <s:conversationPropagation type="begin"/>
</h:commandButton>

Instead of using the <s:conversationPropagation> tag as a nested element in a regu-
lar JSF component tag, you can use the Seam command tags to specify the conversa-
tion propagation using the propagation attribute:

<s:button action="#{courseWizard.addCourse(_facility)}"
 propagation="begin" value="Add course..."/>

291Establishing conversation boundaries
In the event that you don’t need to submit a form, the command tags are a great way to
work with conversations because they have propagation controls built right in and they
automatically pass along the conversation token. That adds to the previously mentioned
benefits of the command tags to produce bookmarkable URLs (covered in chapter 3).

 If you’ve been experimenting with the begin directive while reading this section,
you may have encountered an error message reporting that a long-running conversa-
tion can’t be created because one is already active. To remedy this problem, you need
to know about conversation joining and how to enable it.
ENABLING CONVERSATION JOINING

By default, Seam only begins a long-running conversation if one isn’t already in play. A
long-running conversation is active if it was restored from a previous request or if a
begin directive has already been encountered. In either case, if an attempt to cross the
begin threshold happens again in the same request, Seam throws an exception. That’s
because, by default, conversation joining is disabled.

 This restriction could cause undue errors if it’s possible for the user to navigate
through one of the defined conversation boundaries after having already entered into
a long-running conversation. For example, assume that you’re using the <begin-
conversation> page directive to begin a long-running conversation when the first
page in the course wizard is requested. If the user submits the form on that page, and
validation errors are found, when JSF attempts to redisplay the page, an exception will
be thrown because the <begin-conversation> element is once again encountered,
this time in the presence of a long-running conversation.

 There are numerous other situations where the user’s action attempts to begin a
new long-running conversation when one already exists. This situation isn’t that rare
in applications that use free-form navigation since the possible execution paths are
numerous. Unless you have a good reason not to allow conversation joining, always
use the join directive to avoid surprising your user with erroneous exceptions. The
truth is, the join behavior should probably be the default. In the absence of a long-
running conversation, the join directive acts just like the begin directive, without risk-
ing an exception.

 If you’re using the annotation-based approach to setting conversation boundaries,
you enable joining of an existing long-running conversation by setting the join attri-
bute on @Begin to true:

@Begin(join = true)
public void addCourse() { ... }

If you’re using the page-oriented approach to mark the boundaries of your conversa-
tion, you add the join attribute to the <begin-conversation> element:

<page view-id="/Facility.xhtml">
 <navigation from-action="#{courseWizard.addCourse}">
 <begin-conversation join="true"/>
 <redirect view-id="/coursewizard/basicCourseInfo.xhtml"/>
 </navigation>
</page>

292 CHAPTER 7 The conversation: Seam’s unit of work
The <begin-conversation> element can be applied conditionally using the if attri-
bute. The following declaration has the same effect as a join, made possible by consulting
the conversation component to determine whether the conversation is long-running:

<page view-id="/Facility.xhtml">
 <navigation from-action="#{courseWizard.addCourse}">
 <begin-conversation if="#{!conversation.longRunning}"/>
 <redirect view-id="/coursewizard/basicCourseInfo.xhtml"/>
 </navigation>
</page>

The support for conditions is useful as your pages mature, serving more variant use
cases with different entrances and exits. Your only limit is what the EL can tell you.

 If you’re using the built-in conversation control #{conversation.begin} in a page
action, you don’t have to worry about the join flag since the method called by this
expression is already “join safe.”

 Finally, if you’re using the UI component tag approach, you enable conversation
joining by setting the value of the propagation to join:

<s:button action="#{courseWizard.addCourse}" propagation="join"
 value="Add course...">
 <f:param name="facilityId" value="#{facilityHome.instance.id}"/>
</s:button>

I realize that all of these options may have been a tad overwhelming. My goal was to
help you appreciate how flexible Seam is when it comes to setting the boundaries of a
long-running conversation. As you might expect, there are just as many options for
declaring the end of a long-running conversation. Since they follow the same pat-
terns, learning to use them should be easy.

I have determined that controlling conversations using the page descrip-
tor works best for page-oriented applications, whereas the annotations
are best suited for single-page, Ajax-based applications. Despite my rec-
ommendation, there’s no hard-and-fast rule.

All this work of striking up a long-running conversation is only useful if you can keep
the conversation going. Let’s see how the conversation is carried on to the next request.

7.3.3 Keeping the conversation going

Data stored in a long-running conversation is only available to a subsequent request if
the long-running conversation holding that data is restored. The secret to restoring a
conversation is to pass on its conversation id to the next request using the conversa-
tion token. Depending on the style of the request, the conversation token may be
passed as a request parameter or tucked away in the JSF component tree. In either
case, when Seam detects the conversation token in the request, the value is used to
look up the existing long-running conversation from the session context and restore
it, thus preventing a new temporary conversation from being spawned.

 If passing the conversation token sounds like tedious work, there’s good news. This
task is handled automatically by any JSF postback or Seam UI command component.

AUTHOR
NOTE

293Establishing conversation boundaries
Thus, pages don’t even need to be aware of the fact that they’re participating in a
long-running conversation. We’ve sure come a long way from managing hidden form
fields manually!

 Let’s consider the two styles of restoring the long-running conversation.
CONVERSATIONS ON POSTBACK

In the presence of a long-running conversation, Seam stores the conversation token
in a page-scoped component, leveraging the state-saving feature of JSF. Any subse-
quent JSF postback gives Seam access to this page-scoped component and thus the
conversation token. You don’t have to change anything about how you define UI com-
mand components to enable this behavior:

<h:commandButton value="Next"
 action="#{courseWizard.submitBasicCourseInfo}"/>

Notice that there’s no indication of the conversation token. In fact, if you view the
source of the rendered page, you won’t find the conversation token there either. The
hand-off takes place completely behind the scenes.

 For JSF postbacks, passing the conversation id through the page scope is conve-
nient, but what about non-JSF postbacks that don’t carry the page scope? These
requests require an alternative means of communicating the conversation token. That
brings us to the conversation id parameter, which Seam uses to restore a conversation
on a GET request.
RESTORING A CONVERSATION FROM A GET REQUEST

Seam can’t read your thoughts, so unless you explicitly pass a conversation token to
tell it which conversation to restore, a new temporary conversation is created. Earlier I
told you that Seam’s UI command components can be used to control the conversa-
tion. Knowing that these components are designed to issue a GET request rather than
a JSF postback, it’s clear that they must send along the conversation id in the URL.
Thus, to restore a conversation from a GET request, you can simply use a Seam UI
command component.

 Let’s say that, at any point in the course wizard, you want to allow users to be able
to view a summary in a preview window of what they’ve entered so far. The following
link will open the preview window and give it access to the long-running conversation
used by the course wizard:

<s:link view="preview.xhtml" target="_blank" value="Preview"/>

While I’m tempted to tell you not to worry about how this works, I trust that if you’ve
gotten this far, you are one of those developers who wants to know (if you don’t, skip
on to the next section).

 At the beginning of the Seam life cycle, Seam looks for the conversation id in a
URL parameter. The default name for this parameter is conversationId. You also
know that the current conversation id can be retrieved from the value expression
#{conversation.id}. Putting these two facts together, you can manually assemble the
link shown previously:

 <a href="preview.seam?conversationId=#{conversation.id}"
 target="_blank">Preview

294 CHAPTER 7 The conversation: Seam’s unit of work
Alternatively, you can get a little help from JSF to build the link:

<h:outputLink value="preview.seam" target="_blank">
 <f:param name="conversationId" value="#{conversation.id}"/>
 <h:outputText value="Preview"/>
</h:outputLink>

There’s a serious flaw in the previous two links. Seam allows the name of the conversa-
tion parameter to be customized, but these links hard-code the default name, conver-
sationId. The name used for the conversation token is set using the conversation-
IdParameter property on the built-in component named manager. You can override
the name of the conversation token using this component configuration:

<core:manager conversation-id-parameter="cid"/>

With this override in place, any links with a hard-coded conversationId parameter
will no longer perpetuate the long-running conversation. Fortunately, Seam provides
a special UIParameter component tag, <s:conversationId>, that can be used to add
the conversation id parameter to the parent JSF link component:

<h:outputLink value="preview.seam" target="_blank">
 <s:conversationId/>
 <h:outputText value="Preview"/>
</h:outputLink>

I recommend that you stick to using Seam’s UI command components unless you have
a good reason not to. Then again, the conversation token is not just useful for creat-
ing links and buttons; it also lets you restore the conversation through alternate chan-
nels, such as Ajax requests and conversational web services. Remember that the
conversation token is the key to the storage locker holding the conversation’s working
set of context variables.

 You have now struck up a long-running conversation and learned how to navigate
within its boundaries. Let’s consider how to take advantage of this working set by con-
tributing to it on one screen and accessing it from another.

7.3.4 Enlisting objects in a conversation

You enlist objects in a conversation by storing them in the conversation context.
When you see that a component is scoped to the conversation context, or that a
value is outjected to the conversation context, you might think to yourself, “But
which conversation?”
FINDING A CONVERSATION TO JOIN

As you’ve learned, there’s always a conversation active during a request, whether it be
temporary or long-running—but only one. A request can serve only a single conversa-
tion at a time, even though it’s possible for concurrent conversations to exist in the back-
ground, as you’ll discover later on. The conversation to which component instances and
outjected context variables are bound is the one that’s active for this request.

 What you may find interesting—perhaps even surprising—is that a temporary
conversation doesn’t need to be converted to a long-running conversation before you

295Establishing conversation boundaries
can start adding objects to it. Any variables added to the conversation while it is tem-
porary remain part of the conversation once it transitions to long-running. The con-
versation state is simply an indicator that determines whether the conversation
should be stored in the session (long-running) or removed (temporary) after the
Render Response phase.

 You should be able to put this knowledge together with what you’ve learned about
component instantiation to conclude that when a conversation-scoped component is
requested via its component name, an instance is created and attached to the active
conversation. Table 7.4 shows how the conversation is populated as the course wizard
is launched, assuming the addCourse() method is annotated with @Begin.

When the initial request in the course wizard ends, there are two new context vari-
ables in the conversation: courseWizard and course. The course context variable is
placed into the conversation scope after the addCourse() method completes as a
result of outjection. The conversation scope is used since no scope is specified in the
@Out annotation and the component is scoped to the conversation. For the duration
of the wizard, the course context variable remains in the conversation and is progres-
sively populated with each form submission as the wizard progresses.
CONVERSATIONS IN ISOLATION

If the user were to open a new browser tab and initiate the course wizard, the process
in table 7.4 would occur in a parallel conversation (assuming, of course, that the URL
requested didn’t include the conversation token from the first tab). The conversation
activity taking place in the second tab would happen in an isolated area of the session
managing that conversation. With the course wizard under way in both tabs, the same
two context variables, courseWizard and course, exist in each of the two conversa-
tions, but don’t interfere with one another—two conversations, two sets of variables.

Table 7.4 How the conversation is populated when the course wizard is launched

Step Description

1. User activates the
 JSF command button

The JSF life cycle is invoked, the #{courseWizard.addCourse} action
is queued, and a temporary conversation is created.
The Invoke Application phase is entered.

2. Action method is
 invoked

CourseWizard is instantiated and bound to the courseWizard context
variable in the conversation context.
The addCourse() method call begins.
Course is instantiated and assigned to the protected field course.
The addCourse() method call ends.
course is outjected into the conversation context and the temporary conver-
sation is promoted to a long-running conversation.

3. Navigation rule fires The Render Response phase is entered and the first screen of the course wiz-
ard is rendered.
The long-running conversation is stored in the HTTP session and the conversa-
tion id is stored in the JSF UI component tree.

296 CHAPTER 7 The conversation: Seam’s unit of work
TIP You can see what context variables are stored in each conversation using
the Seam debug page. Ensure that debug mode is enabled (see chapter 3)
and then visit the servlet path /debug.seam to get the list of conversations.
Click on a conversation to inspect it.

Note that the component that hosts the @Begin method doesn’t have to be a
conversation-scoped component. You could begin the conversation for the course wiz-
ard using an event-scoped component and set the scope of the outjection explicitly:

@Name("courseWizard")
public class CourseWizard {
 ...
 @Out(scope = ScopeType.CONVERSATION)
 protected Course course;
 ...
 @Begin public void addCourse() { ... }
}

In this case, only the course context variable is placed into the conversation after a
method is invoked. The scope on the @Out annotation must be set to conversation to
override the default of event inherited from the scope of the component.

 Instead of beginning or ending a long-running conversation when a component
method is invoked, you may simply want to verify that a long-running conversation exists
before allowing the method to proceed. Let’s see how to enforce this requirement.
MAKING THE CONVERSATION A PREREQUISITE

If you want to enforce that a component or method only be used within the scope of a
long-running conversation, annotate the component class or the method with the
@Conversational annotation, summarized in table 7.5. Seam verifies that the conver-
sation is long-running before permitting a call to the following method:

@Conversational public String submitBasicCourseInfo() { ... }

If an attempt is made to execute a @Conversational method outside the presence of a
long-running conversation, Seam will raise the org.jboss.seam.noConversation
event and then throw the runtime exception NoConversationException.

Using this annotation is superficial in most cases since there’s likely more to the story
than just the existence of a conversation. If you’re simply trying to protect a sensitive
area of the code, perhaps using this annotation makes sense. You can also enforce the
presence of a long-running conversation when a view is rendered. This restriction is
configured on the page node that matches the view ID being rendered:

Table 7.5 The @Conversational annotation

Name: Conversational

Purpose: Specifies that this component or method is conversational
and the method(s) can only be invoked within the scope of a long-

running conversation

Target: TYPE (class), METHOD

297Establishing conversation boundaries
<page conversation-required="true"
 no-conversation-view-id="/FacilityList.xhtml"> ... </page>

Once again, if a long-running conversation isn’t active or has expired when the view
ID is requested, the org.jboss.seam.noConversation event is raised. However, in this
case, the user is redirected to the view ID defined in the no-conversation-view-id
attribute. In section 7.6 you’ll learn that a page flow is a much better way to enforce
the existence of a conversation, whether it’s at the method or view ID level.

 One of the key benefits of conversations is that they can be cleaned up easily. Hav-
ing learned to fear the session, you may be uneasy about letting data accumulate in
the conversation. Let’s first consider how to pull context variables out of a conversa-
tion and then move on to ending the conversation when the use case is finished.
UNREGISTERING CONVERSATION-SCOPED CONTEXT VARIABLES

Any objects associated with a conversation are held in the conversation context until
the conversation ends or the object is explicitly removed from the conversation con-
text. If the conversation is ongoing but there are certain conversation-scoped context
variables that you no longer need, you can clear them out of the conversation in one
of two ways:

■ Set the value of the property annotated with @Out(required = false) to null.
■ Remove the context variable using the Seam Context API.

Let’s consider an example. In the course wizard, the saveHoleData() method outjects
a temporary TeeSet instance to the teeSet context variable, which is used by the tee set
form to capture information about the tee set. Only when that form is submitted with
no validation errors is the saveTeeSet() method called, which appends the TeeSet to
the managed Course instance held in the conversation. At that time, the teeSet con-
text variable can be cleared from the conversation by assigning the teeSet property a
null value. The required attribute on the @Out annotation is set to false to permit the
value to be null:

@Out(required = false)
protected TeeSet teeSet;

public void submitHoleData() {
 teeSet = new TeeSet();
}

public void submitTeeSet() {
 course.getTeeSets().add(teeSet);
 teeSet = null;
}

Another way to clear a context variable from the conversation is to retrieve the conver-
sation context via the Seam Context API and explicitly remove the context variable:

Contexts.getConversationContext().remove("teeSet");

The best way to ensure that conversation-scope context variables are cleaned up is to just
end the conversation. Leaving conversations active isn’t dangerous like letting objects

298 CHAPTER 7 The conversation: Seam’s unit of work
linger in the session because Seam regularly cleans out stale conversations. However,
ending a conversation may play an important role in wrapping up the use case.

7.3.5 Ending a long-running conversation

As you’ve learned, conversations are a managed region of the HTTP session. Thus, it’s
possible to terminate a conversation without destroying the entire session. A conversa-
tion can either be ended explicitly using an end propagation directive or it can be
automatically garbage collected by Seam when its idle time exceeds the timeout value
of the conversation.

 The end propagation directive is used in the same way as the begin directive. One
use case for ending a conversation is to let the user cancel out of a form or wizard. In
this case, you discard the conversation and return the user to a screen of your choice,
perhaps by using a Seam UI command component:

<s:link view="/FacilityList.xhtml" propagation="end" value="Cancel"/>

However, if you prefer to keep your conversation directives out of the JSF views, you
can use the pages.xml configuration instead:

<page view-id="/coursewizard/*">
 <navigation>
 <rule if-outcome="cancel">
 <end-conversation/>
 <redirect view-id="/FacilityList.xhtml"/>
 </rule>
 </navigation>
</page>

Pair this navigation rule with the following Seam UI command component:

<s:link action="cancel" value="Cancel"/>

If you were to instead use a UI command component, you would need to set the
immediate attribute to true to prevent the form values from being processed:

<h:commandLink action="cancel" value="Cancel" immediate="true"/>

Note that the term end is deceptive. Ending a conversation merely demotes it from long-
running to temporary—it doesn’t destroy it outright. It’s terminated only after the view
has been rendered. That means that whatever values were present in the conversation
remain available in the Render Response phase that immediately follows the demotion.

 If you want to part ways with the conversation before the next render, you set the
beforeRedirect flag on the end conversation directive and then issue a redirect after
demotion has taken place:

<page view-id="/coursewizard/*">
 <navigation>
 <rule if-outcome="cancel">
 <end-conversation before-redirect="true"/>
 <redirect view-id="/FacilityList.xhtml"/>
 </rule>
 </navigation>
</page>

299Establishing conversation boundaries
Having become a temporary conversation, it won’t last through the redirect and the
next page view will be using a fresh conversation. Be careful using the before-
Redirect flag, though, because you’ll lose any JSF status messages that you added in
the action method. An alternative is to use a confirmation page that displays the status
messages. Navigating away from the confirmation page leaves behind the conversation
that ended.

 Assume that the user made it all the way through the wizard and is ready to save
the new course. This case is perfect for showing the use of the @End annotation. Let’s
place a command button on the last page that invokes the save() method:

<h:commandButton action="#{courseWizard.save}" value="Save"/>

Next, add the @End annotation to the save() method so that the conversation is
demoted to temporary when the method call is complete:

 @End public String save() {
 try {
 ...
 entityManager.persist(course);
 FacesMessages.instance().add(
 "#{course.name} has been added to the directory.");
 return "success";
 } catch (Exception e) {
 FacesMessages.instance().add("Saving the course failed.");
 return null;
 }
}

The course context variable is available to the confirmation page since the conversa-
tion isn’t ended prior to the redirect. If an exception is thrown, the conversation isn’t
ended at all and the previous page is redisplayed. The @End annotation is summarized
in table 7.6.

Alternatively, you may want to end the conversation using the <end-conversation>
element in the page descriptor rather than using the @End annotation:

<page view-id="/coursewizard/*">
 <navigation from-action="#{courseWizard.save}">
 <rule if-outcome="success">
 <end-conversation/>

Table 7.6 The @End annotation

Name: End

Purpose: Instructs Seam to convert the long-running conversation to a temporary state after this
method is invoked successfully

Target: METHOD

Attribute Type Function

beforeRedirect boolean If set to true, instructs Seam to terminate the conversation prior to
issuing a redirect. The default is to propagate the conversation
across the redirect and terminate it once the response is complete.
Default: false.

300 CHAPTER 7 The conversation: Seam’s unit of work
 <redirect view-id="/coursewizard/summary.xhtml"/>
 </rule>
 </navigation>
</page>

In this case, the conversation is maintained across the redirect. You can set the before-
Redirect attribute on the <end-conversation> element to true to have the conversation
terminated before the redirect.
CONVERSATION TIMEOUTS

The other, less graceful way of terminating a conversation it to allow it to expire. The
default timeout period of the conversation is stored in the built-in component named
manager. The timeout is specified in milliseconds. The following component configu-
ration overrides the default timeout of ten minutes, setting it instead to a period of
one hour:

<core:manager conversation-timeout="3600000"/>

You can customize this value by setting the timeout attribute on the <page> node in
the page descriptor. This lets you modify the timeout period per view ID, so you can
give the user more time to fill out a more complex form:

<page view-id="/coursewizard/holeData.xhtml" timeout="7200000"/>

You also have the option of assigning a timeout value for a particular conversation by
calling the setTimeout() method on the built-in conversation component.

 A conversation will eventually time out if the user walks away from the computer.
It’s also possible for the current long-running conversation to be abandoned as the
result of ad hoc navigation, at which point it’s also subject to timeout. Let’s consider
how conversations get abandoned and why it’s not necessarily a bad occurrence. You’ll
also see how to suspend a conversation, just as a transaction might be suspended, to
allow the user to perform more granular work in a nested conversation. The parent
conversation is restored when the nested conversation ends.

7.4 Putting the conversation aside
So far we have talked about how to begin, restore, and end a long-running conversa-
tion, but what happens to the conversation when it’s not propagated to the next
request? In that case, the conversation simply sits idle in the background. You can
think of it as stepping outside of the conversation. It’s also possible to step out of a
conversation by spinning off a nested conversation. Let’s explore these two cases.

7.4.1 Abandoning a conversation

It’s understandable why a conversation is abandoned when the user leaves the applica-
tion. But there’s also good reason to intentionally abandon a conversation. Although
the stateful behavior that conversations provide for have nice benefits, sometimes the
conversation just needs to be set aside to do something else. This section explores how
to get away from the current long-running conversation to move on to a separate use
case, regardless of whether there is intention of returning to it. Note, however, that

301Putting the conversation aside
once a conversation is abandoned, it may eventually time out if not restored in a
timely manner.

 Suppose we want to give the user the option to pick up other tasks while in the
midst of using the course wizard, perhaps even to start a second wizard process. When
transitioning to the start of the wizard, you don’t want to go into it using the existing
conversation. You can break ties with that conversation by using the propagation
directive none. For now, don’t worry about how to get back to the partially complete
wizard (that comes later when you study conversation switchers).

 To disable propagation, you can use either the <s:conversationPropagation>
component tag inside a UI command component or the propagation attribute if
you’re using a Seam command component tag. The none directive is necessary in both
cases since the conversation token is added automatically by these tags. This directive
prevents the conversation token from being appended, effectively warding off the
conversation. The following link is used from within the wizard to start a new instance
of the course wizard reusing the same facility:

<s:link action="#{courseWizard.addCourse}" propagation="none"
 value="Add course...">
 <f:param name="facilityId" value="#{course.facility.id}"/>
</s:link>

Another way to get away from the current long-running conversation is to use the
leave() method on the conversation component as an action listener. This method
can be used as an action listener thanks to the Seam EL, which makes the Action-
Event parameter optional. This method has the same effect as the none propaga-
tion directive:

<s:link action="#{courseWizard.addCourse}"
 actionListener="#{conversation.leave}"
 value="Add course...">
 <f:param name="facilityId" value="#{course.facility.id}"/>
</s:link>

Links created by <h:outputLink> have no awareness of the current long-running con-
versation, so abandoning a conversation in those cases is just a matter of leaving off
the nested <s:conversationId> tag.

 If you get to the end of the use case and no longer need the current long-running
conversation, it’s usually best to end the conversation properly rather than abandon it.
However, if you’re not ready to call it quits, then abandoning the conversation is the
appropriate choice. Before deciding to abandon a conversation to allow the user to go
off on a tangent, consider whether it’s more appropriate to suspend the current long-
running conversation by nesting a new long-running conversation within it.

7.4.2 Creating nested conversations

Nested conversations allow you to suspend a long-running conversation, isolating con-
text variables within the scope of a new, self-contained conversation. A nested conver-
sation maintains a reference to its parent conversation and can even access its context

302 CHAPTER 7 The conversation: Seam’s unit of work
variables. When the nested conversation ends, the parent conversation is automati-
cally restored.
BRANCHING OFF THE MAINLINE

Nested conversations share similar semantics with child processes in an operating sys-
tem. When you begin a nested conversation, you’re effectively suspending the state of
the current long-running conversation and starting a new long-running conversation
with its boundaries. This branching process is illustrated in figure 7.6. As you can see,
more than one nested (child) conversation can exist concurrently within a parent
conversation. When the nested conversation is terminated, the parent conversation is
popped back into place. When that happens, Seam may even redirect the user back to
the page where the branch occurred, depending on the configuration. If the parent
conversation is terminated, so are all of its children. Conversations can be nested to
arbitrary depth, so a nested conversation can itself be a parent to another nested con-
versation. Seam maintains a stack of these nested conversations, which you learn
about later in the section.

Context variables in the parent conversation are visible to the nested conversation,
but the nested conversation cannot alter this set. In fact, if the nested conversation
sets a context variable with the same name as one in the parent conversation, the
result is that the variable in the nested conversation shadows its namesake in the par-
ent conversation. Although it appears that the context variable has been reassigned,
when the nested conversation ends, the shadowed value of the context variable is
once again revealed.

NOTE Although the nested conversation cannot alter the set of context vari-
ables in the parent conversation, the objects bound to those variables are
mutable.

It’s time to start branching! Let’s consider cases when nested conversations are useful.
WHEN TO USE NESTED CONVERSATIONS

You typically use a nested conversation when you want to allow users to maintain
their proverbial spot in line while they go do something else. Keeping that spot in
line means not destroying the existing conversation and perhaps sharing its position
(its state).

Main conversation

Nested conversations, terminated gracefully

Nested conversations, abandoned

Nested conversation,
terminated with parent

begin end

Figure 7.6 Nested conversations are branched
off the main long-running conversation.

303Putting the conversation aside
NOTE When an isolated conversation is required, you should think hard about
whether it’s more appropriate to branch the current conversation (prop-
agation="nest") or abandon it (propagation="none") and begin a
brand-new conversation. Both have pluses and minuses.

Let’s say that, while working through the course wizard, the user realizes the informa-
tion about the course’s facility is incorrect. While the error is fresh in the user’s mind,
you want the user to be able to pause the course wizard and go update the facility. As it
stands now, editing a facility joins the existing conversation. When the user saves the
facility, the conversation ends. However, you don’t want the conversation for the
course wizard to end too. Instead, you want to return users to the course wizard and
let them continue as though they never left. Keeping the use cases isolated, yet linked,
calls for a nested conversation.

 A nested conversation is started whenever the nested propagation directive is
encountered and is ended the same way as a regular conversation. To use a nested
conversation for the facility editor, we need to change the FacilityEdit.page.xml
descriptor so that a nested conversation is started upon entry to the page:

<begin-conversation nested="true"/>

If there’s no long-running conversation available at the time, the nested directive has the
same effect as the begin directive. However, you can’t join and nest at the same time. If
the current conversation is long-running, Seam begins a nested conversation, even if the
current conversation is itself a nested conversation. That means each time the user per-
forms a postback, it’s going to spawn yet another nested conversation. We prevent Seam
from beginning a nested conversation if one already exists by using a conditional on the
<begin-conversation> element in the FacilityEdit.page.xml descriptor:

<begin-conversation nested="true" if="#{!conversation.nested}"/>

Now, when the user clicks Save on the facility editor screen, the nested conversation is
ended and the long-running conversation that manages the course wizard is restored.

Page flows, covered in section 7.6, enforce a strict navigation path. To
spawn a nested conversation from a page flow, it must be configured as
part of the page flow definition. Another option for initiating a parallel
task is to abandon the page flow’s conversation.

However, we’re not quite done yet. The most critical part of letting users go off on a tan-
gent is to return them to where they left off. If the navigation is unpredictable, users will
be hesitant to branch out for fear they cannot easily get back to the current page. Let’s
see how to let users restore their place in line when the nested conversation is closed.
RETURNING TO THE BRANCH POINT

When a long-running conversation begins, Seam initializes a conversation stack and
adds the conversation to the base of the stack. This first entry is known as the root con-
versation. Each time a branch occurs, Seam adds the nested conversation onto the
stack. Thus, each entry added to the stack is a child of the previous. When a nested

WARNING

304 CHAPTER 7 The conversation: Seam’s unit of work
conversation is ended, using the end propagation directive, Seam “pops” the conver-
sation stack, restoring the previous entry—the parent conversation—into the fore-
ground as the current conversation.

 By maintaining the conversation stack, Seam relieves the burden on the developer
of tracing the user’s steps. But it does more than that. As part of this conversation
stack, Seam keeps track of the last view ID visited by each conversation (at the branch
point). This makes it possible to redirect the user back to the branch point when the
nested conversation ends. However, Seam doesn’t automatically perform this rout-
ing—it requires some work on your part. Fortunately, Seam offers assistance.

 To get the user back on track, you can use the endAndRedirect() method on the
conversation component (i.e., #{conversation.endAndRedirect}). This method
ends the nested conversation and, if the view ID where the nested conversation was
spawned is known, redirects the user back to that page. For instance, this method can
be used as the action of the cancel button to get the user back to the current page in
the course wizard:

<s:button action="#{conversation.endAndRedirect}" value="Cancel"
 rendered="#{conversation.nested}"/>

Combining this functionality with a form submission, such as the Save operation,
requires calling the endAndRedirect() method from within the action method. This
ensures that the end and redirect only occurs if the business logic completes. It also
bypasses the navigation rules. For instance, you could weave this logic into the
update() method on the FacilityHome component:

@In private Conversation conversation;

public String update() {
 String outcome = super.update();
 if (conversation.isNested()) {
 conversation.endAndRedirect();
 }
 return outcome;
}

This feature also comes in handy when you’re developing breadcrumb-link naviga-
tion. For instance, suppose you want to allow users to spawn a nested conversation
from the course page to view a related course. From there, the cycle may continue. To
allow the user to back up to the previous course—without needing to use the browser
back button—you can use the end-and-redirect behavior. Let’s assume that the con-
text variable nearbyCourses holds a list of courses in close proximity to the current
course. To allow the user to navigate to one of these courses using a nested conversa-
tion, you create a link for each related course:

<ui:repeat var="_course" value="#{nearbyCourses}">
 <s:link view="/Course.xhtml" value="#{_course.name}" propagation="nest">
 <f:param name="courseId" value="#{_course.id}"/>
 </s:link>
</ui:repeat>

305Switching between conversations
When the user navigates to a nearby course, the conversation is nested. On the course
detail page, a link is provided to return the user to the previously viewed course if a
nested conversation is active:

<s:link action="#{conversation.endAndRedirect}"
 value="Return to previous" rendered="#{conversation.nested}"/>

This nested conversation example is the first you have seen of shuffling conversations.
Having suspended or idle conversations might make you nervous about the possibility
of leaking memory. Although I’ve assured you that conversations are cleaned up when
they time out, you may not be comfortable with the idea of having all these idle con-
versations lying around. Fortunately, Seam provides a way to allow the user to redis-
cover lost conversations and either return to them or end them manually. In the next
section, you’ll discover that leaving a long-running conversation and later switching
back to it can be a natural part of how the application works.

7.5 Switching between conversations
Abandoning a conversation may sound remiss, but it can be a powerful tool. Keep in
mind that your user is a person and people like to multitask. The popularity of
browser tabs reflects this fact. When a conversation is abandoned, you don’t have to
consider it lost forever. It’s just sitting behind the scenes waiting to be rediscovered,
just like a background tab in a browser. Unless the abandoned conversation reaches
its timeout period, it’s possible to restore it using a conversation switcher widget.
Switching between existing long-running conversations in the same browser window is
referred to as workspace management. Think of it as switching tabs in a browser. In this
section, you’re introduced to workspaces, how they’re defined, and how you can pro-
vide a way for the user to jump between them.

7.5.1 The conversation as a workspace

A conversation is more than just a context. It also represents the user’s workspace
within the application. Not just any conversation can be a workspace, though. To be a
workspace, a conversation must have a description, which you’ll learn to assign in the
next section.

 If there were only one workspace (per user), there wouldn’t be much need to
assign it a description. We’d simply call it the conversation. The term workspace is signifi-
cant because it’s possible for a user to have multiple, parallel conversations. Since the
browser window can only focus on one workspace at a time, the remaining workspaces
exist in the background.

 Workspace support is useful for two reasons. First, it allows the user to pause the
current task and pick up something else with the intention of returning to the original
task later. You have already seen an example of this in the nested conversation section.
What you are about to learn is that the user can switch back to the original task with-
out having to end the nested conversation. Workspace switching sanctions multitask-
ing as a natural part of the application, rather than requiring the user to turn to
browser tabs to get this feature.

306 CHAPTER 7 The conversation: Seam’s unit of work
A workspace is also useful for limiting the number of active long-running conversa-
tions. Because users are going to inevitably perform ad hoc navigation, conversations
will be inadvertently abandoned. By presenting users with a widget that lets them
restore abandoned workspaces, you encourage users to finish what they started.

 As you’ve learned, the application tracks and restores conversations using a con-
versation token, which passes along the value of the conversation id. The task of
switching workspaces will be lost on users if you require them to specify a numeric ID

Keeping conversations natural
Conversations can use a natural business key as the conversation token, supplied
by an EL value expression, rather than a surrogate key generated by Seam. This con-
figuration provides several benefits. First, since the key is derived from a business
object, restoring the conversation happens automatically as a result of the user mak-
ing the same selection in the UI, instead of the user needing to use a conversation
switcher. This channeling minimizes the number of conversations created—another
benefit. Finally, the conversation token is meaningful to both the user and the appli-
cation. The trade-off is that it’s no longer possible to have parallel conversations that
operate on the same business object.

A natural conversation token configured for the course editor page might use this URL:

/open18/CourseEdit.seam?courseId=9

No much different, you say? Well, notice that the awkward cid parameter is absent.
In this case, the courseId parameter serves as the conversation token. A natural
conversation token is defined in the global page descriptor, assigned a name, and
then assigned to the <page> node corresponding to the view ID on which it is used:

<conversation name="Course" parameter-name="courseId"
 parameter-value="#{courseHome.instance.id}"/>

<page view-id="/CourseEdit.xhtml" conversation="Course" ...</page>

When a page with a natural conversation is requested, and that page begins a long-
running conversation, Seam sets the URL parameter accordingly. The only oddity with
natural conversations is that you must educate JSF and Seam UI command compo-
nents about the natural conversation, using the <s:conversationName> component
tag and conversationName attribute, respectively. Here is an example of a JSF com-
mand button that joins into a natural conversation:

<h:commandButton action="#{courseHome.update}" value="Save" ...>
 <s:conversationName value="Course"/>
</h:commandButton>

By applying the UrlRewrite configuration described in chapter 3, you can get friendly
URLs and stateful behavior at the same time, without having to worry about that pesky
cid parameter. You can find several examples of natural conversation in the book’s
source code. For additional information, consult the Seam reference documentation.

307Switching between conversations
to continue a conversation. You need to provide users with a workspace switcher com-
ponent that can be used to select a conversation. The options in the switcher should
consist of friendly descriptions so that users can recognize the workspace and have
motivation to return to it.

7.5.2 Giving conversations a description

A conversation is assigned a description, thus promoting it to a workspace, when the
user navigates to a page with a description during a long-running conversation. A
description is assigned to a page by populating the <description> element within the
<page> node in either the Seam page descriptor (the stateless navigation model) or
jPDL page flow descriptor (the stateful navigation model). When the current view ID
matches that <page>, the value of the <description> element is assigned to the con-
versation. An example of a page with a description, defined in a Seam page descriptor,
is shown here:

<pages>
 ...
 <page view-id="/CourseList.xhtml">
 <description>
 Course search results (#{courseList.resultList.size})
 </description>
 </page>
</pages>

The same element is used in the stateful navigation model:

<pageflow-definition name="Course Wizard">
 ...
 <page name="basicCourseInfo"
 view-id="/coursewizard/basicCourseInfo.xhtml" redirect="true">
 <description>
 Course wizard (New course
 @ #{course.facility.name}): Basic information
 </description>
 ...
 </page>
</pageflow-definition>

Assigning a description to a conversation by way of assigning a description to a page
may strike you as odd. Why not just assign a description to the conversation directly?
Well, if you think about it, the state of a conversation changes over the course of its
use. By describing the conversation only when it’s created, the description quickly
becomes outdated, failing to reflect the current state of the conversation. Conversa-
tions are shaped by their most recent page visit and the state of the system at the time
the page is viewed. Therefore, it makes sense that the description is frequently
updated. If the conversation is abandoned, the description reflects the last known
state of the conversation and gives users an idea of where they’ll be taken when the
workspace is restored.

 What makes the descriptions even more contextual and descriptive is that they can
leverage EL value expressions. That might get you wondering when these descriptions

308 CHAPTER 7 The conversation: Seam’s unit of work
are evaluated. The description of a page is evaluated just prior to the page being ren-
dered. You can see where this happens in the Seam life cycle by looking at table 3.2 in
chapter 3.

 By giving a conversation a description, it becomes a workspace (at least in the eyes
of the user). It’s one prerequisite for allowing it to appear in a conversation switcher
component. The other prerequisite is that the conversation must be “switch enabled.”
Let’s explore how a conversation is assigned this status.
ALLOWING THE SWITCH TO OCCUR

Just as the description of the conversation is updated as each page in the conversation
with a description is requested, the view ID is updated as well. When a background con-
versation is restored using a switcher component, the conversation comes into the fore-
ground and the user is redirected to the last view ID recorded for that conversation.

 However, the view ID is only registered with the conversation if the corresponding
<page> node supports switching, which is the default behavior. If switching is explicitly
disabled, the conversation isn’t made aware of the visit to the view ID:

<page view-id="/FacilityList.xhtml" switch="disabled">
 <description>Facility List</description>
 ...
</page>

The description and the view ID can be assigned to the conversation independently of
one another. For instance, if switching is disabled, yet the <page> has a description,
then the description of the conversation is still updated. Likewise, if the <page> sup-
ports switching, but there is no description, then only the view ID is recorded, leaving
the conversation description as it was. If none of the pages the user visits support
switching, then the workspace can’t be restored because there’s nowhere for the
switcher component to redirect the user to. Thus, for a conversation to support
switching, at least one view ID with switching enabled must be requested.

 All that is left to enable conversation switching is to provide the user with a menu
of available workspaces and a command to select one. Seam includes a handful of
built-in components that aid in creating such a control.

7.5.3 Using the built-in conversation switchers

Workspaces are a new concept in web applications. To promote their use, Seam pro-
vides several built-in conversation switchers that you can drop into your application
with little effort. Seam offers a simple select menu switcher, a more advanced table-
based switcher, and a conversation stack that can be used for breadcrumb navigation.
The first two components are used to switch between parallel conversations, while the
latter is constrained to the ancestry of the current conversation. Let’s start with the
select menu.
THE BASIC CONVERSATION SWITCHER

Seam’s built-in conversation switcher component, named switcher, is a ready-
made component intended to be used with a UISelectOne component, such as
<h:selectOneMenu>. This conversation switcher is a great place to start because it’s

309Switching between conversations
simple and unobtrusive. What’s more important about it is that it helps raise aware-
ness of the workspace construct. Users can see which workspace is currently active and
get an inventory of the other active workspaces in their session, as figure 7.7 shows.

Here is the markup that creates a switcher control that includes the list of workspaces:

<h:form id="switcher"> Workspace:
 <h:selectOneMenu value="#{switcher.conversationIdOrOutcome}">
 <f:selectItems value="#{switcher.selectItems}"/>
 </h:selectOneMenu>
 <h:commandButton action="#{switcher.select}" value="Switch"/>
</h:form>

The #{switcher.selectItems} value expression prepares a set of select menu items
from the list of long-running conversations that support switching (i.e., workspaces).
The value of the options are the conversation ids and the labels are the conversation
descriptions. When the action #{switcher.conversationIdOrOutcome} is invoked,
Seam uses the value of the selected option to locate the background conversation.
The user is then redirected to the last view ID used by that conversation. When the
switch occurs, the current conversation is abandoned.

TIP Notice that I used a standard UI command component to invoke the
action method of the switcher component. In order for this component
to work, it must submit the form so that the value selected in the
UISelectOne component is captured. Seam UI command components
would not work since they do not submit the form.

This component allows you to tack on your own options to the menu, which is where
the OrOutcome part of the action method becomes relevant. If the selected value isn’t
numeric, the action method returns the selected value as a logical outcome and allows
the JSF standard navigation rules to take effect. Let’s add an outcome that returns the
user to the home page and one to add a new facility:

<h:form id="switcher"> Workspace:
 <h:selectOneMenu value="#{switcher.conversationIdOrOutcome}">
 <f:selectItem itemLabel="Return home" itemValue="home"/>
 <f:selectItem itemLabel="Enter new facility" itemValue="addFacility"/>
 <f:selectItems value="#{switcher.selectItems}"/>
 </h:selectOneMenu>
 <h:commandButton action="#{switcher.select}" value="Switch"/>
</h:form>

You then need to define navigation rules that match the new outcomes. If the switcher
is displayed on every page, the navigation rule must be global (match the view ID *).
The navigation rule that matches the addFacility outcome is shown here:

Figure 7.7 A basic conversation
switcher that includes static
outcomes for returning home and
entering a new course.

310 CHAPTER 7 The conversation: Seam’s unit of work
<page view-id="*">
 <navigation from-action="#{switcher.select}">
 <rule if-outcome="addFacility">
 <redirect view-id="/FacilityEdit.xhtml"/>
 </rule>
 </navigation>
</page>

The auxiliary outcomes in this switcher have to be fairly rudimentary since they can’t
pass additional information and don’t execute a dedicated action.

The only downside of switching to a background conversation is that any
nonsubmitted form data on the foreground page is lost. You can work
around this issue by using an Ajax component library, such as Ajax4jsf, to
periodically synchronize the form values with the properties on the model.

As you can see, the basic conversation switcher component is straightforward.
Although it gets the job done, it leaves a little to be desired. For one thing, it can only
show the conversation description, even though a conversation entry has a lot more
useful information. It doesn’t let the user terminate background conversations either.
Both of these features are supported by the built-in conversation list component.
A MORE POWERFUL CONVERSATION SWITCHER

Seam maintains a list of all long-running conversations and metadata about each one
in the built-in Seam component named conversationEntries. These conversations
are exported to the session-scoped context variable conversationList as a list of
ConversationEntry objects, whose properties are shown in table 7.7. This list
excludes all entries that aren’t displayable by default. You can use the conversation-
Entries component to export a custom list.

Table 7.7 The properties on a conversation entry

Property Type Description

id String A value that identifies this conversation. The value is typically
numeric, though “natural” identifiers are also supported.

description String The conversation description resolved from the EL value
expression specified in the <description> nodes in the
page descriptor.

current boolean A flag indicating whether this conversation entry is the cur-
rent conversation.

viewId String The view ID that was rendered when this conversation was
last used.

displayable boolean A flag indicating whether this entry is displayable, meaning it
must be active and it must have a description.

startDatetime Date The timestamp when this conversation began.

lastDatetime Date The timestamp when this conversation was last restored.

lastRequestTime long The timestamp when this conversation was last restored.

WARNING

311Switching between conversations
You may not want to use all of these properties in the display, but the information they
provide can be useful for deciding how to render the list of conversations. In addition
to these properties, each conversation entry has several built-in action methods, which
are listed in table 7.8.

Armed with these properties and action methods, you’re ready to construct your
advanced workspace control. We’ll be using a UIData component to present a list of
workspaces, as shown in figure 7.8.

The conversations in this table are sorted based on the last time they were used, with
the most recent conversations appearing first. The JSF markup to produce this table is
shown in listing 7.1.

<h:form id="workspaces">
 <rich:panel><f:facet name="header">Workspaces</f:facet>
 <s:span rendered="#{empty conversationList}">No workspaces</s:span>

timeout Integer The timeout period that must elapse after its last use for
this conversation to be automatically garbage collected.

nested boolean A flag indicating whether this conversation is nested.

ended boolean A flag indicating whether this conversation has ended.

removeAfterRedirect boolean A flag indicating that this conversation will be removed
immediately after a redirect.

Table 7.8 The methods on a conversation entry that operate on the selected conversation

Action method Purpose

select() Selects the conversation entry, making it the current conversation, and redirects to
the last-rendered view ID when that conversation was active. The previous conversa-
tion is abandoned.

destroy() Selects the conversation entry and ends that conversation. The previous conversation
is abandoned, so it’s necessary to select it again, if it still exists.

Listing 7.1 A table-based conversation switcher component

Table 7.7 The properties on a conversation entry (continued)

Property Type Description

Figure 7.8 A list of workspaces in a user’s session. The user can switch to one of the
workspaces or destroy it.

312 CHAPTER 7 The conversation: Seam’s unit of work
 <rich:dataTable value="#{conversationList}" var="_entry"
 rendered="#{not empty conversationList}">
 <h:column><f:facet name="header">Id</f:facet>
 #{_entry.id}
 </h:column>
 <h:column><f:facet name="header">Is nested?</f:facet>
 #{_entry.nested ? 'yes' : 'no'}
 </h:column>
 <h:column><f:facet name="header">Description</f:facet>
 <h:commandLink action="#{_entry.select}"
 value="#{_entry.description}"/>
 </h:column>
 <h:column><f:facet name="header">Last used</f:facet>
 <h:outputText value="#{_entry.lastDatetime}"
 rendered="#{not _entry.current}">
 <s:convertDateTime type="time" pattern="hh:mm a"/>
 </h:outputText>
 <h:outputText value="current" rendered="#{_entry.current}"/>
 </h:column>
 <h:column><f:facet name="header">Action</f:facet>
 <h:commandLink action="#{_entry.select}" value="Select"/> |
 <h:commandLink action="#{_entry.destroy}" value="Destroy"/>
 </h:column>
 </rich:dataTable>
 </rich:panel>
</h:form>

When a UI command link in one of the rows is activated, the appropriate action
method, either select() or destroy(), is called on the conversation entry associated
with that row. JSF is able to locate the appropriate conversation entry to invoke
because the conversationList is a page-scoped component and is therefore available
on a JSF postback (it is stored in the UI component tree).

 The select() action method on the conversation entry works just like the basic
switcher shown in the previous section. Seam issues a redirect to the last-used view ID
in that conversation. When the destroy() method is invoked, Seam switches to the
selected conversation and ends it. Recall that if you destroy a conversation, all of its
descendants are terminated as well.
DEALING WITH DESTROY

While destroying a conversation appears straightforward, it carries with it some com-
plexities. The destroy() method on the conversation entry restores the background
conversation before terminating it, which means the terminated conversation
remains available—along with all of its context variables—while the current view ID is
rendered again. To get around this problem, you may want to add a navigation rule
that terminates the conversation before redirect and issues a redirect back to the cur-
rent view ID:

<page view-id="*">
 <navigation from-action="#{_entry.destroy}">
 <end-conversation before-redirect="true"/>
 <redirect/>

313Switching between conversations
 </navigation>
</page>

There is another, more serious problem, though. If the user destroys a background con-
versation while working in the context of a long-running conversation, the current
long-running conversation is abandoned. The navigation rule just implemented makes
matters worse since the current page is now rendered without a long-running conver-
sation. If that page requires a long-running conversation (i.e., the conversation-
required attribute on <page> is true), the user would be issued a warning and redi-
rected to a fallback page.

 I don’t mean to scare you off by presenting these complications. It just leads to the
following advice. Only allow background conversations to be destroyed from a page ded-
icated to displaying workspaces. Another way to let users destroy a workspace is to have
them switch to it and then end the conversation in the normal way for that conversation,
such as by clicking a cancel button. While you could develop a more intelligent destroy
method than the one on the conversation entry, it’s probably best to follow this advice.

TIP The table-based conversation switcher is a great way to test conversation
timeouts. Open two tabs in your browser, one that you’re using to test the
application and one that displays the list of workspaces. You can destroy
the active conversation in the workspace tab to see how the application
behaves when the conversation lapses.

The conversation switcher just shown displays both top-level and nested conversations.
It’s also possible to create a switcher that moves solely along the ancestral chain of the
conversation stack component.
TRACING YOUR STEPS WITH BREADCRUMBS

Breadcrumb navigation complements switching between parallel conversations. Each
breadcrumb represents a point where the conversation was branched to create a
nested conversation. Since conversations can be nested to arbitrary depth, it’s possible
to have a long chain of breadcrumbs. Seam exports a list of generational conversation
entries to the session-scoped context variable conversationStack.

 Your application must support a nested conversation model for the conversation
stack to be populated with more than one entry. The example of navigating related
golf courses presented earlier is a perfect use case for this component. The conversa-
tionStack context variable can be used in an iteration component to lay out the
chain as a delimited list:

<h:form id="breadcrumbs" rendered="#{conversation.nested}">
 <s:span rendered="#{not empty conversationStack}">Trail:
 <ui:repeat value="#{conversationStack}" var="_entry">
 <h:outputText value=" > " rendered="#{_entry.nested}"/>
 <h:commandLink action="#{_entry.select}"
 value="#{_entry.description}"/>
 </ui:repeat>
 </s:span>
</h:form>

314 CHAPTER 7 The conversation: Seam’s unit of work
Here’s an example of the output produced by this component. Each item is a link that
restores the appropriate nested conversation:

Trail: Course search results (25) > Talon Course @ GrayHawk Golf Club >

 ➥Raptor Course @ GrayHawk Golf Club

The entries in the conversation stack are selected in the same way as the table-based
conversation switcher. In fact, the only difference is that this list consists of hierarchi-
cal entries rather than parallel conversations.

 You’ve now seen a couple of examples of how to use Seam’s built-in conversation
switchers. Once you’re comfortable using them, you may decide to create more
sophisticated or context-sensitive switchers to suit your needs. Recall that conversation
switchers aren’t the only way to control conversations. The built-in conversation com-
ponent, whose properties and methods are summarized in table 7.7, can be used in
both action methods and views to navigate between conversations related to the cur-
rent one.

 Workspaces and conversation switching offer a new, yet surprisingly refreshing,
experience for the user. They can cut down on the proliferation of tabs in the user’s
browser because users never fear they are “losing their place” by taking a temporary
detour. Instead, you can bring the power of tabs into the application.

 There’s one important aspect of conversations that has yet to be addressed: naviga-
tion. You probably agree that the course wizard could benefit from improved naviga-
tion control. I want to introduce you to how Seam combines conversations and page
flows to provide stateful navigation. In the next section, we bolt Seam’s page flow sup-
port onto the course wizard to ensure the user stays on the right track while populat-
ing the course data.

7.6 Driving the conversation with a page flow
There are two types of navigation models in Seam: stateless and stateful. Up to this
point you’ve worked solely with the stateless navigation model. The stateless model is
ideal if you don’t want to enforce order on the user’s actions. When the navigation’s
state carries meaning in the use case, as in the course wizard example, driving the con-
versation with a page flow is a good fit.

 In Seam, page flows are implemented using a special integration with the jBPM
library. It may seem like overkill to use a Business Process Management (BPM) library
to control a page flow. Understand that Seam is leveraging jBPM for its process definition
language (jPDL) and interpreter, which together serve as a framework for building flow-
based software modules. In this section you’ll see how Seam uses the page flow module
in jBPM. In chapter 14 (online), you’ll learn to use jBPM to drive business processes.

TIP The JBossTools project includes a GUI page flow editor that can help
visualize and maintain page flows like the one presented in this section.

A jPDL descriptor defines the page flow for a single conversation. The conversation
and the page flow share the same life cycle. When we discuss page flows, you’ll
encounter references to a process token. During the conversation, a process token tracks

315Driving the conversation with a page flow
the user’s place within the page flow. The process token always coincides with the cur-
rently rendered page. Navigations resulting from a user interaction are applied rela-
tive to the node at which the process token is positioned.

7.6.1 Setting up a page flow

The course wizard presented earlier is going to be refactored so that it’s driven by a
page flow named Course Wizard, following the steps in figure 7.5. The flow is defined
in the jPDL descriptor courseWizard-pageflow.jpdl.xml. Rather than just dump the
page flow on your lap at one time, I’m going to step through it in phases. The com-
plete descriptor is available in the sample code at the book’s website.

NOTE Page flows descriptors (*.jpdl.xml) are not hot deployable.

First things first: it is necessary to create and “install” the page flow for this example.
The page flow descriptor must reside on the classpath. (For seam-gen projects, it
should be placed in the resources folder.) Next, declare it in the Seam component
descriptor:

<bpm:jbpm>
 <bpm:pageflow-definitions>
 <value>courseWizard-pageflow.jpdl.xml</value>
 </bpm:pageflow-definitions>
</bpm:jbpm>

As of Seam 2.1, files ending in .jpdl that reside on the classpath are detected by the
deployment scanner and registered automatically, making this declaration unneces-
sary. With the page flow descriptor in place, you’re ready to start populating it.

7.6.2 Learning your way around a page flow

The root tag of a page flow is <pageflow-definition>. The name of the page flow is
defined in the name attribute on this node. Seam provides an XSD schema for the page
flow descriptor so that you get all of the tag completion goodness that you enjoy with
the other Seam descriptors. Here’s the outer shell of the page flow descriptor for the
course wizard:

<pageflow-definition xmlns="http://jboss.com/products/seam/pageflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://jboss.com/products/seam/pageflow
 http://jboss.com/products/seam/pageflow-2.0.xsd"
 name="Course Wizard">
</pageflow-definition>

To put the page flow in motion, you have to create a process instance that manages it.
Fortunately, Seam makes this task extremely easy.
STARTING THE FLOW

You begin a page flow using the same directive that you use to begin the conversation.
Regardless of whether you’re using the @Begin annotation, the <begin-conversation>
page descriptor tag, or the Seam UI component tags, you specify the page flow definition

316 CHAPTER 7 The conversation: Seam’s unit of work
in the pageflow attribute. The value of this attribute is the name of the page flow, which
was defined above. When the conversation begins, an instance of the page flow defini-
tion is created and the process token is advanced to the start node.

 Here, the @Begin annotation has been augmented to initiate the Course Wizard page
flow when the addCourse() method on the CourseWizard component is invoked:

@Begin(pageflow = "Course Wizard")
public void addCourse() {
 course = new Course();
 course.setFacility(entityManager.find(Facility.class, facilityId));
}

When the process instance that tracks the page flow is created, it immediately looks for
a start node. There are two options: <start-state> or <start-page>. If you’re starting
a page flow from an action, you choose the <start-state> node. This approach has
been chosen for the course wizard. An example of using the <start-page> node is
shown later. The <start-state> of the course wizard page flow is defined as follows:

<start-state>
 <transition to="basicCourseInfo"/>
</start-state>

Let’s now look at how navigation events are handled.
NAVIGATING TO A PAGE

The <transition> node is analogous to the <rule> node in the page descriptor. In
this case, it’s the name attribute that is matched against the outcome value—the return
value—of the action method. If there’s no outcome value, as is the case with the
addCourse() method, the <transition> element without a name attribute is selected.

 A transition implies a target. The to attribute specifies the name of the node to
which to advance. There are four main nodes that can appear in the page flow defini-
tion after the start state. These nodes are summarized in table 7.9.

The jPDL <page> node indicates which view ID should be rendered when the process
token arrives. The <page> node is the “wait” state in the page flow process.

NOTE Don’t confuse the <page> node from jPDL with the one used in the Seam
page descriptor. They are not the same.

Table 7.9 The main nodes in the page flow descriptor

Node name Purpose

page Renders a JSF view and declares transitions that are used upon exiting that view

decision Evaluates an EL expression and follows a declared transition based on the result

process-state Used to spawn a subpage flow

end-state Terminates the process instance without ending the long-running conversation; typically
used to end a subpage flow

317Driving the conversation with a page flow
The following <page> node stanza renders the first screen in the course wizard, which
is called on by the start state:

<page name="basicCourseInfo"
 view-id="/coursewizard/basicCourseInfo.xhtml" redirect="true">
 <transition name="cancel" to="cancel"/>
 <transition name="next" to="description"/>
</page>

Notice the nested <transition> elements. Since <page> is a “wait” state node, it
means that these transitions don’t apply until an action is invoked from the view ID.
You can think of them as exit transitions. We’ll get back to those shortly.

 If the redirect attribute is included on the <page> node and has a value of true,
then Seam performs a redirect prior to rendering the page. Doing so resets the URL
in the browser so that it reflects the current page. The redirect also prevents the situa-
tion where the user hits the refresh button and is prompted with a confusing message
about resubmitting post data. More about browser buttons in a moment.

The redirect functionality can also be declared using a nested
<redirect/> element. I prefer the redirect attribute; I find it more
intuitive since it is adjacent to the view-id attribute to which it applies.

Let’s put this page flow configuration aside for now and look at how to start the flow
the other way, beginning with the <start-page> node.
INITIALIZING A PAGE FLOW LAZILY

If the conversation that manages the page flow begins in the Render Response phase, per-
haps by a factory, it isn’t possible to invoke a navigation event at the start of the flow.
Therefore, the start of the page flow must be declared using a <start-page> node.

 Let’s say that we want to start the course wizard by navigating the user directly to the
first page. To support this starting point, the course context variable referenced on that
page is created by a @Factory method, which also begins the long-running page flow:

@Out private Course course;
...
@Begin(pageflow = "Course Wizard")
@Factory("course")
public void initCourse() {
 course = new Course();
 course.setFacility(entityManager.find(Facility.class, facilityId));
}

In this scenario, the start of the page flow is declared using a <start-page>. The value
of the view-id attribute must match the view ID of the first page in the course wizard:

<start-page name="basicCourseInfo"
 view-id="/coursewizard/basicCourseInfo.xhtml">
 <transition name="next" to="description"/>
 <transition name="cancel" to="cancel"/>
</start-page>

Note that aside from the use of <start-page>, this element is equivalent to the
<page> element configured in the first scenario. Now, on to the transitions.

AUTHOR
NOTE

318 CHAPTER 7 The conversation: Seam’s unit of work
7.6.3 Advancing the page flow

As mentioned earlier, page flow transitions work just like JSF navigation rules, chosen
based on the outcome of the action method. In lieu of using an action method, the
outcome can be specified as a literal value in the action attribute of the command
component tag, which is the approach often used in page flows. Here are the buttons
on the first page of the wizard:

<s:button id="cancel" action="cancel" value="Cancel"/>
<h:commandButton id="next" action="next" value="Next"/>

When either button is activated, Seam locates the matching <transition> node and
advances the token to the node whose name matches the value in the to attribute. In
this case, the targets nodes are named description and cancel:

<page name="description"
 view-id="/coursewizard/description.xhtml" redirect="true">
 <transition name="cancel" to="cancel"/>
 <transition name="next" to="holeData">
 <action expression="#{courseWizard.prepareHoleData}"/>
 </transition>
</page>

<page name="cancel" view-id="/CourseList.xhtml" redirect="true">
 <end-conversation before-redirect="true"/>
</page>

Now things are starting to get interesting. Let’s begin with the cancel transition.
ENDING SO SOON?
The cancel transition advances to the <page> node named cancel. There, we see
another familiar element, <end-conversation>. This element ends the conversation
upon entering the <page> node. In this case, the conversation is ended prior to the
redirect, which immediately follows. As a result, the conversation that served the page
flow is wiped out before CourseList.xhtml is rendered. At this point, the process
instance is effectively terminated (no <end-state> is needed).

 The transition to holeData is unique in that it executes an action before advancing
to the target node. Let’s see what that is all about.
INVERTING THE CONTROL

Using an <action> node in a page flow is an inversion of the typical navigation mech-
anism in JSF. Rather than declaring an action method expression on a UI command
component and following it with a navigation rule based on the action method’s out-
come, the outcome comes first and then an action method is invoked. What’s nice
about the inverted approach is that it abstracts the action method expression from the
view. All the UI command component says is “next.” The page flow descriptor takes it
from there. You can use either approach.

 Now it’s decision time. Page flows can consult a component’s state to determine
which navigation path to follow, thus enabling conditional navigation.
PERFORMING LOGIC IN A TRANSITION

Although the game of golf is designed to level the playing field by giving men and ladies
different par and handicap values, many courses don’t make that distinction. Therefore,

319Driving the conversation with a page flow
when the user is presented with the form to enter the men’s par and handicap data, a
checkbox appears to indicate whether it’s necessary to provide a different set of data for
the ladies. The checkbox’s state is consulted in the page flow to determine whether it’s
necessary to return to the holeData.xhtml page to capture the additional data:

<h:selectBooleanCheckbox rendered="#{gender == 'Men'}"
 value="#{courseWizard.ladiesDataUnique}" /> Unique data for ladies?
<h:commandButton action="Men" value="Next"
 rendered="#{gender == 'Men'}"/>
<h:commandButton action="Ladies" value="Next"
 rendered="#{gender == 'Ladies'}"/>

The decision of whether to return to the holeData.xhtml page is handled by the decide-
HoleData node. The value of the expression attribute on the <decision> node, which
is a value expression, is resolved immediately upon entry and its value is used to deter-
mine where to transaction next:

<page name="holeData"
 view-id="/coursewizard/holeData.xhtml" redirect="true">
 <transition name="cancel" to="cancel"/>
 <transition name="Men" to="decideHoleData">
 <action expression="#{courseWizard.submitMensHoleData}"/>
 </transition>
 <transition name="Ladies" to="teeSet">
 <action expression="#{courseWizard.submitLadiesHoleData}"/>
 </transition>
</page>

<decision name="decideHoleData"
 expression="#{courseWizard.ladiesHoleDataRequired}">
 <transition name="true" to="holeData"/>
 <transition name="false" to="teeSet"/>
</decision>

Once all of the data has been collected for the course, the user arrives at the review
screen. The final two <page> nodes that wrap up the wizard are defined as follows:

<page name="review" view-id="/coursewizard/review.xhtml" redirect="true">
 <transition name="cancel" to="cancel"/>
 <transition name="success" to="end">
 <action expression="#{courseHome.setCourseId(course.id)}"/>
 </transition>
 <transition to="review"/>
</page>

<page name="end" view-id="/Course.xhtml" redirect="true">
 <end-conversation/>
</page>

The review screen assumes the use of an action method in the UI command button,
since the transitions are set up to handle the outcome of that method:

<h:commandButton id="save" action="#{courseWizard.save}" value="Save"/>

By putting the method-binding expression in the UI, we can leverage the transition
action to set the newly established ID of the course so that the course can be displayed
once the page flow is complete.

320 CHAPTER 7 The conversation: Seam’s unit of work
 You’ve now completed your very first page flow! While page flows are fresh in your
mind, I want to address two additional features. First, let’s talk about those pesky
browser buttons, back and refresh.

7.6.4 Addressing the back button

If you’ve heard it asked once, you’ve heard it a hundred times: “Can the back button
be disabled?” Lucky are those who are so blissfully unaware. It’s a stateless world and
we have to learn to live in it. Fortunately, Seam addresses the back button “problem”
not by disabling the back button, but by being smart enough to know what to do
when it’s used.
BACKING UP IN THE FLOW

If, during a page flow, users attempt to return to an earlier page and resubmit the
form, Seam will gracefully redirect them to the current page—the <page> node where
the process token is positioned. The same goes for when users click the refresh button
and the browser attempts to resubmit the form. Of course, the refresh problem has
already been solved by performing a redirect during the transition, but it’s still nice to
know that Seam prevents the double submit anyway.

 Holding the user to the current page is the default behavior for a page flow. You
may decide that it’s permissible for users to back up in the flow to modify or review
their work. If you want to sanction this behavior, you need to bake it into the page
flow. You enable use of the back button by setting the back attribute on the <page>
node to enabled:

<page name="review" view-id="/coursewizard/review.xhtml"
 redirect="true" back="enabled"> ... </page>

This setting lets the user return to any page leading up to this page and step through
the flow again. The only downside is that once you open this door, you have to deal
with the possibility of the user executing parts of the page flow over again.
WHAT’S DONE IS DONE

The back button can be used to do more than just move around in the current con-
versation. Its most troubling aspect is that it allows the user to back up into an old con-
versation and attempt to interact with it again. Fortunately, Seam takes notice and
scorns this behavior.

 Let’s say that the user previously posted a transaction that ends a conversation
(perhaps submitting an order). If the user backs up to the form and tries to submit it
again, Seam detects that the conversation has already ended and raises a warning. If a
no-conversation-view-id is configured in the page or page flow descriptor, Seam
also redirects the user to this fallback page. This check is applied to both regular con-
versations and conversations managed by a page flow.

 That wraps up our introduction to page flows. Page flows have a wealth of addi-
tional features, including the ability to define subflows, set the timeout per page, end
tasks, initiate a business process, and even tap into the native extension points of the
jPDL. You can seriously micromanage the user’s interaction with your system using

321Ad hoc conversations
page flows. It’s a lot to configure, but then again, if power is what you’re after, it may
be worth the trouble.

 The course wizard is an example of a well-defined conversation, having explicit
begin and end points and a logical progression in between. A conversation can also
be combined with free-form interaction to let the user mold the state and direction
of the user interface. An example of this type of conversation is presented in the
next section.

7.7 Ad hoc conversations
While there are standard use cases that are modeled best using a page flow, such as a
store checkout process or wizard-based form, the most popular web-based applica-
tions don’t try to enforce a structure on the user. Instead, they let the user see and do
everything at once. To support these nonlinear interactions, the state of the applica-
tion needs to be tracked and managed. Once again we look to a conversation to han-
dle this task. In this case, an ad hoc conversation is used, which is identified by its
omission of a well-defined flow.

7.7.1 Open for business

I like to think that when an ad hoc conversation begins, it becomes open for business.
Any widget on the page can offer to let the user engage in that conversation, to con-
tribute, modify, or reduce its state. As before, this activity occurs independently of
other conversations in the background or in other tabs.

 A good example of an ad hoc conversation from the real world is a flight search
engine. The conversation begins with a form that captures the most elemental crite-
ria: the origin and destination cities and dates of travel. The initial search brings back
a list of all matching flights. From that point, the user can tune a slew of additional cri-
teria and watch the results change. But that’s just the beginning. Other possible inter-
actions include expanding the details about a flight, marking a flight for comparison,
seeing flight trends for the current trip, or changing the currency displayed.

 The conversation provides several benefits in this situation:

■ Keeps track of the state of the data in the UI: selected, visible, or expanded
■ Acts as a near cache to avoid database hits
■ Maintains the persistence context to ensure entity instances remained managed

Although the JSF UI component tree was designed to support the first two cases, a
conversation can supplement the UI component tree to give the state more longevity.
The final point is covered in detail in the next two chapters.

 To see these benefits in action, the comparison feature will be distilled from the
flight search example and used in the golf course directory. An ad hoc conversation
will host a collection of courses that the user marks. The selections are then compared
side by side on a comparison page. A page action is used to begin (or join) a conversa-
tion when the /CourseList.xhtml page is requested:

<begin-conversation join="true"/>

322 CHAPTER 7 The conversation: Seam’s unit of work
Next, a link is added to each row in the courses table that lets the user mark the
course for comparison:

<s:link action="#{courseComparison.mark}" value="Mark">
 <f:param name="courseId" value="#{_course.id}"/>
</s:link>

Although it’s not shown here, you could also add a link to unmark a previously
marked course. A minimal version of the component that manages the comparison,
named courseComparison, is shown in listing 7.2.

package org.open18.action;
import ...;

@Name("courseComparison")
@Scope(ScopeType.CONVERSATION)
public class CourseComparison implements Serializable {
 @In protected EntityManager entityManager;

 @RequestParameter protected Long courseId;

 @Out("readyToCompare")
 protected boolean ready = false;

 @DataModel("comparedCourses")
 protected Set<Course> courses = new HashSet<Course>();

 public void mark() {
 Course course = entityManager.find(Course.class, courseId);
 if (course == null) return;
 courses.add(course);
 ready = courses.size() >= 2;
 }
}

Each time a course is marked, both the readyToCompare and comparedCourses con-
text variables are outjected to the conversation scope. Once at least two courses have
been marked, the readyToCompare context variable will be set to true and a button
can be added that takes the user to the comparison screen:

<s:button value="Compare" view="/CompareCourses.xhtml"
 rendered="#{readyToCompare}"/>

All that’s left is to create the course comparison screen and show the courses.

7.7.2 Show me what you’ve got

The courses to be compared reside in the conversation once a course has been
marked. When the user is taken to the course comparison page, it’s just a matter of
iterating over this collection to render the comparison.

<h:panelGrid columns="#{comparedCourses.rowCount + 1}">
 <rich:panel>
 <f:facet name="header"> </f:facet>

Listing 7.2 A conversation-scoped component used for comparing courses

Adds extra
column for
labels

323Summary
 <div>Location:</div>
 ...
 </rich:panel>
 <c:forEach items="#{comparedCourses.wrappedData}" var="_c">
 <rich:panel>
 <f:facet name="header">#{_c.name}</f:facet>
 <div>
 #{_c.facility.city}, #{_c.facility.state}
 </div>
 ...
 </rich:panel>
 </c:forEach>
</h:panelGrid>

The reference to facility from course is a lazy association. It can be loaded here since
the persistence context is scoped to the conversation and therefore the course entities
remain managed. You’ll learn the importance of persistence context scoping in the
next two chapters.

 Since the CompareCourses.xhtml page requires that you have a conversation
active, you may want to enforce this restriction in the page descriptor:

<page view-id="/CompareCourses.xhtml" conversation-required="true"
 no-conversation-view-id="/CourseList.xhtml"/>

In this section, you’ve learned how to use an ad hoc conversation that is capable
of accumulating state until it’s time for the user to act on it, such as to produce a
report. This style of conversation is useful in situations where the possible interactions
are numerous.

7.8 Summary
Users become frustrated when their story is forgotten, a far too frequent occurrence
in call centers and web applications. If the application fails to track state, kicking the
user back to the starting point as a result, the user will be ready to hang up on your
application. Seam’s conversation remedies this situation by propagating state held in
one request to the next.

 This chapter introduced the conversation as a stateful context in which context vari-
ables for a use case are stored. You learned two important things about a conversation:
that it’s a managed and isolated segment of the HTTP session, identified by its conver-
sation id, and that it represents a unit of work from the perspective of the user. At times,
a unit of work may span only one request, which you learned is modeled as a temporary
conversation, ensuring that conversation-scoped variables are maintained until the
view is rendered. To extend the unit of work across a sequence of pages, you learned
that you must use a propagation directive that begins a long-running conversation.
Toward the end of the chapter you learned that a long-running conversation can either
be managed by a page flow descriptor or left open to be used in an ad hoc manner.

 Much of the chapter was spent going over various options for switching a conver-
sation between its three states: temporary, long-running, and nested. The options
include annotations, page descriptor elements, UI component tags, and methods on

Loads facility
on demand

324 CHAPTER 7 The conversation: Seam’s unit of work
the built-in conversation component and conversation entry. The propagation
directives are what set the conversation apart from other contexts covered so far in
the book.

 The discussion turned from singular to plural as you learned that you can have
multiple conversations going at once, either sharing a nested relationship or as iso-
lated background conversations. Seam acknowledges multitasking through the use of
workspaces, providing several built-in conversation switchers that allow the user to
restore previously abandoned conversations.

 This chapter established a foundational knowledge of conversations, but it’s really
just the beginning. One of the primary uses of a conversation is to manage the persis-
tence context. Before you can learn about Seam’s pioneering work with the persis-
tence context, you need to learn about Java persistence, which is where the next
chapter picks up.

Understanding
 Java persistence
Java persistence is the mechanism by which object-based entities are translated
between the Java runtime environment and a relational database. It’s undoubtedly
the most popular feature of the Java EE platform, perhaps even the Java language.
This popularity can be attributed to the fact that persisting data is central to nearly
all enterprise applications. For that reason, persistence is a core part of Seam. In
fact, you can’t get very deep into a Seam application without encountering it. As
you’re probably aware, you’ve been using Java persistence in the sample applica-
tion since chapter 2—though solely the Java Persistence API (JPA) variety.

 This chapter provides a crash course in Java persistence and prepares you to use
it in Seam. The two frameworks covered are JPA—the standard persistence
mechanism in Java EE—and Hibernate—the popular open source persistence
framework–turned–JPA implementation, both of which Seam support out of the box.
Given the fact that these APIs, and Seam’s built-in components to support them, are

This chapter covers
■ Managing entities
■ Using transactions
■ Choosing between JPA and Hibernate
325

326 CHAPTER 8 Understanding Java persistence
so similar, this chapter establishes a persistence terminology that can be used to address
them both in a general way. At the end of this chapter, I compare JPA and Hibernate and
you’ll learn whether it’s worth adhering to the Java EE standard or better to venture onto
the bleeding edge with Hibernate, or if it’s possible to have it both ways. Since you can’t
get far persisting data in the absence of explicit transaction boundaries, this chapter also
covers the role transactions play in the Java persistence mechanism.

 One important point missing from the discussion in the previous chapter is the
role that the persistence context plays in the conversation. In this chapter, you’re
introduced to the persistence context, and I show you how to extend it across multiple
HTTP requests. In the next chapter, you’ll discover how Seam offers to manage the
extended persistence context, using the conversation as a vehicle, so you can align the
lifetime of the persistence context to the boundaries of a use case.

 Trying to cover all aspects of Java persistence in a single chapter would be impossi-
ble, so the focus here is on understanding the concepts you need to know when using
it with Seam. Besides, a number of books are available that explain the fundamentals
of transactions and persistence using either JPA or Hibernate in tremendous detail. I
highly recommend Java Persistence with Hibernate (Manning 2007) to start, as well as
EJB 3 in Action (Manning 2007), JPA 101 Java Persistence Explained (SourceBeat 2008),
and Spring in Action, Second Edition (Manning 2007). That only scratches the surface
of what’s available.1 By the end of this chapter, you’ll be ready to decide which persis-
tence API to use and learn what Seam brings to the table with its own transaction and
persistence management.

8.1 Java persistence principles
Persisting data, and doing it consistently and reliably, is vital to enterprise business
applications. But transactions and persistence are complex subjects. They are both
technically challenging—to the point of being academic—and they can be difficult to
manage and tune. The complexity is magnified by the fact that a lot of misinformation
exists out there. Once you start down the wrong path, it can be expensive and time
consuming to correct your approach. The goal of this section is to “reset” your view of
Java persistence and examine its architecture.

8.1.1 Establishing expectations

Developers shouldn’t expect to sprinkle magic pixie dust on POJOs in hopes they will
become persistent. You have to understand the underlying mechanisms and spend a
respectable amount of time dedicated to getting the mappings to the database right.
Java persistence is intended to make the process of persisting objects to the database
easier, but the impression you get from reading many developer blogs is that Java
persistence is expected to do all the work. This shallow, magic pixie dust approach is
what got folks who spread fear, uncertainty, and doubt (FUD) about the capabilities
of Hibernate and JPA into such hot water in the first place.

1 How many Hibernate books do we need? (See http://in.relation.to/Bloggers/MyStackOfHibernateBooks.)

http://in.relation.to/Bloggers/MyStackOfHibernateBooks

327Java persistence principles
 In contrast to what may have been reported in blogs, these frameworks are stun-
ningly adept at handling and optimizing persistence operations. Sadly, developers are
doomed from the start because of problems that stem from the stateless architecture
of the frameworks that try to manage the persistence resources, not from poor or
careless application code. For instance, the persistence context is often scoped to the
thread-based (or database) transaction, or worse, each persistence operation. This
usage scenario is the nexus of the most frequently reported “bug” in Hibernate: the
unnerving LazyInitializationException. In this chapter and the next, you’ll learn
why this exception happens and how not to fear it anymore. In the process, you’ll dis-
cover that the persistence context was intended to represent a unit of work (i.e., use
case) and should therefore be held open until that work is complete.

 Throughout this chapter, you can expect to learn about not only Java persis-
tence but also the principles behind its design and how it is supposed to work. You’ll
then appreciate the vital enhancements that Seam weaves into Java persistence,
introduced in the next chapter. The definitions I present here are going to be inte-
gral to the remainder of the book, where I’ll assume you know how to use the persis-
tence mechanism.

 Fortunately for you, seam-gen sets up the persistence configuration so that you can
focus on learning the core Seam concepts right out of the gate. The basic seam-gen
configuration includes a data source connection pool, a persistence unit, a persis-
tence manager, and a transaction manager. In chapter 2, you used seam-gen to build a
set of entity classes and transactional components to manage the database by reverse-
engineering the database schema. But you won’t always have seam-gen to do all the
work for you, so you need to take the time to learn how to get started with Java persis-
tence in a more hands-on manner and understand its moving parts.

8.1.2 The four pillars of Java persistence

From the perspective of the database, Java persistence is no different than any other
database client. It performs read and write queries—nothing more, nothing less.
However, from the developer’s perspective, Java persistence is so much more than
that. In fact, the whole reason that Java persistence was created (and when I say Java
persistence I am referring to object-relational mapping [ORM]) is to extract the SQL
out of the code and replace it with object manipulation. The database operations take
place transparently to reflect the changes in the state of the objects.

 Don’t assume, though, that Java persistence was meant to shun SQL as an inferior
technology. Rather, the goal is to take the burden of performing that SQL off you, the
developer, a majority of the time and allow you to form an object representation of the
database that fits more cleanly with the rest of the object-oriented application. The four
pillars of Java persistence that form this abstraction over SQL are as follow:

■ Entities (entity classes)
■ The persistence unit (represented at runtime by a persistence manager factory)
■ The persistence manager
■ Transactions

328 CHAPTER 8 Understanding Java persistence
NOTE Java persistence encompasses both JPA and the native Hibernate API.
Hibernate shares a close resemblance to JPA and therefore the persis-
tence terminology introduced in this section applies to both frameworks.
When I present code, only the JPA classes are shown.

Figure 8.1 illustrates the relationship between these constituents. The persistence unit
organizes and manages metadata, which maps entities to the database. The persistence
manager factory obtains the mapping metadata from the persistence unit and uses that
information to create persistence managers. The persistence managers are responsible
for moving entities between the Java runtime and the database, a process known as the
entity life cycle. Operations performed by the persistence manager should always be
wrapped within the scope of a transaction. A transaction can also encompass operations
performed by two or more persistence managers as a single atomic unit.

The fundamental goal of Java persistence is to move data between entity instances and
the database. You’ve already used entities quite extensively throughout this book.
Let’s quickly shed some light on what has already been at play.

8.2 Entities and relationships
Entities in an ORM tool, such as JPA or Hibernate, are the join point between the
application and the underlying database, transporting data between them, as illus-
trated in figure 8.2. Because they are such a central piece of the application, the enti-
ties should be treated as more than just dumb data holders. Seam allows you to bind
entity classes directly to a JSF view to capture form data, establish prototypes for new

Persistence
Unit

Persistence
Manager
Factory

Persistence
Manager

Persistence
Manager

Persistence
Manager

managed

detached

transient

removed

Entity Life Cycle

Transaction TransactionTransaction Figure 8.1 The Java persistence ecosystem

Figure 8.2 Managed
entities are used to
exchange data between
the application and the
database.

329Entities and relationships
transient instances, and lazy-load data in the view. These objects transcend the layers
of a Seam application.

 While the entities serve as a representation of the data stored in the database
tables, they don’t have to mimic the database schema. That gap is filled by the map-
ping metadata.

8.2.1 Mapping metadata

The ORM tool gives you free reign to assemble your entity graph as you choose, perhaps
by following domain-driven design or other common object-oriented principles. You
then use the mapping metadata of the ORM tool to form-fit the classes to the database
schema. The flexibility that the mapping provides includes, but is not limited to, pre-
venting certain properties in the entities from being persisted to the database (using
@Transient), using different names for the properties that are mapped to their respec-
tive columns (using @Column), organizing tables along an inheritance hierarchy (using
@Inheritance), subdividing a table across multiple entities (using @SecondaryTable),
or molding data from a single table into composite objects (using @Embedded). Natu-
rally, there are limits to how far you can stretch the mappings. If the mapping require-
ments are too steep and the object model is rigid, you have to question whether the
database schema is serving its purpose of representing the domain of the business or
whether ORM is the right solution to your problem.

 One of the benefits of having mapping metadata is that it can be used to export
the schema at runtime and have it build the database tables, foreign keys, and con-
straints automatically. You’ve taken this approach for each entity that was added to
Open 18 since running seam generate in chapter 2. You might recall the following
two questions from the seam-gen questionnaire:

■ Are you working with tables that already exist in the database?
■ Do you want to drop and re-create the database tables and data in import.sql

each time you deploy?

Had you answered no for the first question and yes for the second, you could’ve
started your application from existing entities alone. You’d generate the user inter-
face using the command seam generate-ui and Hibernate would build the database
each time the application starts. You should appreciate that mapping metadata can
either be the result of bottom-up development or consulted for top-down develop-
ment (to follow up on a point made back in chapter 2).

 Let’s next explore how entities help make the task of managing persistence data
simpler, particularly related data.

8.2.2 Transitive persistence

One of the core benefits of entities in ORM is transparent association handling.
There are two sides to this feature. The first side is the read operations. Managed
entities can load associated entities on demand (a feature known as lazy loading) by
traversing them within the confines of an active persistence context (and ideally

330 CHAPTER 8 Understanding Java persistence
within a transaction). The other side is the write operations. When an entity is
flushed to persistence storage, modifications to any associated objects are also pro-
cessed and synchronized with the database. When a managed entity is removed, the
removal may cascade into child entities, depending on the attributes in the mapping.
This process is referred to as transitive persistence.

 Entities can save you a lot of time, not because they shield you from SQL but
because they handle the majority of the grunt work necessary to store related objects
in a database. However, to use ORM effectively, you must manage the persistence con-
text and transactions appropriately—or confusion reigns.

8.2.3 Bringing annotations to the persistence layer

If you’ve bought into the benefits of annotations, you’ll likely use them to configure
your entities. The standard Java persistence annotations (in the package javax.
persistence.*) work in both JPA and Hibernate. In addition to the standard JPA
annotation set, Hibernate has its own “vendor” annotations to support additional
mapping features and association types that aren’t part of the JPA specification. Hiber-
nate strives to be the prototype for future versions of the JPA specification, so some of
these annotations represent early versions of what may become available in JPA. Seam
also takes advantage of some of Hibernate’s other vendor extensions, such as manual
flushing of the persistence context, covered in the next chapter.

 The @Entity annotation is used to declare a Java class as an entity. You’ve seen this
annotation used many times throughout this book, often accompanying the @Name
annotation to allow the class to serve a dual purpose as persistence entity and Seam com-
ponent. Listing 8.1 shows an excerpt of the Course entity, which is used to store infor-
mation about a golf course. Several key mapping annotations are shown in this listing
that define how the class maps to the table in the database.

package org.open18.model;
import ...;

@Entity
@Table(name = "COURSE")
public class Course extends Serializable {
 private Long id;
 private Facility facility;
 private String name;
 private Set<Hole> holes = new HashSet<Hole>(0);
 ...

 @Id @GeneratedValue
 @Column(name = "ID", unique = true, nullable = false)
 public Long getId() { return this.id; }
 public void setId(Long id) { this.id = id; }

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "FACILITY_ID", nullable = false)
 public Facility getFacility() { return facility; }
 public void setFacility(Facility facility) {

Listing 8.1 A Java persistence entity class

331The persistence unit
 this.facility = facility; }

 @Column(name = "NAME", nullable = false, length = 50)
 public String getName() { return this.name; }
 public void setName(String name) { this.name = name; }

 @OneToMany(cascade = CascadeType.ALL,
 fetch = FetchType.LAZY, mappedBy = "course")
 public Set<Hole> getHoles() { return this.holes; }
 public void setHoles(Set<Hole> holes) { this.holes = holes; }
 ...
}

It is also possible to define all of the entity metadata in XML mapping files, regardless
of whether you’re using JPA or Hibernate. In JPA, all of the XML mappings are
declared in the file META-INF/orm.xml. Hibernate reads XML mappings from indi-
vidual *.hbm.xml files. Consult the reference document for Hibernate2 or the Hiber-
nate EntityManager (JPA)3 for details on using the mapping descriptors in the
respective frameworks.

 The metadata alone is not enough to allow these classes to be persisted. They must
be associated with a persistence unit.

8.3 The persistence unit
The persistence unit groups the entities to be managed and determines how they are
to be associated with a database runtime. It also indicates which transaction type is to
be used when the database operations occur. The persistence unit consists of three
main parts:

■ Entity metadata—A set of all annotated classes or XML mappings to be managed,
containing instructions for how Java classes and bean properties are mapped to
relational database tables. It also indicates the relationships between entities
and defines the global fetching strategy used to traverse relationships.

■ Persistence unit descriptor—Specifies which persistence provider to use (not appli-
cable for native Hibernate), database connection information, transaction type
and lookup, and vendor extensions.

■ Persistence manager factory—The runtime object representing the configuration
of the persistent unit as a whole. The factory is used to create individual persis-
tence managers that provide the services for managing entity instances.

It’s important to understand the distinction between application-managed and con-
tainer-managed persistence managers. The former is where the application bootstraps
the persistence unit and is responsible for creating its own persistence managers. The
latter, which only applies to JPA, is where the container loads the persistence unit and
dishes out persistence managers as requested. Regardless of which style of Java persis-
tence you’re using, you must first set up a persistence unit.

2 http://www.hibernate.org/hib_docs/reference/en/html_single/
3 http://www.hibernate.org/hib_docs/entitymanager/reference/en/html_single/

http://www.hibernate.org/hib_docs/reference/en/html_single/
http://www.hibernate.org/hib_docs/entitymanager/reference/en/html_single/

332 CHAPTER 8 Understanding Java persistence
8.3.1 Defining a JCA data source

There is one prerequisite for setting up a persistence unit: a data source. After all, the
goal of persistence is to talk to a database, and the data source provides the channel to
that resource. Application servers employ JCA to allow a database resource adapter to
integrate with the server connection pooling. What that basically means is that it’s pos-
sible to stick a database connection configuration into JNDI and have it managed as a
connection pool. Data sources can be of the nontransaction, local transaction, or XA
transaction variety. Up until now, you’ve been using a local transaction, but you’ll get a
chance to play with XA transactions in chapter 14 (online).

 In JBoss AS, files that end in *-ds.xml are used to install a data source. seam-gen sets
up one of these deployment artifacts for each profile, dev and prod, and puts it in the
resources folder of the project. When the build runs, the file is shipped off to JBoss AS.
If you’re using a different application server, such as GlassFish, you may set up the
data source in the administration panel instead. As an alternative, you can define your
database connection (JDBC) configuration directly in the persistence unit. In the case
of JPA, this is done with vendor-specific JDBC properties (supported in Hibernate,
TopLink Essentials, and OpenJPA).

 Once the data source is in place, you’re ready to configure the persistence unit.
The persistence unit descriptor hosts the only XML required in Java persistence.

8.3.2 The persistence unit descriptor

The persistence unit descriptor brings all the entity classes together under a single
persistence unit and hitches them to an actual database. For JPA, the persistence unit
descriptor is META-INF/persistence.xml, and for Hibernate it is hibernate.cfg.xml.
Each has a distinct XML schema. Listing 8.2 shows the JPA persistence unit descriptor
used in the Open 18 directory application.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="open18" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>open18Datasource</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="validate"/>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.transaction.manager_lookup_class"
 value=
 "org.hibernate.transaction.JBossTransactionManagerLookup"/>

Listing 8.2 A JPA persistence unit descriptor

B E
C

D

F

333The persistence unit
 </properties>
 </persistence-unit>
</persistence>

The file in listing 8.2 identifies several key pieces of information that tell the container
how to operate. The fact that there is only one <persistence-unit> node B indi-
cates that we’re connecting to a single database. There’s a one-to-one mapping
between the persistence unit and the database. Therefore, if you’re working with sev-
eral different databases, or one or more read-only replicas of a master database, you’ll
need multiple persistence units, and hence multiple <persistence-unit> nodes.

 The persistence unit configuration B creates a persistence unit with the name
open18, C identifies Hibernate as the JPA provider, D indicates which JNDI data
source the persistence manager should use to obtain connections to the database, E
configures the persistence manager to use JTA transactions, and F specifies which
class maintains the JNDI names of the UserTransaction and TransactionManager
objects. The TransactionManager lookup is only relevant for application-managed
persistence. You can also use resource-local transactions—often referred to as entity
transactions—in environments where JTA isn’t available or if you’d rather not use it.
The remaining properties in the descriptor are specific to the Hibernate provider.

NOTE The data source defined in the <jta-data-source> node (or optionally
the <non-jta-data-source> node) of the persistence unit descriptor
refers to a javax.sql.DataSource in JNDI. seam-gen creates applications
that use this configuration. Alternatively, you can configure a JDBC con-
nection using vendor-specific persistence unit properties. The JNDI data
source is typically a better choice to offload management of this resource.
Note that Seam uses the Embedded JBoss container to provide a local
JNDI registry in which to store the data source in a testing environment.

So why use annotations for the mappings and XML for the persistence unit configura-
tion? After all, they both represent metadata about how entity classes tie in to database
columns and tables. The answer involves the essence of ORM.

 One of the core principles of Hibernate and JPA is to abstract vendor-specific data-
base information from the Java code. The entity mappings are generally fixed, regard-
less of which database you use, so annotations are appropriate. It’s still possible to
override the entity mappings in XML if you really need to, perhaps because a different
table-naming convention is used in a given database. This setup gives you the rapid
development of using annotations without losing the flexibility of configuration pro-
vided by an XML descriptor. Where XML is best suited, though, is in defining the SQL
dialect, transaction manager, connection URL, and credentials, which are practically
guaranteed to change when you switch among databases or deployment environ-
ments. These property values can even be tokenized so that a build can sweep through
and apply the appropriate replacement values.

 There are important differences in how JPA handles the persistence unit descriptor
in comparison to Hibernate. In JPA, the following rules apply:

334 CHAPTER 8 Understanding Java persistence
■ The persistence unit descriptor must be located at META-INF/persistence.xml.
■ Annotated classes are automatically discovered unless indicated otherwise in

the descriptor by declaring the <exclude-unlisted-classes> element.4

■ In a Java EE environment, if META-INF/persistence.xml is present, the persis-
tence units in this descriptor will automatically be loaded.5

As you can see, some optimizations in JPA allow it to follow configuration-by-exception
semantics. The fact that you can’t change the location and name of the persistence
unit descriptor may leave you scratching your head as to how to define multiple persis-
tence units. Unlike the Hibernate configuration, JPA supports multiple persistence
units within the same descriptor, so you don’t need separate files.

 Hibernate does less work for you when setting up a persistence unit, perhaps as a
trade-off for giving you more control. If you’re using JPA annotations, you must explicitly
define each class in the Hibernate configuration file. You also need multiple Hibernate
configuration descriptors (hibernate-database1.cfg.xml, hibernate-database2.cfg.xml)
if you need multiple persistence units. Finally, Hibernate isn’t automatically loaded into
the Java EE environment. If you want to stay away from the proprietary API and config-
urations of native Hibernate, you’re better off using Hibernate as a JPA provider. Putting
JPA in front of Hibernate permits you to switch to a different JPA vendor more easily if
you feel the need to do so.

 Reading the persistence unit descriptor, interpreting the XML mappings, and scan-
ning the classpath for entity annotations are expensive operations. They should be
done only once, when the application boots. That’s the role of the persistence man-
ager factory.

8.3.3 The persistence manager factory

When the persistence unit is loaded, either by the container or by the application, its
configuration is stored in a runtime object known as the persistence manager factory.
In JPA, the persistence manager factory class is EntityManagerFactory. The equiva-
lent class in Hibernate is SessionFactory. Once the configuration is loaded into this
object, it is immutable. For each persistence unit (either a single <persistence-unit>
in a JPA persistence unit descriptor or the <session-factory> in a Hibernate configu-
ration file), there’s a persistence manager factory object to manage it.

 When the persistence unit is managed by the container, within a Java EE environ-
ment, the persistence manager factory can be injected into a bean property of a Java
EE component (a JSF managed bean or an EJB component) using the @Persistence-
Unit annotation:

@PersistenceUnit
private EntityManagerFactory emf;

4 In TopLink Essentials, you must set this property to false to enable automatic detection of entity classes.
5 In Java AS 4.2, this only happens if META-INF/persistence.xml is packaged in an EJB JAR within an EAR.

335The persistence manager
In the absence of container-managed persistence, you must load the persistence unit
in application code using the Persistence class. For instance, you could load the
open18 persistence unit using a call to a static method on the Persistence class in JPA:

EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("open18");

The term persistence manager factory reflects its primary function: to create persis-
tence managers. It’s a thread-safe object designed to be loaded once when the applica-
tion starts and closed when the application ends for the sole reason that it’s very
expensive to create. Therefore, it’s almost always stored in the application scope, the
longest-running scope in the Servlet API.

 That wraps up our discussion of the persistence unit. As you’ve learned, the persis-
tence unit defines which entity classes are to be managed by the persistence API and
specifies the resources involved, such as the database dialect and the transaction
lookup mechanism. You’re now aware that the persistence unit can be loaded by the
container or by the application. With the persistence runtime established, we can
move on to the persistence manager, the real workhorse of Java persistence.

8.4 The persistence manager
The persistence manager is the API that you use to move entity instances to and from
the database. It’s also used to track changes to the state of the entity instances that it
manages to ensure those changes are propagated to the database. In JPA, the persis-
tence manager class is EntityManager; in Hibernate, it is the Session class.

8.4.1 Obtaining a persistence manager

A persistence manager is created from a persistence manager factory. In contrast to
the persistence manager factory, persistence managers are very inexpensive to create.
In fact, they don’t even allocate an underlying JDBC connection until a transaction
begins. Assuming you’ve managed to obtain a reference to an EntityManagerFactory,
you’d use it to create an EntityManager instance as follows:

EntityManager entityManager =
 entityManagerFactory.createEntityManager();

When container-managed persistence is being used (available in a Java EE environ-
ment), a persistence manager can be injected into a bean property of a Java EE com-
ponent using the @PersistenceContext annotation, saving you from having to create
it yourself:

@PersistenceContext
private EntityManager em;

You also have the option of creating your own persistence manager in a container envi-
ronment by injecting a persistence manager factory, as shown earlier. Outside the con-
tainer (such as in a Java SE environment or JavaBean component), you have no other
choice but to create the persistence manager manually from a persistence manager

336 CHAPTER 8 Understanding Java persistence
factory. But that doesn’t mean you can’t delegate this task to Seam. As you’ll learn in
the next chapter, Seam provides its own version of container-managed persistence so
that you can inject a Seam-managed persistence manager into any component using
@In. Seam’s solution also allows you to work with Hibernate in the same way.

8.4.2 The management functions of a persistence manager

The persistence manager is more than just a database mapper and query engine. It
takes care of its entities from the moment they’re loaded until they’re kicked out the
door. To that end, the persistence manager has three main responsibilities:

■ Manage entity instances within the scope of a single use case —Entities are managed
via the persistence manager API. This API has methods to create, remove,
update, find by id, and query entity instances. It also manages the life cycle of
an entity instance as it moves between four possible states: transient, persisted,
detached, and removed.

■ Maintain a persistence context —The persistence context is an in-memory cache of
all entity instances that have been loaded into memory by this manager. It is the
key to optimizing performance and enabling write-behind database operations
(queued SQL statements). It’s often referred to as the “first-level” cache. The terms
persistence context and persistence manager are often used interchangeably.

■ Perform automatic dirty checking —The state of managed objects that reside in the
persistence context are monitored throughout the lifetime of the persistence
context. When the persistence manager is flushed, the pending changes in the
entity instances are sent to the database as a batch of SQL statements. Once an
object becomes detached, changes to it are no longer monitored.

The persistence manager works at a higher
level than SQL. It understands that data
going to and from the database has a
structure (the entity) and that this struc-
tured data has a life cycle, shown in figure 8.3.
Entity instances start off as unmanaged, the
transient state. They then become managed,
allowing them to be synchronized with
the database. If they are removed, that syn-
chronization becomes a deletion. When
a removal occurs, or the persistence context
is closed, the entity instance becomes
detached, which means it has been aban-
doned by the persistence manager and
changes to it are no longer monitored.

 The most significant aspect of the persis-
tence manager is its persistence context. In

managed

detached

transient

removed

Figure 8.3 The entity life cycle in a Java
persistence (ORM) framework

337The persistence manager
fact, you could argue that the persistence context is what makes using Java persistence
worthwhile. The persistence manager will forgo trips to the database when it recog-
nizes that the requested instance has already been loaded into the persistence con-
text. What’s more important is that the persistence manager guarantees uniqueness of
each instance in the persistence context according to its identifier and the object
identity of those instances is preserved. As a result, the persistence manager can mon-
itor the state of the entity instances and will propagate changes made to them to the
database, even cascading into related entities, whenever the persistence context is
flushed. As long as the persistence manager remains open, you can traverse lazy asso-
ciations and the persistence manager will go back to the database to load the data
without requiring you to assemble a query. These features are what make it a persis-
tence manager, not just a database access layer. But to use these features, the persis-
tence context must be scoped appropriately.

8.4.3 Persistence context scoping

The persistence manager (and accordingly the persistence context) is often misrepre-
sented as being bound to either a database connection or transaction. This misguided
information was brought about by the persistence manager being misused as a means
to an end in stateless architectures, popularized by the Spring Framework. The result
is that many developers now fear keeping the persistence manager open for an
extended period of time or believe that it isn’t supposed to remain open beyond the
scope of a transaction. The persistence manager was actually designed to serve a use
case, for however long that use case may last. The persistence manager will reestablish
database connections as needed, and by no means does it leave connections open just
because it lives on.

 The truth of the matter is that when the persistence manager is scoped incor-
rectly, Java persistence can become more of a hindrance than a help. When the life-
time of the persistence manager is cut short, perhaps because it’s tied to a
transaction, it leads to detached entity instances, a topic discussed in depth in sec-
tion 8.6. By putting the persistence context on such a short leash, you’re stripping
out all of its value as a manager of entity instances. The persistence manager was
designed so that it could outlive a transaction and later be re-associated with a new
transaction, informing that transaction, and the database, of the changes to the enti-
ties while it was away (a process known as dirty checking). Without this ability, the
persistence manager is reduced to a mediator for accessing the database.

 What you want to do is treat the persistence manager as a stateful object. That
means letting it live through the request and beyond, a need filled by the conversa-
tion context. You have to be careful that you don’t put it in a shared scope, though,
because the persistence manager is not thread safe. In section 8.6, you’ll learn how
to extend the persistence context’s scope by letting a stateful session bean manage
it. In the next chapter, you’ll see that the conversation is best suited for managing
the persistence context, which is exactly how a Seam-managed persistence context
is handled.

338 CHAPTER 8 Understanding Java persistence
 That covers how entities are formed and how they’re used to move data between
the Java runtime and the database. But, as you know, data consistency is paramount to
persisting data. A brief discussion of the purpose of transactions and how they’re con-
trolled wraps up this crash course in Java persistence.

8.5 Transactions
Transactions are about as important as the persistence operations themselves. With-
out transactions, you’re risking corrupted or inconsistent data. It is crucial that when-
ever you perform work against a database, you ensure that the boundaries of a
transaction are well defined and that all work is conducted within the scope of such a
well-defined transaction.

8.5.1 Sorting out the transaction APIs

A database transaction is a grouping of SQL statements that perform an atomic unit
of work. This grouping is demarcated by special database statements (e.g., BEGIN,
COMMIT, or ROLLBACK). An alternative to issuing these statements explicitly is to use
one of various Java transaction APIs responsible for handling this task. You have
three choices:

■ JDBC transactions
■ Resource-local transactions
■ JTA transactions

At the most basic level, the JDBC API provides a thin wrapper around these statements.
However, when you’re working with ORM, you want to work at a higher level to allow
the ORM to involve the persistence context in the transaction commit. Resource-local
transactions, represented by the RESOURCE_LOCAL constant in the JPA persistence unit
descriptor, are those controlled via the persistence manager API (Hibernate or JPA).
This is a descriptive term that can be translated as “database focused.”

 When working with more than one persistence manager, you need an API that can
facilitate a transaction across several resources. Java Transaction API (JTA) provides a
comprehensive transaction manager that can handle several resources in a single
transaction. JTA transactions are therefore referred to as global or system transactions.

 JTA is a standard Java EE API and is favored when working in a Java EE–compliant
environment. JTA is also used behind the scenes by EJB components that use con-
tainer-managed transactions. Resource-local transactions are typically used in Java SE
environments or servlet containers. If available, JTA is the best choice because it sim-
plifies the task of obtaining an active transaction and issuing rollbacks. It can also
enlist multiple resources into the transaction, so if you’re partway through develop-
ment you don’t have to change your existing code if you must add a new transactional
resource. Seam makes working with the various transaction APIs simple by providing a
wrapper that can delegate to the configured transaction API.

 Let’s now look at the guarantees that a transaction provides.

339Transactions
8.5.2 Atomic units of work

From the standpoint of the application, a transaction is an atomic unit of work. An
atomic unit of work is a set of operations, or tasks, that you want to perform on the
database. Since you’re working with Java persistence, you perform these operations
against the persistence manager rather than the database. When you reach the point
when you want to commit the changes to the database, you’re guaranteed by the trans-
action that either they all happen or none of them happen.
KEEPING DATA CONSISTENT

Rather than rehash the overused bank account scenario to explain transactions, we’re
going to talk golf! Consider that you use a tee-time reservation system to secure your
time slot at your favorite golf course. As a user, you browse through the available times
for your course and find one that fits best with your schedule. You pick one and then
submit the form. The action method is then tasked with performing an atomic unit of
work. The following code shows several operations that are performed within a
resource-local transaction using JPA. Proper exception handling is excluded for clarity,
but certainly not optional:

entityManager.getTransaction().begin();
Course course = entityManager.find(Course.class, courseId);
TeeTime teeTime = new TeeTime(course, selectedDate);
course.reserveTeeTime(teeTime);
Golfer golfer = entityManager.find(Golfer.class, currentGolfer.getId());
golfer.addTeeTimeToSchedule(teeTime);
entityManager.flush();
entityManager.getTransaction().commit();

The operations involve marking the time as occupied in the COURSE_SCHEDULE table and
then adding a row to the GOLFER_SCHEDULE table so that you don’t forget about your
obligation. The transaction guarantees that information in these two tables remains
consistent—meaning they tell the same story. It ensures that if the insert operation were
to fail on the GOLFER_SCHEDULE table, the slot would open back up on the
COURSE_SCHEDULE table, and vice versa. You certainly don’t want tee times blocked off
without anyone intending to show up. You also don’t want to show up to the golf course
to find a foursome of golfers chatting at the first tee at your scheduled time.

INFO It’s often necessary to handle data exchange between two or more persis-
tence managers (and in turn, two or more databases). This scenario calls
for a distributed transaction that involves XA-compliant data sources. The
XA transaction has the same guarantees but works using a Java-based
transaction manager rather than delegating the establishment of transac-
tion boundaries to the database.

The previous example mirrors the classic credit-debit account scenario often cited.
Let’s consider another source of inconsistency that transactions can protect against.
IT’S ALL OR NOTHING

Assume that you’re adding a new golf course to the directory. You spent a good half
hour collecting all the data for the course and populating the form. You click Submit

340 CHAPTER 8 Understanding Java persistence
to save your work. Once again, the action method is tasked with performing a unit of
work. It must save the main information to the course table, a row for each hole in the
HOLE table, a row for each tee set in the TEE_SET table, and finally a row for each tee
(the number of tee sets times the number of holes) in the TEE table. Assume that
somewhere along the line, one of the inserts chokes and the database kicks back an
error. If a transaction wasn’t active, partial course information could be left spread
across the tables. If you tried to submit the form again, it would bail out because the
top-level record already exists in the database, even though its related data is incom-
plete. If the application is smart enough to handle incomplete course data, you may
be able to start the form over by editing the data that was inserted, but programming
for that situation is complicated. You have a mess on your hands. The damage is mag-
nified if thousands of users are encountering the problem at once.

 These two scenarios should give you a compelling reason to use transactions when
interacting with the persistence manager. However, even if you’re not performing write
operations, transactions are still important. In fact, for databases that support transac-
tions, it’s impossible to execute a SQL statement without a transaction. It’s just that it
doesn’t last longer than this one statement, behaving the same as auto-commit mode.
READS NEED PROTECTING TOO

The database will open and close a transaction on every operation if explicit transaction
boundaries are not set. This mechanism is referred to as an implicit transaction. When you
forgo the use of transactions, you’re just letting the database handle it for you, one SQL
statement at a time. These repeated processes of opening and closing transactions incur
an unnecessary performance cost (even if optimized). Therefore, even when you’re just
reading data, you should do so within explicit transaction boundaries.

 Using a transaction for successive read-only operations guarantees you the isola-
tion that transactions provide. If the database were to change in the middle of the ren-
dering process, for instance, a transaction could guarantee that you won’t end up
showing some of the old and some of the new data. If you use Seam’s transaction man-
agement, you get at least two transactions per request: one that covers the execution
of the actions and one that covers the rendering of the response (which you’ll learn
about in the next chapter).

8.5.3 ACID abridged

A proper database transaction adheres to the ACID criteria. This acronym stands for
Atomicity, Consistency, Isolation, and Durability. Each criterion is essential to ensur-
ing the integrity of the database and the operations executed against it. However,
from the standpoint of the business logic, worrying about the details of each criterion
is too low-level. You can instead group them into two key guarantees, which, as an
application developer, you want your business logic to adhere to:

■ All logically grouped operations succeed or the database remains untouched.
■ Your data isn’t intermixed with the data from other concurrent operations.

341Managing persistence in the enterprise
Although some may criticize this as an oversimplification of transactions, if it helps to
bring along those developers who merely view transactions as something that makes
JPA and Hibernate work, I will have done my job. If you’re interested in learning about
the specifics of the ACID principle, consult the resources listed at the beginning of the
chapter. To go deeper into the topic of transactions and concurrency, check out chap-
ter 5 of Martin Fowler’s Patterns of Enterprise Application Architecture (Addison-Wesley
Professional, 2002).

 You’re now familiar with the four pillars of Java persistence and how they work
together to exchange data between the database and object-based entities while at the
same time ensuring that the integrity of the data is upheld. Although the operations
on the database form the foundation of Java persistence, the state maintained by the
persistence manager is the value added by this abstraction. That’s because any time
you can avoid hitting the database, the more scalable your application will become
(based on the assumption that the database is the least scalable tier). In the next sec-
tion, you’ll learn about a lesser-known feature of Java persistence: using the persis-
tence manager as a stateful context that extends the lifetime of managed entity
instances over a series of requests, thus making database-oriented web applications
more scalable and less cumbersome to develop and use.

8.6 Managing persistence in the enterprise
The servlet environment, an abstraction over the HTTP protocol, is a less-than-ideal
setting for performing transactional data processing. The lack of continuity between
the stateless HTTP requests means that database connections and persistence manag-
ers are constantly being turned over. To further disrupt continuity, a web application
is typically partitioned into layers, relying on a data layer to perform Java persistence
operations, then shut down connections afterwards. When a persistence manager is
closed, the entities it manages become detached and no longer support lazy loading
(at least they shouldn’t) or automatic dirty checking, two valuable features of ORM.

 You can instill continuity by reusing the same persistence manager throughout the
duration of a use case. That’s the design goal of the extended persistence context. In
this section, we put Hibernate aside and focus on using JPA in a standard Java EE envi-
ronment to implement an extended persistence context and explore the benefits of
doing so. In the next chapter, you’ll learn how Seam mirrors this pattern using either
JPA or Hibernate operating independently of Java EE.

8.6.1 Introducing the extended persistence context

Java EE 5 introduced the concept of an extended persistence context by marrying JPA
and stateful session beans, both residents of the EJB 3 specification. The persistence
manager in JPA is capable of managing a set of entity instances, but it also must be
managed. Although it’s possible to place the persistence manager directly into a state-
ful scope (e.g., session or conversation), thus making it available across an arbitrary
number of requests, it gets lost there with no dedicated watchman to close it when the
stateful scope ends and nothing to provide thread safety, security, or transactions. All

342 CHAPTER 8 Understanding Java persistence
of these concerns are what EJB components were designed to handle. Given that the
persistence manager is a stateful resource, it makes sense to have it managed by a
stateful EJB component.

 A stateful session bean (SFSB) is allocated by the EJB container for a single client
and remains active (and managing state) until it’s removed by the client, potentially
spanning multiple thread-based (or database) transactions. In a web application, this
type of session bean is typically stored in the HTTP session, allowing it to span multiple
requests. In the next chapter, you’ll learn that the most suitable context for an SFSB is
the conversation, making a stateful session bean conversational as it was intended.

 An SFSB is a fitting solution for enclosing the persistence manager and shielding
it from the disturbance of HTTP requests being opened and closed during a use case.
The only problem is that the default behavior of EJBs is to tie the persistence man-
ager to the scope of the transaction, which typically lasts for the duration of a call to
a transactional method (the exact duration depends on the propagation behavior of
the transactions). This guarantees that the persistence manager will only be avail-
able for a single request; a new one is allocated on the next go-around. The result is
that the persistence manager fails to serve the needs of this stateful component or
the use case. The lifetime of the persistence manager needs to be aligned with that
of the SFSB rather than the transaction—precisely the definition of an extended per-
sistence context.

 When the entity manager is injected into a stateful session bean using the Java EE 5
@PersistenceContext annotation, you have the choice of using a transactional or
extended persistence context, defined by the annotation’s type attribute. The transac-
tion-scoped persistence context, which is the default type, binds the EntityManager to
the scope of the JTA transaction. An extended persistence context, on the other hand,
keeps the EntityManager open for the lifetime of the SFSB, delaying the call to the
persistence manager’s close() method until the SFSB is destroyed. Here’s an example
showing how to inject an extended persistence context into an SFSB:

@PersistenceContext(type = PersistenceContextType.EXTENDED)
private EntityManager em;

Transactions and requests may come and go, but as long as the SFSB exists, the injected
EntityManager remains open and manages the entity instances it has loaded. Let’s see
what benefits this brings and how it simplifies database-oriented web development.

8.6.2 The benefits of an extended persistence context

Why would you want to use an extended persistence context? Simple: to prevent
detached entities. An entity becomes detached when the EntityManager that loaded
it is closed. Don’t get me wrong; detached entities are useful in that they erase the
need for data transfer objects (DTOs). But you generally want to prevent entities from
entering this state if you intend to return them to the persistence manager to be
updated, you want to use them to load related objects, or you need to repeatedly
access the same database records.

343Managing persistence in the enterprise
 When the persistence manager is closed prematurely, it is being abused and so is the
database. I use the term abused because instead of the persistence manager helping to
save you time, it ends up getting in your way. As you wrestle with it, the database gets
queried excessively, even though one of the main goals of ORM is to reduce the number
of database reads. If you’re committed to using ORM, and seeing a return on your
investment, it pays to learn to use it correctly. Using an extended persistence context

■ Allows safe lazy loading of entity associations and uninitialized proxies
■ Eliminates merging to synchronize detached entity instances to the database
■ Ensures only one object reference exists for a given entity identifier
■ Works in conjunction with optimistic locking to support long-lived units of work

I will walk you through the use case of updating a golf course to shed light on these ben-
efits, showing how an extended persistence context remedies problems caused by use
of a transaction-scoped persistence context. Here are the steps involved in that use case:

1 A list of golf courses stored in the database is presented to the user.
2 The user clicks on a course to be modified.
3 An editor form is presented, populated with the course’s information.
4 The user makes modifications to the course and clicks the Save button.
5 The modified course is synchronized with the database.

This use case appears simple enough, but because of challenges of working with Java
persistence in a web application, presented earlier, programming for this scenario can
be made unnecessarily complex without proper treatment of the persistence manager.
The good news is that the persistence manager practically handles the work for you if
extended throughout the use case. Once you learn to wield the persistence context
properly, you will be ready to take on tougher challenges than the one presented
here. Let’s begin by looking at what lazy loading is and how it’s affected by the scoping
of the persistence context.
CROSSING LAZY ASSOCIATIONS IN THE VIEW

Lazy loading of entity associations has unfortunately established a bad reputation. The
first thing that comes to mind in most developers’ minds when you talk about lazy
loading is Hibernate’s LazyInitializationException. The culprit is the detached
entity instance.

 The associations between entities are represented as an object graph that mimics the
relationships of the corresponding database tables. When you fetch an entity, you typ-
ically only want to grab a fraction of the total graph or risk loading a significant portion
of the database. For example, if you retrieve a Course object, it would be very expensive
to eagerly load its facility and all of its holes, tee sets, and tees. (It gets worse if the same
eager load were to occur when performing a query for multiple Course objects.)

 The alternative to eager fetching is to mark the associations as lazy. When you tra-
verse the association on the Java object, the uninitialized object or collection of objects
is loaded transparently. Although you need to be aware of when this type of loading is

344 CHAPTER 8 Understanding Java persistence
occurring, it’s neither risky nor a bad practice. See the accompanying sidebar to learn
how the classic n+1 select problem can be averted when using Java persistence.
Let’s see what the hang-up is about lazy loading. When the user selects a course to edit,
the editCourse() method on a Seam session bean component is invoked. This method
retrieves the Course entity instance using a transaction-scoped persistence manager:

@Stateful
@Name("courseAction")
public CourseActionBean implements CourseAction {
 @PersistenceContext private EntityManager em;

 @Out private Course course;

 @Begin public void editCourse(Long id) {
 course = em.find(Course.class, id);
 }
 ...
}

When the editCourse() method is called, the following events occur:

1 A long-running conversation begins.
2 A transaction is started.
3 A new persistence manager is created and bound to the transaction.
4 The Course entity instance is retrieved from the persistence manager by its

identifier.
5 The transaction is committed (and terminated).
6 The persistence manager is closed.

The last step presents a problem. If the persistence manager is closed after the action
method is invoked, the Course instance is detached when the view is rendered. Reading
the scorecard data from the Course instance requires crossing several associations,
including the collection of holes, tee sets, and tees, all of which are configured to use
a lazy fetching strategy. These associations are sitting ducks for a LazyInitialization-
Exception. One such traversal may happen when accessing the holes:

Batch fetching
JPA can be optimized to perform additional eager fetching when lazy loading is trig-
gered to avoid the classic n+1 select problem. Consider what happens when you iter-
ate over the items in a lazy collection. Without optimization, each item is fetched from
the database individually. If the number of items in the collection is n, then the data-
base is consulted once to load the parent and n additional times to retrieve each of
the children. The persistence frameworks can be configured to batch-fetch the chil-
dren when the iterator on the collection is accessed to reduce the number of data-
base hits. In Hibernate, this behavior is controlled globally using the hibernate.
default_batch_fetch_size property. It can also be set at the entity or associa-
tion level.

345Managing persistence in the enterprise
<ui:repeat var="hole" value="#{course.holes}">
 <th>#{hole.number}</th>
</ui:repeat>

A call to the method getHoles() triggers an exception because the EntityManager
that loaded the Course instance is no longer available to further communicate with
the database. The same problem arises on postback, even if a lazy association wasn’t
hit in the view.

NOTE In my tests, Hibernate complains about lazy loading on detached entities,
whereas TopLink Essentials (another JPA provider) doesn’t exhibit this
behavior because it proactively creates a new EntityManager as needed.
While you can avoid this exception by switching to TopLink Essentials, it
doesn’t mean you’ve escaped the problem. It’s not semantically correct
to allow an entity to load data from different persistence managers. The
persistence manager should guarantee uniqueness for an entity of the
same type and identifier. When you violate this assumption, you’re asking
for conflicts.

You can avoid problems with lazy loading (properly) in one of two ways:

■ Touch all the lazy associations needed in the view while the transaction is active.
■ Ensure that the persistence manager stays open for the duration of the request.

The first solution is similar to eager fetching, and thus has the same problems. You may
be able to inflate the related objects on the Course entity instance in this case, but this
is laborious for everyone involved. Eventually you’re going to encounter a case where
this eager fetch strategy puts too many objects in memory, puts too much unnecessary
load on your database, or is simply impossible. Either way, you’re going to quickly grow
tired of constantly trying to tiptoe around these association boundaries—I know I have.
Lazy associations were designed to be traversed, so why can’t we traverse them?

 The best solution is to set the type of the EntityManager that’s injected to
EXTENDED. That way, the persistence manager remains open for the lifetime of the
SFSB and you can cross lazy associations in the view and on subsequent requests to
your heart’s content. With the editor rendering successfully, let’s now explore captur-
ing the changes on postback.
JUST SAY NO TO MERGING

Throughout this book, you’ve seen how JSF is used to bind input fields to properties of
an object. While JSF takes care of updating the property values when the form is sub-
mitted, those changes still need to get propagated to the database if the object is an
entity instance. Continuing with the current example, let’s assume that an instance of
the Course entity is bound to input fields in the course editor. We consider what hap-
pens when the form is submitted depending on whether the entity instance is
detached or managed. Let’s start by assuming that it is detached (and no lazy-load
exceptions occurred during view rendering).

 As you know, the persistence manager tracks the state of entity instances bound to
it. Outside of the persistence manager’s realm, though, changes are not recognized.

346 CHAPTER 8 Understanding Java persistence
When the entity instance is introduced to a new persistence manager, the entity
instance is treated like a stranger. Even though the entity instance has an identifier,
and perhaps pending updates, the new persistence manager can’t vouch for it. To get
the changes into the database, you must force those changes onto the EntityManager
by passing the detached instance to the merge() method:

@PersistenceContext private EntityManager em;

@End public void save() {
 em.merge(course);
}

Merging is a crude operation and should be avoided if possible. It first loads an entity
instance with the same identifier as the detached instance into the current persistence
context, resulting in a database read. Then, the property values from the detached
instance are copied onto the properties of the managed instance. The main problem
with this operation is that merging clobbers any changes that may have been made to
the database record since the detached instance was retrieved (unless object version-
ing is used). There are other problems as well. If an entity instance with the same
identifier as the detached instance has already been loaded into the current persis-
tence context, a non-unique object exception is thrown because the uniqueness con-
tract of entities in a persistence context is violated. You may also run into a lazy
loading exception if you hit an uninitialized association on the detached instance dur-
ing the merge. Avoid merging if at all possible.

 By using an extending persistence context, entity instances don’t become
detached. Therefore, the persistence manager continues to track changes that are
made to the entity. When it comes time to synchronize the entity with the database,
calling the flush() method will do the trick within the scope of any transaction.

@PersistenceContext(type = PersistenceContextType.EXTENDED)
private EntityManager em;

@End public void save() {
 em.flush();
}

As you can see, the save() method just instructs the EntityManager to push any dirty
state to the database. The persistence manager pays its dues in the following two ways:

■ You aren’t required to write code to tell the EntityManager to save the changes.
■ If no changes are made to the entity instance, no database writes occur.

The coolest part is that no matter how deep down in the object graph changes were
made, those changes are pushed to the database on a flush() wherever cascading is
enabled. You just don’t even have to think about how to write a SQL update state-
ment anymore. The first benefit might get you home from work sooner, but it’s the
second benefit that takes a step toward relieving the database and making the appli-
cation more scalable. Reads and writes should occur only when different data needs
to be exchanged with the database, not data that the application should already be

347Managing persistence in the enterprise
tracking. That brings us to our next topic: the persistence context acting as a first-
level cache.
HEY ENTITY, HAVE I SEEN YOU HERE BEFORE?
When you retrieve an entity instance from the persistence manager by its identifier
(the value of @Id property), the persistence manager first looks to see if that instance
has already been loaded into the persistence context. If so, it returns that instance and
the database is spared a read. The persistence context can be combined with the
conversation to maintain that “natural cache” of data that was introduced in the previ-
ous chapter.

 There’s another benefit to the persistence context’s in-memory cache in addition
to saving the database some cycles. If you keep the persistence manager open, it can
guarantee that for as long as you work with it, you’ll never end up with two different
objects with the same identifier in the persistence context. Simply put, you don’t have
to implement your own equals() method (and thus the hashCode() method) to get
the result of two equivalent lookups to be equal in the eyes of Java.

 Let’s assume that you’ve defined the following method on your SFSB:

public Course findCourseById(Long id) {
 return em.find(Course.class, id);
}

If the SFSB uses a transaction-scoped entity manager, the following assertion will fail,
whereas if it uses an extended entity manager, it will pass:

assert courseAction.findCourseById(9L) == courseAction.findCourseById(9L);

Thus, by using an extended persistence context, you don’t have to put effort into
achieving object equality for the duration of the use case. Trust that this prevents a lot
of headaches.
OPTIMISTIC LOCKING

The world doesn’t stand still while the user is thinking about what changes to make to
the course. It’s possible that another user could have gone into the application and
chosen to modify the same course. While you could instrument a locking routine on
the record, there’s a better way that doesn’t inconvenience everyone when someone
with a record “checked out” goes on a coffee break. The solution is to check for con-
flicts when the entity instance is being saved, termed optimistic locking.

 JPA provides the @Version annotation, which accompanies the @Column annotation
on a field intended to maintain the version of an object. The version is simply an integer
(though it can also be a timestamp) that increments each time the entity is updated:

@Version
@Column(name = "obj_version", nullable = false)
public int getVersion() { return version; }

When an update occurs, the version in the database is checked against the version in
the entity instance. If they differ, the write is aborted and an application exception is
thrown, which can be caught to notify the user of the situation.

348 CHAPTER 8 Understanding Java persistence
 This type of locking is termed “optimistic” because it hopes for the best and only
aborts the update if the database record was changed externally. Pessimistic locking,
which is a formal database lock, prevents anyone else from accessing the record while
it’s being updated. Holding long-term locks on database resources is a bad idea for
performance reasons, especially when it relies on a user interaction to be released.
You’re far better off using optimistic locking and designing a UI to deal with conflicts
when they occur.

 Throughout this section, you’ve witnessed how hairy things can get when you use a
transaction-scoped persistence manager and how easy persistence operations become,
in contrast, when you switch to an extended persistence manager. Although there are
cases when entity instances aren’t needed outside of a transactional method, the
resounding argument here is “down with the transaction-scoped persistence manager.”

 Although the SFSB appears promising as the steward of the external persistence
context, it has several limitations, most notably that it relies on a Java EE environment.
In the next chapter, you’ll discover that the Seam-managed persistence context can
emulate and improve upon the extended persistence context in Java EE. In addition, a
Seam-managed persistence context can be easily shared with Java EE and JavaBean
components alike, gets around complex persistence context propagation rules in EJB,
and brings an extended persistence context solution to Hibernate. You’ll also learn
how the extended persistence context is aligned with a conversation to make it avail-
able for an entire use case.

8.7 Choosing between JPA and Hibernate
There’s been a lot of talk in this chapter about JPA and Hibernate, but I haven’t for-
mally addressed how they relate to each other or discussed the benefits of choosing
one over the other. Seam supports both persistence APIs out of the box, though seam-
gen sets up applications to use JPA, implicitly making it the default in Seam. Even so,
for every feature in Seam that involves JPA, there’s also a Hibernate complement.
Before you begin developing your application, you need to decide which API you’re
going to use.

 To choose between native Hibernate and JPA, you need to know a little about the
history they share. There’s a common misconception that Hibernate and JPA are the
same thing. They are not. They do have many similarities, though. This section sets
the record straight about how Hibernate relates to JPA and gets you thinking about
which API might offer the best choice for your application.

8.7.1 How Hibernate relates to JPA

Hibernate served as one of several references when the JPA specification was being devel-
oped and can now be used as a JPA provider as an alternative to its native API. But, given
that JPA is a specification, it encompasses an agglomeration of other persistence pro-
viders, which include Oracle TopLink Essentials (and its derivative, EclipseLink), BEA
Kodo, OpenJPA (the open source version of Kodo managed by Apache), and JPOX, to

349Choosing between JPA and Hibernate
name a few.6 While Seam can theoretically support any JPA
provider, truth be told, there are advantages to choosing the
Hibernate implementation (Hibernate EntityManager),
which will be summarized in the next section.

 Many of the JPA interfaces mimic those of Hibernate, dif-
fering only in name. Although the two APIs mostly overlap, as
figure 8.4 illustrates, there are several features that Hibernate
boasts that weren’t included in the JPA specification or that
have been added since. On the other hand, some concepts
were introduced in JPA that aren’t available in Hibernate.

 Now that you understand the common history that Hiber-
nate and JPA share, let’s consider what differentiates them.

8.7.2 What sets Hibernate and JPA apart

Hibernate has been around a lot longer than the JPA specification and has the advan-
tage of being a self-directing open source project, not held back by the (sometimes
very slow) Java Community Process (JCP). JPA, on the other hand, has the advantage
of leveraging the standard Java EE environment. While that word standard carries a
great significance, you’re always going to get more features using the Hibernate APIs.
The most important feature, and the one that the Hibernate developers felt should
have been in JPA from the start, is manual flushing of the persistence context. This fea-
ture allows you to defer updates to the database until an explicit flush is issued, such
as when the use case ends. Manual flushing is essential to implementing an applica-
tion transaction (called an atomic conversation when managed in the context of a
Seam conversation). You’ll learn about application transactions and how they’re
related to conversations in the next chapter.

INFO It’s likely that manual flushing will make it into a future version of the
JPA specification. By using Seam, you don’t have to wait. Seam offers
declarative control over the flush mode of the persistence context. You
define the boundaries, and Seam instruments the Hibernate extension
for you. You must be using Hibernate to take advantage this feature.

Aside from manual flushing, I’d like to mention a couple of other unique features in
Hibernate. One exciting feature is Hibernate Search, a recent extension that supports
full-text searching using the Lucene search engine. There’s also an extensive set of
association mappings that Hibernate supports over JPA, such as indexed collections.
And who can forget Gavin’s most revered feature: postquery filters. Hibernate can also
save keystrokes by allowing you to use shorthand for JPQL in the style of Hibernate’s
HQL (e.g., “from Course” instead of “select c from Course c”) and generally has a more
intelligent query parser. If you’re a person who thrives on bleeding-edge features,
you’ll probably be most comfortable with Hibernate. One of the unique features of

6 A more complete list can be found at http://en.wikibooks.org/wiki/Java_Persistence/Persistence_Products.

H
ib

er
na

te

JP
A

Figure 8.4 The overlap
between JPA and
Hibernate. Hibernate
can be used natively or
as a JPA provider.

http://en.wikibooks.org/wiki/Java_Persistence/Persistence_Products

350 CHAPTER 8 Understanding Java persistence
Hibernate, to give it credit, is its ability to use JPA annotations. So you take a hybrid
approach, which Seam builds on further.

8.7.3 Seam’s hybrid approach

Does choosing JPA mean that you have to sacrifice features? What if you want to use JPA
but still take advantage of what Hibernate has to offer? I have good news for you. By
choosing Hibernate as the JPA provider and using Seam-managed persistence, which
you’ll learn about in the next chapter, Seam allows you to get the best of both worlds.
Seam does some fancy footwork behind the scenes to give your JPA EntityManager
access to several of Hibernate’s extensions. The best part is that, for the most part, you
can stick to using the standard JPA interfaces in your code. Seam distills the best features
of both frameworks so that, with little or no casting, you get the following benefits:

■ Manual flushing of the persistence context (application transaction)
■ Postquery filters (defined in the component descriptor)
■ Vendor-specific query hints7 (defined in the component descriptor)
■ Full-text searching (using the Lucene search engine)
■ Hibernate Validator (enforced when the persistence context is flushed)

Seam’s philosophy is to let you keep the standards close at hand and feed you with the
extra features that the standard isn’t ready to dish out. If maintaining strict JPA porta-
bility is important to you, you’ll likely want to avoid using extensions that aren’t com-
mon across the persistence providers. However, my advice is that you shouldn’t let
your choice to use JPA hold back your application. Take advantage of the capabilities
of the JPA provider.

The Seam reference documentation sends a clear message regarding which persis-
tence framework to choose. It recommends that you use JPA with Hibernate as the
provider. Making this pairing allows you to adhere to JPA until you decide that it’s nec-
essary to leverage Hibernate-specific features. If you discover along the way that you

7 http://www.hibernate.org/hib_docs/entitymanager/reference/en/html_single/#d0e797

What about designing to interfaces?
If you’re an advocate of interface-based design, you may be shouting that the best
way to abstract the persistence framework choice is to hide it behind an interface
that uses the object repository pattern (as suggested in Eric Evans’s Domain-Driven
Design: Tackling Complexity in the Heart of Software [Addison-Wesley, 2003]). A data
access layer would absolutely fit into the Seam component model. You’re simply mov-
ing the dependency injections down a layer. Understand, though, that you still have
to consider which persistence framework is going to get you to a working implemen-
tation faster. An interface is but an interface. You still have to implement it.

http://www.hibernate.org/hib_docs/entitymanager/reference/en/html_single/#d0e797

351Summary
need Hibernate to make your application successful, you can easily tap into it. It also
recommends that you use Seam-managed persistence, which you’ll learn about in the
next chapter. As for the basics of Java persistence, I trust that you have what you need
to get started and to understand the resources I recommended. You can also correct
your colleagues when they make the claim that JPA and Hibernate are the same.

8.8 Summary
This chapter gave you the crash course in Java persistence that you need to use Seam’s
managed persistence and transactions, covered in the next chapter. The four main
elements of Java persistence were explored: entities, the persistence unit, the persis-
tence manager, and transactions. I then explained the distinction between a transac-
tional and extended persistence context, and expounded the benefits of having an
extended persistence context. Finally, you learned how JPA differs from Hibernate,
and I presented reasons why you would choose one over the other. I recommended
that you use Hibernate as a JPA provider rather than the native Hibernate API so that
you’re able to take advantage of Java EE standards while still having access to the
extensions offered by Hibernate.

 In the next chapter, you’re going to learn how Seam supplements Java persistence
and how it does a better job of managing the persistence context than what’s provided
by the Java EE container alone. You’ll also discover how Seam offers the same declara-
tive transaction behavior for regular JavaBeans that EJB 3 session beans enjoy. Read on
to see how Seam makes creating transactional applications a truly pleasant experience.

Seam-managed
 persistence and

 transactions
Most web frameworks remain agnostic of persistence rather than recognize it as
vital to the overall state of the application. Stateless architectures, especially, have
depleted the persistence manager of its true value—to monitor a set of managed
entities and transparently migrate changes made to them to the database. Seam
seeks to restore Java persistence (i.e., ORM) to its full potential by recognizing it as
a core part of the application. In addition to adeptly managing the persistence
context, Seam ensures that a transaction is always active, commits the transaction
when appropriate, and broadcasts transaction synchronization events to improve

This chapter covers
■ Handling the persistence context properly
■ Bootstrapping Java persistence in Seam
■ Applying a multifaceted transaction strategy
■ Implementing an application transaction
352

353Getting persistence context management right
transparency of persistence operations. In the previous chapter, you learned the fun-
damentals of Java persistence and how persistence is used both inside and out of a
Java EE container. In this chapter, you’ll discover how Seam’s involvement with trans-
actions and persistence helps make these services truly manageable.

 The conversation is also revisited in this chapter, which combines with persistence
to form the core of Seam’s state-management architecture. Seam hosts the persistence
manager in the conversion context, giving it refuge from the confines of a stateless
design. The true benefit of this union is realized at the end of the chapter when you
learn about an application transaction, a special type of transaction that allows modifi-
cations made to managed entities to be queued across requests until the end of
the use case, at which time the changes are committed to the database within a data-
base transaction.

 This chapter also prepares you to use the Seam Application Framework, covered in
the next chapter, which enables rapid development of create, read, update, delete
(CRUD)-based applications and embodies the design goal of properly handling the
persistence context, a theme that continues through this chapter. Let’s pick up with
this theme where the previous chapter left off.

9.1 Getting persistence context management right
To realize the true value of Java persistence, the persistence manager—a general
term for a JPA EntityManager or Hibernate Session—must be scoped properly. In
chapter 8, you learned that if you treat the persistence manager as a stateful compo-
nent, it can do a lot for you; if you don’t, it can lead to a lot of pain. The transaction-
scoped persistence context inhibits the capabilities of Java persistence and is gener-
ally discouraged in Seam.

 The challenge of using an extended persistence context is deciding how long to
extend it without overdoing it. If it’s not held open long enough, your entities become
detached prematurely. If it’s held open for too long, it can result in an overzealous
cache and memory leaks. As it turns out, the persistence manager was intended to
serve a use case, making the conversation context the ideal host for an extended per-
sistence context. In this section, I explain how a conversation-scoped persistence man-
ager gets to the heart of the problems that many developers encounter using ORM.
I then show you two ways to bind the persistence manager to a conversation in a
Seam application.

9.1.1 Respecting the persistence manager

It’s true that using Java persistence in a web application can be a challenge. Unfortu-
nately, some developers have made it harder than it has to be. I want to educate you
about the shortcomings of the so-called “patterns” that have been developed to solve
Hibernate lazy-loading exceptions. The purpose in raising this issue is to emphasize
that this exception is really a symptom of incorrect usage, which these shortsighted
fixes fail to address.

354 CHAPTER 9 Seam-managed persistence and transactions
THE OPEN SESSION IN VIEW REMEDY

Recognizing that Hibernate wasn’t going to allow lazy loading in the view unless the
Session remained open, developers created the Open Session in View pattern,1 which
controls the Session from the outer rim of the application using a servlet filter. It
works by preventing the data layer from closing the Session and instead the filter
closes it at the end of the request. (There is a parallel implementation for JPA that also
applies here.)

 The problem with this fix is that a filter is too far removed from the application
to know what it’s doing. It blindly tries to determine whether it should open one
Session or whether several are needed. Complications also arise because now the
Session has two masters, the application framework and the filter, which may not
always be in agreement.

 The filter may make a mess of things, but at least it allows lazy loading in the
view, right? Sure, but the benefits end there. By waiting until the end of the request
to flush and close the persistence context, the application doesn’t know if the data-
base writes succeeded or failed until after the view is rendered, a problem addressed
in section 9.4.1. Once the page is rendered, all of the entity instances stored in state-
ful scopes become detached. Thus, the lazy-loading problems are merely deferred
until postback, where you no longer benefit from the persistence cache or auto-
matic dirty checking of entities. In addition, having detached entities around during
a postback can introduce the NonUniqueObjectException. A far better solution is to
respect the persistence manager by scoping it to the conversation.
THE OPEN SESSION IN CONVERSATION SOLUTION

As you learned in chapter 7, conversations last for at least the entire request, includ-
ing redirects. By associating the persistence manager with the conversation, you get
the Open Session in View pattern for free. But now, you aren’t allowing a filter to
make arbitrary decisions about how the persistence manager should be managed. If
the conversation is long-running, then the persistence manager stretches to match it,
termed the Open Session in Conversation pattern. As a result, entities aren’t detached
prematurely, which means you can avoid merging and instead benefit from automatic
dirty checking. In fact, to propagate an entity instance between requests, you only
have to keep track of the entity’s identifier since the same instance can be retrieved
again out of the persistence context.

 Placing the persistence manager directly into the conversation introduces the
problem that no one tends to it. Who will close it? How will it be enlisted in transac-
tions? I present two options for tying the persistence manager to a conversation in a
way that it is still managed.

9.1.2 Managing an extended persistence context

Seam has two strategies for managing an extended persistence context, contrasted in
figure 9.1. In chapter 8, you learned that a container-managed persistence manager

1 http://www.hibernate.org/43.html

http://www.hibernate.org/43.html

355Getting persistence context management right
can latch onto a stateful session bean (SFSB) for the duration of its lifetime. By scop-
ing the SFSB to the conversation, Seam can indirectly manage the extended persis-
tence context. Alternatively, Seam can take full control of the extended persistence
context by creating its own persistence manager and storing it directly in the conversa-
tion. The benefit of the Seam-managed persistence manager is that it can be injected
into any Seam component.

 Picking up from the previous chapter, I reiterate the inherent limitations of using
an SFSB to host the extended persistence context and segue into Seam’s more flexible
solution.
SCOPING THE PERSISTENCE CONTEXT INDIRECTLY

When an SFSB becomes a Seam component, Seam doesn’t control how a container-
managed persistence manager is bound to the SFSB. Thus, Seam can only tune the
lifetime of the extended persistence context by managing the lifetime of the SFSB.
(Keep in mind that this has no effect on a transaction-scope persistence context on
the SFSB.) However, there are several problems with this solution:

■ It can only be used in an EJB environment (EJB session bean and JPA).
■ There are complex propagation rules2 for sharing the extended persistence

context across loosely coupled Java EE components.
■ The extended persistence context on an SFSB cannot be accessed easily from

JavaBean components.
■ Seam can’t control the flush mode of the persistence context on an SFSB (no

manual flushing).

2 http://www.hibernate.org/hib_docs/entitymanager/reference/en/html_single/#architecture-ejb-
persistctxpropagation

Figure 9.1 Contrasts the independence of a Seam-managed persistence context with the coupling
of the container-managed persistence managers to their stateful session bean components.

http://www.hibernate.org/hib_docs/entitymanager/reference/en/html_single/#architecture-ejb- persistctxpropagation
http://www.hibernate.org/hib_docs/entitymanager/reference/en/html_single/#architecture-ejb- persistctxpropagation

356 CHAPTER 9 Seam-managed persistence and transactions
I’m not saying that you can’t make the conversation-scoped SFSB work. It may suffi-
ciently suit your needs. But if any one of these issues gets in your way, it calls for a
more flexible solution. Seam can assume the task of managing the persistence man-
ager, a feature known in Seam as a Seam-managed persistence context. Seam can even
go a step further by managing Java persistence end to end.
LETTING SEAM MANAGE THE PERSISTENCE CONTEXT

A Seam-managed persistence context is a Hibernate or JPA extended persistence man-
ager operating in isolation of Java EE. It’s application managed, which means that
Seam is responsible for instantiating it. After that, you use it just as you would a con-
tainer-managed persistence context in a Java EE component, except that it’s injected
using @In rather than @PersistenceContext. To give Seam control of creating the
persistence manager, you have to feed it a persistence unit, which you’ll learn to do in
section 9.3.

 The Seam-managed persistence context is scoped to the conversation, which
means you tune its lifetime using the conversation propagation controls you learned
about in chapter 7. What sets the Seam-managed persistence context apart from its
container-managed counterpart is that it’s stored directly in the conversation, making
it a first-class citizen of the application, rather than being bound to the lifetime of a
single component. Consider that if an SFSB hosting an extended persistence context is
removed, the persistence context goes along with it. In contrast, a Seam-managed per-
sistence context remains available as long as the conversation is active, regardless of
which components come and go. The best part is that you can share the persistence
context between Java EE and non–Java EE components alike without having to worry
about complex (and tricky) propagation rules. Although the extended persistence
context in EJB 3 is a good start, Seam is better at handling this task.

 Another nice feature of the Seam persistence infrastructure is that the support for
JPA and native Hibernate is parallel. The classes and configurations differ, of course,
but the overall architecture is the same, making it easy to switch between the two APIs
across different projects. This parallel support extends into the Seam Application
Framework, covered in the next chapter, which wraps the persistence manager and
provides additional built-in functionality to support persistence tasks.

 Regardless of who controls the persistence manager, the conversation is the key to
giving the persistence manager the respect it deserves. It’s really a perfect marriage.
Seam’s persistence strategy goes beyond just scoping the persistence manager. When
used in a Seam application, your persistence manager gets some upgrades. If you’re
using native Hibernate or Hibernate as the JPA provider, you get yet another set
of enhancements.

9.2 Enhancing the capabilities of the persistence manager
Seam proxies the persistence manager when it’s injected into a Seam component and
decorates it with extra functionality (i.e., the Decorator pattern). This section pres-
ents these upgrades, starting with standard enhancements and then those specific
to Hibernate.

357Enhancing the capabilities of the persistence manager
9.2.1 Seam’s standard enhancements

Given that Seam and Hibernate are both JBoss-supported frameworks, it should come
as no surprise that Hibernate gets special treatment in Seam. If you’re already using
Hibernate, this is good news. But Seam also offers some standard enhancements that
are available to any persistence provider:

■ EL notation in persistence queries
■ Entity converter that allows entities to be used in UI select menus
■ Managed entity identity across session passivation

Only the first two items will be covered in detail. The last item is a low-level feature
and it’s not necessary to concern yourself with the details. Let’s start with the crowd
favorite: the EL.
EL IN THE QL
As you have come to expect by now, Seam lets you use the EL all over a Seam applica-
tion. With persistence, the EL is back again. Seam supports the use of EL value expres-
sions within a JPQL or HQL query just as it does in JSF messages and log messages. This
holds true regardless of which persistence provider or API you’re using.

 The value expressions provide an alternative to supplying positional or named
parameters in your queries and are evaluated when the query is executed. Let’s say
that in the registration process, you want to check to make sure that a username
isn’t taken:

assert entityManager.createQuery(
 "select m from Member m where m.username = #{newGolfer.username}")
 .list() == 0;

Using the EL in a query provides a number of benefits. First, it serves as shorthand for
creating a named query parameter and assigning it a value. Also, since the value of the
expression is assigned using a query parameter (i.e., setParameter()), it’s properly
escaped, protecting the query from SQL injection. And any value that can be resolved
via the EL can be used as a parameter. That includes contextual variables as well as fac-
tory and manager components. You see this combination used in the restriction
clauses of the Query component, covered in chapter 10. Finally, the inline EL syntax
moves all parameters into a string, making it possible to define the query in a string
constant or externalize it to a configuration file, where it can be assigned using com-
ponent configuration.
PICK ME OUT AN ENTITY

I bet that at one point or another, you’ve needed to present a list of entities in a form
field and let the user select one or more of them. This is one of those tasks JSF doesn’t
support out of the box (or most frameworks for that matter). It’s your job to convert
the instances into a string representation and then reinterpret the selections when the
form is submitted. Well, guess what? Seam offers to take care of it for you! The only
catch is that you must be using a Seam-managed persistence context and, ideally, a
long-running conversation.

358 CHAPTER 9 Seam-managed persistence and transactions
 Let’s assume that you need to assign a member a list of roles and you’ve prepared a
factory named availableRoles that returns a list of Role entity instances. (You can-
not use a Set with a UISelectMany component, only a parameterized List or an
array.) You can assign roles to a member as follows, nesting the <s:convertEntity> UI
component tag to let Seam know to handle the conversion:

<h:selectManyListbox size="10" value="#{member.roles}">
 <s:selectItems var="r" value="#{availableRoles}" label="#{r.name}"/>
 <s:convertEntity/>
</h:selectManyListbox>

That’s all there is to it! When the view is rendered, the id of each entity (as defined by
its @Id property) is used in the value of a select option. On postback, the entity
instance is restored by passing the id to the persistence manager. For the selection to
be valid, its object identity must be equivalent to an instance in the collection. The
best way to guarantee this condition is to use a conversation-scoped collection and a
long-running conversation.

 The component that handles the conversion for <s:convertEntity> is named
org.jboss.seam.ui.EntityConverter. This component looks for a JPA persistence
manager according to a standard naming convention, described at the end of sec-
tion 9.3.2. It’s possible to override the JPA persistence manager that the converter
uses, or configure the converter to use a Hibernate persistence manager. However,
the configuration changed between Seam 2.0 and 2.1. Let’s start with Seam 2.0.

 In Seam 2.0, you can establish the persistence manager that the converter uses by
setting its entityManager property (for JPA) or session property (for Hibernate).
Here’s an example of an override when using JPA:

<component name="org.jboss.seam.ui.EntityConverter">
 <property name="entityManager">#{em}</property>
</component>

If you only want to override the persistence manager for a single conversion, you first
define a new component for the converter class in the component descriptor:

<component name="customEntityConverter"
 class="org.jboss.seam.ui.converter.EntityConverter">
 <property name="entityManager">#{em}</property>
</component>

The name of this component is a valid JSF converter id, which you then supply to a JSF
converter tag that takes the place of <s:convertEntity> within the select component:

<f:converter converterId="customEntityConverter"/>

In Seam 2.1, a layer of indirection was introduced. Instead of the entity converter using
a persistence manager directly, it uses an entity loader component. In addition, two con-
figuration elements in the component namespace http://jboss.com/products/
seam/ui, prefixed as ui, were introduced to simplify the configuration. The entity
loader elements are <ui:jpa-entity-loader> and <ui:hibernate-entity-loader>
for JPA and Hibernate, respectively. Here’s the same global override for JPA in Seam 2.1:

<ui:jpa-entity-loader entityManager="#{em}"/>

359Enhancing the capabilities of the persistence manager
To define a custom entity converter, you must also define a custom entity loader:

<ui:jpa-entity-loader name="customEntityLoader" entityManager="#{em}"/>
<ui:entity-converter name="customEntityConverter"
 entity-loader="#{customEntityLoader}"/>

If all of this configuration is stressing you out, just remember that you can be configu-
ration free if you stick to the defaults. These overrides are just there if you need
them.
NO THANKS, HIBERNATE

Before moving on to the Hibernate extensions that Seam exposes, I want to discuss
Seam’s JPA extension manager and how it affects using alternate JPA providers. Seam
uses a built-in component named persistenceProvider to transparently tap into ven-
dor-specific JPA extensions, such as Hibernate’s manual flushing, allowing Seam to
leverage the strengths of the persistence provider while respecting your choice to use
JPA. As its JavaDoc states, “The methods on this class are the TODO list for the next
revision of the JPA specification.”

 The only trouble with this component is that in Seam 2.0, it has a strong affinity for
Hibernate. If the Hibernate JARs are present on the classpath, Seam automatically
assumes that Hibernate is the JPA provider. To reverse this assumption and prevent
Seam from trying to use Hibernate extensions, add the following configuration to the
component descriptor:

<component name="org.jboss.seam.persistence.persistenceProvider"
 class="org.jboss.seam.persistence.PersistenceProvider"/>

Seam 2.1 switched to using runtime detection of the JPA provider by consulting the
persistence manager, thus making this override unnecessary. Let’s check out what
extensions are used if it is Hibernate.

9.2.2 Letting Hibernate shine through

As I mentioned in chapter 8, Hibernate has several nice extensions that Seam can ele-
gantly expose to your application even if you’re using JPA. Here are the most notable
extensions:

■ Postquery filters
■ Hibernate Search
■ Manual flushing of the persistence context

This section focuses on the first two features, as well as how to elegantly expose the
Hibernate Session. An entire section, section 9.4, is dedicated to the last feature and
how it relates to application transactions.
FILTERING THE QUERY RESULTS

Although it’s perhaps not the first feature you’ll use in Hibernate, if the need arises, it’s
nice to know that Hibernate supports filtering of the query results for a given Session.
This feature is useful for regional filtering and redacting sensitive data. Best of all, you
can apply it without touching Java code. Instead, you define filters using XML in the
component descriptor. This feature is only available if you’re using a Seam-managed

360 CHAPTER 9 Seam-managed persistence and transactions
persistence context. Consult the Hibernate reference documentation for details on
how to define filters.

 But why filter when you can search? That’s what Hibernate Search is all about.
CALLING ON HIBERNATE SEARCH

For more sophisticated searching, and to take load off the database, you can use
Hibernate Search, a Hibernate extension that can perform Lucene-based full text
search queries against the domain model. When the Hibernate Search libraries are
present on the classpath (consisting of hibernate-search.jar, hibernate-commons-
annotations.jar, and lucene-core.jar), Seam proxies the persistence manager, wrap-
ping it with Hibernate Search capabilities. If you’re using Hibernate, the Session is
wrapped in a FullTextSession; if you’re using JPA, the EntityManager is wrapped in
a FullTextEntityManager. Hibernate Search is available even when you’re using a
Java EE container-managed EntityManager (i.e., @PersistenceContext).

 To use Hibernate Search, you either downcast to the full-text variant when you
need its features or, if you’re using a Seam-managed persistence context, just inject it
directly using the appropriate property type. Here, we search for golf courses using a
Lucene query:

@Name("courseSearch")
public class CourseSearchAction {
 @In private FullTextEntityManager entityManager;
 @Out private List<Course> searchResults;

 public void search(String searchString) {
 org.apache.lucene.query.Query luceneQuery =
 new MultiFieldQueryParser(new String[] {"name", "description"},
 new StandardAnalyzer()).parse(searchString);
 javax.persistence.Query query = entityManager
 .createFullTextQuery(luceneQuery, Course.class);
 searchResults = (List<Course>) query.getResultList();
 }
}

Of course, to query entities with Hibernate Search, you need to apply the Hibernate
Search annotations to your entity classes and add the indexer settings to the persis-
tence unit descriptor. A minimal configuration consists of an index storage provider
and index location, shown here for JPA (/META-INF/persistence.xml):

<properties>
 ...
 <property name="hibernate.search.default.directory_provider"
 value="org.hibernate.search.store.FSDirectoryProvider"/>
 <property name="hibernate.search.default.indexBase"
 value="/home/twoputt/indexes/open18-index"/>
</properties>

There’s no way to do Hibernate Search justice in this small amount of space. Besides,
Seam simply handles the task of wrapping the full-text search persistence manager
around the native one. From there, it’s out of Seam’s hands. I encourage you to grab a
copy of Hibernate Search in Action (Manning, 2008) to learn how to use this extremely
powerful feature of Hibernate.

361Setting up a persistence unit in Seam
 While Seam’s role as liaison between JPA and the underlying Hibernate API is a
desirable abstraction and usually fishes what you need out of Hibernate, there may be
times when you have to work directly with the Hibernate Session. Fortunately, Seam
offers a neat trick.
GETTING DOWN TO HIBERNATE

When you’re using JPA, you can always get down to the provider interface by calling
the getDelegate() method on the EntityManager instance. But you have to perform
a cast that makes an assumption about the underlying JPA provider:

Session session = (Session) entityManager.getDelegate();

You can define a factory in Seam to hide the cast:

<factory name="hibernateSession" value="#{entityManager.delegate}"
 auto-create="true"/>

You then use the @In annotation to inject the value of this factory into your component:

@In private Session hibernateSession;

One reason you might need the Hibernate Session is to check if there are modified
entities in the persistence context:

boolean dirty = hibernateSession.isDirty();

Hopefully these upgrades motivate you to use the Seam-managed persistence compo-
nents. In the next section, you’ll learn to set up a persistence unit and persistence man-
ager in Seam. I present the JPA configuration followed by Hibernate configuration. If
you’re only interested in one of the frameworks, you can skip over its complement.

9.3 Setting up a persistence unit in Seam
In the previous chapter, you learned how to prepare a persistence unit descriptor for
JPA (META-INF/persistence.xml) and one for Hibernate (hibernate.cfg.xml), which
you’ll use in this section to load JPA and Hibernate, respectively. While the Java EE
container can find the JPA persistence unit descriptor on its own, Seam requires some
direction in locating a persistence unit. Seam’s persistence management is capable of
bootstrapping the persistence unit, but it’s not required. You can also configure Seam
to use the persistence unit runtime managed by the Java EE container, which only
applies to JPA, or, as you’ll learn in chapter 15 (online), Seam can retrieve a persis-
tence unit runtime that’s managed by the Spring container.

 I start by introducing you to Seam’s built-in components that load and manage
either a JPA or Hibernate persistence unit, then move on to configuring them.

9.3.1 Seam’s persistence manager factories

Seam provides manager components for bootstrapping JPA and Hibernate persis-
tence units. I refer to these components, which wrap the runtime configuration
object of the persistence unit, as Seam-managed persistence units. Table 9.1 shows the
mapping between each Seam-managed persistence unit and the persistence manager
factory it manages.

362 CHAPTER 9 Seam-managed persistence and transactions
The Manager design pattern allows Seam to tie the life cycle of the underlying persis-
tence manager factory to that of an application-scoped Seam component. Each of the
two components listed in table 9.1 has a @Create method, which starts the persistence
manager factory, and a @Destroy method, which closes it. The components initialize
on application startup as directed by the @Startup annotation.

 Since the Seam-managed persistence units are manager components, they resolve
to the value they manage, which is the persistence manager factory. Thus, when a
Seam-managed persistence unit is injected into a property of a Seam component, the
property’s type must be that of the persistence manager factory. Assuming the name of
the JPA persistence unit component is entityManagerFactory, it’s injected as follows:

@In private EntityManagerFactory entityManagerFactory;

For Hibernate, if the component is named sessionFactory, the injection looks like
this:

@In private SessionFactory sessionFactory;

The Seam-managed persistence unit components are actually just component tem-
plates, meaning that neither has a @Name annotation. To actualize them as Seam com-
ponents, you must declare them in the component descriptor. Only then will the
persistence manager factory be loaded.

 As with all of the built-in Seam components, Seam provides a component
namespace to ease the XML configuration burden. Seam’s persistence components
fall under http://jboss.com/products/seam/persistence, aliased as persistence
throughout this section. With the namespace declaration in place, let’s see how this
component is configured in the case of JPA and Hibernate.
BOOTSTRAPPING A JPA ENTITYMANAGERFACTORY

The component definition for the Seam-managed persistence unit must include both
a name and a reference to a persistence unit. Let’s assume you have a JPA persistence
unit named open18 defined in META-INF/persistence.xml as follows:

<persistence-unit name="open18" transaction-type="JTA">
 ...
</persistence-unit>

For that, you declare the following declaration in the component descriptor:

<persistence:entity-manager-factory name="entityManagerFactory"
 persistence-unit-name="open18"/>

Table 9.1 The Seam-managed persistence units

Persistence
framework

Seam component
org.jboss.seam.persistence.*

Persistence configuration it manages

JPA EntityManagerFactory javax.persistence.EntityManagerFactory

Hibernate HibernateSessionFactory org.hibernate.SessionFactory

363Setting up a persistence unit in Seam
If the persistence-unit-name attribute is excluded from the component definition,
the name of the component is used as the persistence unit name, which in this case
would be entityManagerFactory.

 That’s pretty much all there is to it! Internally, Seam uses the persistence unit
name to create an EntityManagerFactory as follows:

EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("open18");

To have Seam defer loading of the persistence unit until it’s needed, perhaps for a
quicker deployment turnaround, you can disable the startup behavior of this
component:

<persistence:entity-manager-factory name="entityManagerFactory"
 persistence-unit-name="open18" startup="false"/>

JPA can accept vendor-specific properties for a persistence unit. Typically these prop-
erties are defined inside the <properties> element in the persistence unit descriptor.
In Seam, you have the option of defining these properties on the manager compo-
nent itself:

<persistence:entity-manager-factory name="entityManagerFactory"
 persistence-unit-name="open18">
 <persistence:persistence-unit-properties>
 <key>hibernate.show_sql</key><value>true</value>
 </persistence:persistence-unit-properties>
</persistence:entity-manager-factory>

Supplying these properties using Seam’s component configuration feature gives you
the flexibility to tune them for a specific environment by using a replacement token
or value expression as the property’s value. See chapter 5 for more details.

 The component that loads the Hibernate configuration is a touch more
sophisticated.
BOOTSTRAPPING A HIBERNATE SESSIONFACTORY

Hibernate is configured in much the same way as JPA, only instead of providing a per-
sistence unit name, you indicate the location where the Hibernate configuration
resides on the classpath. If the configuration file is named according to Hibernate’s
convention, you don’t even need to specify the file’s location. Hibernate automatically
looks for hibernate.cfg.xml (as well as hibernate.properties) at the root of the class-
path when it loads, unless told otherwise. In this default case, the component defini-
tion is specified as follows:

<persistence:hibernate-session-factory name="sessionFactory"/>

Internally, Seam loads the Hibernate SessionFactory as follows:

SessionFactory sessionFactory =
 new AnnotationConfiguration().configure().buildSessionFactory();

364 CHAPTER 9 Seam-managed persistence and transactions
If the name of the configuration file doesn’t follow the Hibernate convention, per-
haps because you’re loading a second Hibernate persistence unit, you must specify
the location of the Hibernate configuration file:

<persistence:hibernate-session-factory name="teetimeSessionFactory"
 cfg-resource-name="hibernate-teetime.cfg.xml"/>

In this case, the load performed internally changes to

SessionFactory sessionFactory =
 new AnnotationConfiguration().configure(cfgResourceName)
 .buildSessionFactory();

With Hibernate, you have the option of configuring the persistence unit entirely in
the component descriptor, specifying the Hibernate configuration properties3 using
component configuration properties:

<persistence:hibernate-session-factory name="sessionFactory">
 <persistence:cfg-properties>
 <key>hibernate.connection.driver_class</key>
 <value>org.h2.Driver</property>
 <key>hibernate.connection.username</key>
 <value>open18</value>
 <key>hibernate.connection.password</key>
 <value>tiger</value>
 <key>hibernate.connection.url</key>
 <value>jdbc:h2:/home/twoputt/databases/open18-db/h2</value>
 </persistence:cfg-properties>
</persistence:hibernate-session-factory>

You have to decide you want whether to define the Hibernate configuration properties
in the Hibernate persistence unit descriptor or the Seam component descriptor. If the
cfg-resource-name attribute is present, the <cfg-properties> element is ignored.

 The Hibernate persistence unit component offers a rich set of configuration prop-
erties for supplying the location of mapping artifacts. The properties are defined using
the <mapping-classes>, <mapping-files>, <mapping-jars>, <mapping-packages>,
and <mapping-resources> elements. Consult the Hibernate documentation for infor-
mation on using these settings.

 Seam’s components are just one option you have for loading a persistence unit. In
section 9.3.3, you’ll learn how to work with a persistence manager factory stored in
JNDI, a less Seam-centric approach. We’ll forge ahead for now using the Seam-
managed persistence unit as the source from which a Seam-managed persistence con-
text is created.

9.3.2 Seam-managed persistence contexts

Having just registered a persistence manager factory, you could use it to create your
own application-managed persistence manager. But why manage this resource your-
self when Seam can take the burden off your shoulders? Once again, Seam uses
a manager component to handle this task. However, in this case the persistence

3 For a full list of properties available to Hibernate, please refer to the Hibernate reference documentation.

365Setting up a persistence unit in Seam
manager is allocated when the Seam-managed persistence context is retrieved from
the Seam container rather than being initialized at application startup like the persis-
tence manager factory.

 When the Seam-managed persistence context is created, it’s stored in the active
conversation context—regardless of whether the conversation is temporary or long-
running. The life cycle of the underlying persistence manager is then bound to the
lifetime of the conversation. When the conversation ends, Seam calls the close()
method on the persistence manager to close the persistence context. Table 9.2 shows
the persistence manager that Seam creates for each persistence framework.

Once the Seam-managed persistence context is defined (which will be covered shortly),
you can inject it into the property of another Seam component using the @In annota-
tion. The target property’s type is expected to be that of the persistent manager. Assum-
ing the name of the JPA component is entityManager, it’s injected as follows:

@In private EntityManager entityManager;

Remember that this injection can occur at any layer in your application, not just on a
JSF action bean component as you see in many of the examples in this book.

 For Hibernate, where application-managed persistence contexts are your only
option, the injection is performed as follows, assuming the component is named
hibernateSession:

@In private Session hibernateSession;

If a JTA transaction is active when the Seam-managed persistence context is injected,
the persistence manager is enlisted in that transaction. In addition, if you’re using
Hibernate, either as a provider for JPA or natively, and Hibernate filters are defined on
the component, they’re applied to the persistence manager at this time.

 Like the Seam-managed persistence units, the Seam-managed persistence contexts
are component templates. To make them available to the application, they must be
activated using the component descriptor. Let’s see how they’re defined.
DEFINING A MANAGED PERSISTENCE CONTEXT

When you declare the Seam-managed persistence context, you must supply a name and
a reference to a persistence manager factory. If you’ve configured a Seam-managed per-
sistence unit named entityManagerFactory that loads the JPA persistence unit, you
inject a reference to it as a value expression into the Seam-managed persistence context:

<persistence:managed-persistence-context name="entityManager"
 entity-manager-factory="#{entityManagerFactory}" auto-create="true"/>

Table 9.2 The Seam-managed persistence contexts

Persistence
framework

Seam component
org.jboss.seam.persistence.*

Persistence manager it creates

JPA ManagedPersistenceContext javax.persistence.EntityManager

Hibernate ManagedHibernateSession org.hibernate.Session

366 CHAPTER 9 Seam-managed persistence and transactions
Likewise, if you’ve configured a Seam-managed persistence unit named session-
Factory to load the Hibernate persistence unit, you inject the corresponding value
expression:

<persistence:managed-hibernate-session name="hibernateSession"
 hibernate-session-factory="#{sessionFactory}" auto-create="true"/>

In the previous two declarations, the auto-create attribute is set to true. By default,
the Seam-managed persistence context components are defined with the autocreate
feature disabled. By enabling this feature, you can inject these components using an
@In annotation without having to supply the create attribute.

TIP If you assign the name entityManager to the JPA persistence manager
and session (or hibernateSession as of Seam 2.1) to the Hibernate
persistence manager, you can save yourself a couple of keystrokes. Seam
uses these names in several of its modules to look up the Seam-managed
persistence context, unless an override is specified.

So far you’ve established Seam-managed persistence contexts for both JPA and Hiber-
nate, letting Seam handle the entire process. Although there are times when this is
the most convenient approach, Seam won’t always be in command. Fortunately, Seam
is able to look to JNDI and use a persistence unit waiting there, loaded and ready.

9.3.3 Sharing the persistence manager factory through JNDI

Seam’s JPA persistence manager component is capable of obtaining a reference to a
JPA persistence unit loaded by the Java EE container, if made available through JNDI.
Seam can also retrieve a Hibernate SessionFactory stored in JNDI for use in its
Hibernate persistence manager component. We explore how to make these resources
available in JNDI and how to get Seam to use them, starting with the native Java
EE integration.
PERSISTENCE UNIT REFERENCES

There’s no use loading a JPA persistence unit if one’s already available, which is the case
in a standard Java EE environment. However, the Java EE container doesn’t expose the
EntityManagerFactory by default, which means it’s not published to JNDI. This isn’t
necessary for using the @PersistenceContext annotation on a Java EE component. But
now, you need to allow Seam to obtain the persistence manager factory from the Java
EE container. That requires the extra step of declaring it as a resource reference.

 The persistence unit reference can be defined in either the web.xml descriptor
using the <persistence-unit-ref> element or in a @PersistenceUnit annotation on
a Java EE component. I cover only the XML-based configuration here. The reference
associates a JNDI name in the java:comp/env namespace with the persistence unit
name, as follows:

<persistence-unit-ref>
 <persistence-unit-ref-name>open18/emf</persistence-unit-ref-name>
 <persistence-unit-name>open18</persistence-unit-name>
</persistence-unit-ref>

367Setting up a persistence unit in Seam
In order for this reference to be usable, the persistence unit descriptor and entities
must be on the classpath of a WAR or packaged as a persistence archive4 (PAR) and
placed in the lib directory of an EAR. When a PAR is in the lib directory of an EAR, its
persistence units are visible to the WAR and the EJB JAR. If the persistence unit is pack-
aged inside an EJB JAR, it’s private and therefore not visible to the web context or
Seam (JBoss AS is an exception).

 A reference to the EntityManagerFactory for this persistence unit is obtained by
looking up the qualified JNDI name java:comp/env/open18/emf in the Initial-
Context. Of course, you don’t have to perform this lookup yourself since Seam can
accept a JNDI name in the configuration of the persistence manager, replacing the
entity-manager-factory attribute:

<persistence:managed-persistence-context name="entityManager"
 persistence-unit-jndi-name="java:comp/env/open18/emf"
 auto-create="true"/>

This whole setup assumes you’re working in a Java EE 5–compliant environment, and
JBoss AS 4.2 is not. Until JBoss AS 5.0 is rolled out, the means of binding to JNDI and
the JNDI naming convention are different.
DEALING WITH JNDI IN JBOSS AS
JBoss AS 4.2 doesn’t implement the entire Java EE 5 specification, coming up short in
the area of persistence archives. It doesn’t support the use of persistence unit refer-
ences, as described earlier. Your only option is to instruct Hibernate to bind the
EntityManagerFactory to JNDI at runtime by adding a special JNDI Hibernate prop-
erty to the persistence unit configuration:

<persistence-unit name="open18" transaction-type="JTA">
 ...
 <properties>
 <property
 name="jboss.entity.manager.factory.jndi.name" value="open18/emf"/>
 </properties>
</persistence-unit>

This trick only works, however, if Hibernate is the persistence provider. It also
depends on Hibernate being able to write to JNDI at runtime, which isn’t supported
in all environments (see the accompanying sidebar). Also note that this JNDI name
isn’t placed in the java:comp/env namespace5 but rather in the global JNDI
namespace, so the reference to the EntityManagerFactory is obtained by looking up
the JNDI name verbatim:

<persistence:managed-persistence-context name="entityManager"
 persistence-unit-jndi-name="open18/emf" auto-create="true"/>

Unfortunately, the situation with JBoss AS is even grimmer. JBoss AS 4.2 only loads per-
sistence units if they’re packaged as an EJB JAR inside an EAR and declared as an EJB

4 The persistence archive is detailed in this blog entry: http://in.relation.to/Bloggers/PartitionYourApplication.
5 On most Java EE application servers, the java:comp/env namespace can’t be modified at runtime.

http://in.relation.to/Bloggers/PartitionYourApplication

368 CHAPTER 9 Seam-managed persistence and transactions
module in the EAR’s application.xml descriptor. If your configuration is different, you
need to have Seam bootstrap the persistence unit before it can be bound to JNDI. The
same goes if you deploy your application to a servlet container such as Tomcat or Jetty.
A Hibernate SessionFactory is bound to JNDI using the same runtime technique.
GETTING THE HIBERNATE SESSION INTO JNDI
Hibernate at least has an excuse for JNDI tricks since it doesn’t answer to a standard.
The way that Hibernate is configured to bind to JNDI is so subtle that it’s often over-
looked. You simply add the name attribute to the <session-factory> node in the
Hibernate configuration, and that value is used as the global JNDI name to which
to bind:

<hibernate-configuration>
 <session-factory name="open18/SessionFactory">...</session-factory>
</hibernate-configuration>

Since the mechanism of binding to JNDI is the same as when Hibernate is used as the
JPA provider, the lookup follows the same rules. Namely, the JNDI name is passed ver-
batim to the Seam-managed persistence context component for Hibernate:

<persistence:managed-hibernate-session name="hibernateSession"
 session-factory-jndi-name="open18/SessionFactory" auto-create="true"/>

Because a Hibernate configuration isn’t going to be picked up by the Java EE con-
tainer, you must use Seam (or an alternative) to load the persistence unit. In that
regard, JNDI really doesn’t provide much benefit in this scenario.

 The downside of relying on a persistence unit in JNDI is that you don’t know
whether it’s available until the first time you attempt to retrieve it. This presents an
opportunity for you to be proactive and validate the configuration when the applica-
tion starts.

9.3.4 Validating the persistence context at startup

To remedy the uncertainty of relying on a JNDI lookup, you can register an application-
scoped @Startup component, shown in listing 9.1, to perform a sanity check by verifying
that a managed persistence context can be successfully created.

Writing to the JNDI registry is not so easy
JNDI namespaces, and the rules regarding which namespaces can be modified at
runtime, vary widely across application servers. For instance, JBoss AS supports the
namespace java:/, which isn’t available on any other server. GlassFish doesn’t per-
mit the application to modify the java:comp/env namespace. Tomcat disables writing
to the JNDI registry at runtime entirely. Keep in mind that writing to the JNDI registry
is only necessary if the application server doesn’t support persistence unit refer-
ences or if you want to bind a Hibernate SessionFactory to JNDI.

369Seam’s transaction support
package org.open18.persistence;
import ...;

@Name("persistenceContextValidator")
@Scope(ScopeType.APPLICATION)
@Startup
public class PersistenceContextValidator {
 private ValueExpression<EntityManager> entityManager;

 @Create
 public void onStartup() {
 if (entityManager != null) {
 try {
 EntityManager em =
 entityManager.getValue();
 entityManager.setValue(null);
 } catch (Exception e) {
 throw new RuntimeException("The persistence context "
 + entityManager.getExpressionString()
 + " is not properly configured.", e);
 }
 }
 }

 public void setEntityManager(
 ValueExpression<EntityManager> entityManager) {
 this.entityManager = entityManager;
 }
}

The reference to the Seam-managed persistence context is supplied as a value
expression:

<component name="persistenceContextValidator">
 <property name="entityManager">#{entityManager}</property>
</component>

A conversation context is active during container initialization, allowing the conversa-
tion-scoped EntityManager to be created at that time.

 That gives you a handful of options for setting up Java persistence in Seam. Seam
does just as much to aid with transactions, which is the topic of the next section.

9.4 Seam’s transaction support
Seam’s transaction support makes your persistence operations robust and the transac-
tion APIs more accessible. Three services comprise Seam’s transaction support (all
optional):

■ Global transactions
■ Transaction abstraction layer
■ Application transactions

Seam recognizes that transactions are not only useful at the business layer, but also
around the entire request, making them truly global. As part of providing this service,

Listing 9.1 Verifies the persistence configuration at startup

Triggers
JNDI
lookup

Closes
temporary
entity manager

Accepts unevaluated
EL expression

370 CHAPTER 9 Seam-managed persistence and transactions
but also to make transaction APIs more accessible, Seam introduces a transaction
abstraction layer built around the JTA interface. Seam’s transaction API makes switch-
ing between different transaction platforms a matter of configuration. Finally, Seam
works with the Seam-managed persistence context and Hibernate to facilitate applica-
tion transactions. This section shows how these services support you in creating robust
database-oriented applications.

9.4.1 Global transactions

The JSF life cycle grants Seam granular control over a request through the use of a phase
listener. Seam takes advantage of this visibility to manage the persistence context, manip-
ulate transaction boundaries, catch exceptions, and issue transaction rollbacks. During
the Seam life cycle, Seam applies two key aspects of its global transaction strategy:

■ Wraps each request in two (or three) distinct transactions
■ Disables flushing of the persistence context during view rendering

To safeguard persistence operations, regardless of when they occur, Seam uses two
global transactions per request (three, if page actions are triggered). The initial trans-
action begins either before the Restore View phase or before the Apply Request Values
phase, depending on whether JTA or resource-local transactions are being used,
respectively. Another distinct transaction wraps page actions, if they are used. These
initial transactions allow transactional operations performed through the Invoke Appli-
cation phase (i.e., event listeners, action listeners, page actions, and the action
method) to complete their work before advancing to rendering. That way, a render-
ing exception doesn’t cause business logic that completed successfully to be rolled
back after the fact. If the business logic does fail, it can be handled using a transaction
rollback and subsequent navigation to an error view.

 The final transaction ensures that database reads occurring in the Render Response
phase—as a result of lazy loading and other on-demand fetch operations—remain iso-
lated to protect against interim database changes as defined by the transaction isola-
tion level. Seam also disables flushing of Seam-managed persistence contexts during
the Render Response phase if Hibernate is the persistence provider, effectively making
the transaction read-only. This measure ensures that the view can’t inadvertently cause
the database to be modified. Figure 9.2 illustrates these transaction boundaries by
shading each distinct life-cycle region.

 The transaction manager that Seam uses to originate the global transaction is
determined by the transaction component, which you’ll learn to configure in the next
section. Use of Seam’s global transactions is optional. You are free to use transactions
at the boundaries of your service layer methods (or wherever you have them defined).
To disable Seam’s global transactions, you set the following configuration in the com-
ponent descriptor:

<core:init transaction-management-enabled="false"/>

As a word of warning, taking away Seam-managed transactions leaves the view render-
ing without a transaction. Let’s consider the consequences of this choice.

371Seam’s transaction support
LAZY LOADING IN ISOLATION

Do you need a transaction to use lazy loading? No. Lazy loading is made possible by
extending the persistence context for as long as you need to cross the boundary of an
uninitialized collection or proxy (the lazy-fetching strategy). But even with a conversa-
tion-scoped persistence manager, you still face the problem that without explicit trans-
action boundaries defined, lazy-load operations execute in autocommit mode,
opening and closing a transaction for every query. Not only is this expensive, it also
lacks isolation guarantees. Each lazy-load operation could execute more than one
query, and you may hit more than one lazy association in a given view. Some queries
may take a long time to run. Regardless of how many external transaction commits
occur in the interim, you want your reads to return data as if all the queries executed
in an instant. Thus, it’s a good idea to use an explicit transaction, even when the oper-
ations are read-only. And the global transaction guarantees that they are.

 Transactions are another area of turf that is highly contested. The Java EE con-
tainer offers JTA, the standard transaction manager in Java EE, the persistence frame-
works provide resource-local transactions, and Spring has its own platform for
transaction management. Which solution should you use? Seam reduces this decision
to a mere configuration detail.

9.4.2 Seam’s transaction abstraction layer

Seam normalizes all of the transaction implementations just mentioned under its own
abstraction layer. But here’s the kicker: Seam molds this abstraction out of the standard
Java EE transaction API by extending JTA’s UserTransaction interface. Calls to this inter-
face are delegated to the underlying transaction manager. That means you can take

Client Browser

JSF Servlet

Restore
View

Invoke
Application

Render
Response

Update Model
Values

Apply Request
Values

Process
Validations

Transaction 1

Transaction 3

Page
Actions

Transaction 2

JTA

RESOURCE_LOCAL

Figure 9.2 The boundaries of the transactions are wrapped around the phases of the Seam
life cycle by Seam’s transaction management. The RESOURCE_LOCAL transaction is delayed
until the start of a conversation.

372 CHAPTER 9 Seam-managed persistence and transactions
advantage of Seam’s transaction management without committing to yet another trans-
action platform. Seam also weaves in a number of convenience methods that ease the
task of managing the transaction from the application code. When control of transac-
tions is out of Seam’s hands—which is the case with container-managed transactions on
EJB components—Seam still participates by performing a narrower set of operations
and listening for transaction synchronization events raised by the EJB container.

NOTE Container-managed transactions can’t be controlled by the application,
so begin(), commit(), and rollback() are disallowed. setRollback-
Only() is permitted.

Table 9.3 shows the transaction managers that are supported by Seam’s abstraction
layer. The namespace alias tx used by the XML elements in this table resolves to
http://jboss.com/products/seam/transaction. Your job is to connect Seam to a
transaction manager so that it can create transactions as needed.

 Seam’s transaction managers are mutually exclusive. Seam uses application-
managed JTA, retrieved from the JNDI registry, in non–EJB environments. If you’d
rather have Seam use resource-local transactions, perhaps because JTA isn’t avail-
able, you configure the one that corresponds with the persistence API you’re using.
To use the resource-local transaction manager with JPA, define the following compo-
nent configuration:

<tx:entity-transaction entity-manager="#{em}"/>

You activate the resource-local transaction manager from Hibernate as follows:

<tx:hibernate-transaction session="#{hibernateSession}"/>

The persistence manager only needs to be specified if its name doesn’t adhere to Seam’s
standard naming conventions for the respective Seam-managed persistence context.

Table 9.3 Transaction managers supported by Seam’s abstraction layer

Seam transaction manager
org.jboss.seam.transaction.*

How installed Native transaction manager

UTtransaction Default in non-EJB environment Application-managed JTA
UserTransaction

EntityTransaction <tx:entity-transaction> JPA
EntityTransaction

HibernateTransaction <tx:hibernate-transaction> Hibernate
Transaction

CMTTransaction Default in EJB environment Container-managed JTA
UserTransaction avail-
able via the EJBContext
object

NoTransaction <tx:no-transaction> or when
JTA is not available

Used when no transaction
managers are available

373Seam’s transaction support
If your components rely on container-managed transactions, available in an EJB envi-
ronment, Seam works alongside the UserTransaction on the EJBContext to capture
transaction synchronization events. Since Seam isn’t in control of container-managed
transactions, it’s necessary to register Seam to be notified of the transaction boundaries:

<tx:ejb-transaction/>

This configuration activates a stateful session bean that implements the Session-
Synchronization interface to capture transaction events from the EJB container. This
SFSB is packaged in jboss-seam.jar, which must be bundled in the EAR. From this SFSB,
Seam passes on the following two events to other Seam components using its own inter-
nal event mechanism, the same events Seam raises for Seam-managed transactions:

■ org.jboss.seam.beforeTransactionCompletion
■ org.jboss.seam.afterTransactionCompletion (raised on commit or rollback)

The second event passes a boolean parameter to the observer indicating whether the
transaction was successful (i.e., commit or rollback). As a word of warning, mixing
Seam’s global transactions with CMTs is complex since the transactions themselves are
not shared.

 If you disable the Seam transaction manager (i.e., <tx:no-transaction>), you
must also disable Seam’s global transactions. Otherwise, Seam throws an exception
when it attempts to look up a transaction.

When using EJB components, you have the option of declaring transaction boundar-
ies using the standard Java EE mechanism, using either @TransactionAttribute
annotations or the ejb-jar.xml descriptor. Seam brings this declarative approach to
JavaBean components by providing the @Transactional annotation. The next section
focuses on using Seam-managed transactions on non-EJB components.

9.4.3 Controlling Seam-managed transactions

Transactions controlled in the business logic are referred to as bean-managed transactions
(BMTs). While BMTs offer more granular control, their use mixes up transaction man-
agement with business logic. As with persistence, Seam volunteers to play the role of the
“bean” in this equation by taking on management of the transactions, delivering the
same value proposition as container-managed transactions (CMTs). The key benefit of

Using distributed transactions in a Seam application
One of the main reasons for using JTA transactions is to take advantage of distrib-
uted transactions. Despite Seam wrapping global transactions around each request,
only the JTA implementation can support distributed transactions. In that case, you
can work with multiple persistence managers and get two-phase commits as long as
the underlying data source is configured as an XA resource. Chapter 14 (online) dem-
onstrates how to set up XA data sources in the sample application.

374 CHAPTER 9 Seam-managed persistence and transactions
this approach is that JavaBean and EJB components can share the same strategy. If nec-
essary, you can still use the Seam transaction API (i.e., the Transactional component)
to get more fine-grained control of the transaction.

 Seam provides the @Transactional annotation to control the propagation of a
Seam-managed transaction around a method call. The @Transactional annotation,
summarized in table 9.4, is a synonym for the Java EE @TransactionAttribute annota-
tion. Seam’s annotation supports a set of propagation types that mirror those in the
Java EE API. Seam wraps a built-in method interceptor around components that con-
tain the @Transactional annotation, which interprets this annotation and drives the
transaction accordingly. Note, however, that the @Transactional annotation is irrele-
vant during a JSF request when using Seam global transactions.

The @Transactional annotation can be applied at the class or method level. When
it’s applied at the class level, it’s inherited by all methods unless the method overrides
this setting with its own @Transactional annotation. The propagation values that are
permitted are summarized in table 9.5. Note that Seam doesn’t support suspending or
nesting transactions.

 Consider that you want to apply a transaction to all of the public methods of a
Seam component. For that, you define the @Transactional annotation at the class
level:

Table 9.4 The @Transactional annotation

Name: Transactional
Purpose: Specifies the transaction propagation that should be used for a method call
Target: TYPE (class), METHOD

Attribute Type Function

value TransactionPropagationType Indicates how the transaction should be
handled around the method call. Default:
REQUIRED.

Table 9.5 The transaction propagation types supported by the @Transactional annotation

Propagation type Purpose

REQUIRED Indicates that a transaction is required to execute the method. If a transac-
tion isn’t active, Seam will begin a new transaction. This is the default type.

SUPPORTS Indicates that the method is permitted to execute in the presence of an
active transaction, but it won’t begin a transaction if one isn’t active.

MANDATORY Indicates that an active transaction is required to execute the method.
A runtime exception is thrown if a transaction isn’t already in progress.

NEVER Indicates that a transaction shouldn’t be active when this method is called.
A runtime exception will be thrown if a transaction is active.

375Seam’s transaction support
@Name("courseAction")
@Transactional
public class CourseAction {
 @In private EntityManager entityManger;
 public void addCourse(Course course) {
 entityManager.persist(course);
 }
}

Now assume you want to delegate work to a method on another component. To
ensure that the helper method only executes in the presence of an existing transac-
tion, you declare the propagation type to be mandatory, declared here using a
method-level annotation override:

@Name("courseAuditManager")
@Transactional
public class CourseAuditManager {
 @In private EntityManager entityManager;
 @Transactional(TransactionPropagationType.MANDATORY)
 public void storeAuditInfo(Course course) {
 entityManager.persist(new CourseAudit(course));
 }
}

At the end of any method call that begins a transaction, the transaction is committed.
When using Seam global transactions, though, a transaction will already be active, so
the transaction commits at the boundaries of the phases illustrated in figure 9.1
instead. But what happens when the method call is disrupted by an exception? That
where rollbacks come in.
ROLLING BACK WHEN THINGS GO WRONG

Seam mimics the rollback behavior employed by the EJB container for transactional
method calls. In fact, when using Seam session bean components, Seam steps in and
issues the rollback even before the exception gets to the EJB container in certain
cases. The rules for rollback are as follows:

■ Roll back if a system exception is thrown. A system exception is a Runtime-
Exception not annotated with @ApplicationException.

■ Roll back if an application exception with rollback enabled is thrown. An appli-
cation exception is defined by the @ApplicationException annotation, which
indicates whether a rollback should be issued when the exception is thrown.

■ Don’t roll back if an application exception with rollback disabled or a checked
exception is thrown.

Seam can process the @ApplicationException from the Java EE API and its synonym
in Seam, which is summarized in section 3.6.3 of chapter 3. If the exception bubbles
out of the application logic, Seam’s exception-handling facility picks it up and issues a
rollback on the transaction if it’s still active. The rollback characteristics on the excep-
tion just give you control over when the rollback happens and allow you to handle it

376 CHAPTER 9 Seam-managed persistence and transactions
more gracefully. Whenever a transaction fails, Seam also adds a JSF warning message
to the response from the message key org.jboss.seam.TransactionFailed.

 The transactional methods exhibited thus far use atomic database transactions.
We’re now going to look at another type of transaction, the application transaction,
which is more of a design pattern than a service.

9.4.4 Application transactions

The application transaction (also called an atomic conversation, optimistic transaction,
or long-running application transaction) is the pinnacle of Seam’s Java persistence
support. It requires coordination from several different aspects of Seam, but it is with-
out a doubt the key to ensuring data consistency in a web-based application.
THE GOAL OF AN APPLICATION TRANSACTION

A persistence context is flushed by calling the flush() method on the persistence
manager. When that happens, modifications made to managed entities (dirty entities)
are propagated to the database using a series of Data Modification Language (DML)
statements (i.e., INSERT, UPDATE, and DELETE), a strategy referred to as write-behind.
When operating within the scope of a database transaction, it doesn’t matter when the
DML statements are executed since they’re part of the same transaction and can be
rolled back if something causes the transaction to fail (i.e., they are atomic).

 However, an extended persistence context can span many requests and therefore
many database transactions. Flushes that occur in different transactions aren’t part of
the same atomic unit of work. Therefore, it’s not possible to ask the database to roll
back to the state it was in when the conversation began. One workaround is to use
compensating transactions (i.e., “undo”), but they are laborious and error prone, and
don’t address the fact that these interim commits allow data (which is only partially
complete from the standpoint of the use case) to enter the database, thus effectively
breaking the conversation. Sending modifications to the database prematurely is anal-
ogous to charging your credit card as you add items to an online shopping cart.
What’s worse is that other parts of the system see these incomplete records as commit-
ted, the very situation isolated transactions are intended to prevent.

 What you want to be able to do is group all DML statements in a use case together
so they can be applied or rolled back uniformly as an atomic unit of work. I can assure
you that I’m not proposing the use of a long-term database lock. Holding a database
lock during user “think” time would introduce a tremendous bottleneck into the sys-
tem. The trick is to use an application transaction, which leverages the persistence
context as a database intermediary.

 You already know that a conversation-scoped persistence context can queue
changes throughout a use case, which you can think of as instructions for creating
DML statements. In an application transaction, flushing the persistence context is
deferred until the final step of the use case and executed within a database transac-
tion. Since the DML statements for the entire use case are applied together, the con-
versation (i.e., use case) is atomic. An application transaction relies on optimistic

377Seam’s transaction support
locking, presented in the previous chapter, to guarantee that the statements only exe-
cute if the database records that map to the managed entities in the persistence con-
text haven’t been modified externally since the use case began.

 Let’s consider how an application transaction is implemented according to the JPA
specification and the alternate solution that Hibernate provides. The difference is the
product of a heated debate. The extension in Hibernate that facilitates an application
transaction (manual flushing) was forced out of the specification because several deci-
sion makers didn’t understand it. Hopefully, this section will make you one of the
enlightened ones.
A WRINKLE IN THE SPECIFICATION

The flushing behavior of the persistence context is controlled using the flush mode
setting on the persistence manager. The JPA specification only defines two flush
modes, AUTO and COMMIT. In AUTO flush mode, a flush occurs when the persistence
manager deems it necessary. The COMMIT flush mode instructs the persistence man-
ager to hold off flushing until the transaction commits.

 The specification states that if you want to perform an application transaction, you
should set the flush mode to COMMIT and work outside of explicit transactions until
you’re ready to perform the flush. At the end of the use case, you call a transactional
method, which results in the changes being flushed to the database when the transac-
tion commits.

 Following this proposed approach means completely avoiding the use of transac-
tions in the interim, which is a very bad design. You are once again tiptoeing through
your own application (reminiscent of the lazy-initialization exception). You’re also
operating in autocommit mode, which as you learned earlier doesn’t provide isolation
for a sequence of database operations. Finally, it completely rules out the use of
Seam’s global transaction strategy, which uses at least two transactions per request.
For these reasons, Hibernate adds the MANUAL flush mode as an extension to the
JPA specification.
HIBERNATE’S MANUAL FLUSH MODE

Hibernate’s MANUAL flush mode ensures that the persistence context is only flushed
when a call is made to the flush() method on the persistence manager API (bean-
managed flushing). This mode gives you the flexibility to take your persistence con-
text in and out of transactions as you please without risking a premature flush.

If the entity identifier is generated during an insertion (i.e., auto-incre-
ment column), then even with manual flushing, a flush occurs after a call
to persist(). This is necessary since each managed entity in the persis-
tence context must be assigned an identifier. To avoid the flush, you
need to set the id-generation strategy to sequence (not identity).

Application transactions using Hibernate’s MANUAL flush mode extension are
controlled at the boundaries of the conversation. Fortunately, Seam can manage the
flush mode extension transparently. By setting the flushMode attribute on the @Begin
annotation to MANUAL (or the flush-mode attribute on the <begin-conversation>

WARNING

378 CHAPTER 9 Seam-managed persistence and transactions
page descriptor tag), Seam switches the persistence manager to manual flushing when
the conversation begins:

@Begin(flushMode = FlushModeType.MANUAL)
public void beginApplicationTransaction () { ... }

As of Seam 2.1, you can set the default flush mode globally in the component
descriptor:

<core:manager default-flush-mode="MANUAL" .../>

If you want to use application transactions in your application (and don’t want to use
the workaround of avoiding transactional methods), you must be using a Seam-man-
aged persistence context and the native Hibernate API or Hibernate as the JPA pro-
vider. MANUAL flush mode isn’t supported by any other JPA 1.0 provider. Let’s take a
look at a complete example that uses an application transaction.
AN APPLICATION TRANSACTION IN PRACTICE

Two compelling use cases for an application transaction are a wizard-based form and
an editor preview screen. In both cases, the user has the opportunity to verify the data
is correct before it’s committed. We’ll put the first use case into practice.

 Building on the golf course wizard example from chapter 7, the CourseWizard-
Action component, shown in listing 9.2, supports adding a new course as well as
updating an existing one, initiated by the action listener methods addCourse() and
editCourse(), respectively. Notice that these methods switch to a MANUAL flush
mode while initiating a long-running conversation. This opens a Seam-style applica-
tion transaction. Interim method calls don’t flush changes to the Course entity to the
database. Instead, all changes are deferred and sent in an atomic commit when the
save() method is called. (Note, however, that the persist() method forces a flush if
the entity’s identifier is generated on insert.)

package org.open18.action;
import ...;

@Name("courseWizardAction")
@Scope(ScopeType.CONVERSATION)
@Transactional
public class CourseWizardAction implements Serializable {
 @In private EntityManager entityManager;
 @RequestParameter private Long facilityId;
 @Out private Course course;

 @Begin(flushMode = FlushModeType.MANUAL)
 public void addCourse() {
 course = new Course();
 course.setFacility(
 entityManager.find(Facility.class, facilityId));
 entityManager.persist(course);
 }

 @Begin(flushMode = FlushModeType.MANUAL)

Listing 9.2 A component that supports an application transaction

Begins application
transaction

Doesn’t flush
changes to
database

Begins application
transaction

379Summary
 public void editCourse(Long id) {
 course = entityManager.find(Course.class, id);
 }

 public String submitBasicInfo() {
 return "next";
 }
 ...
 @End public String save() {
 entityManager.flush();
 return "success";
 }
}

What’s important is that you aren’t forced to sidestep transactional methods to imple-
ment an application transaction. The MANUAL flush mode instructs the persistence
context not to take action until it hears your command, ensuring that the conversa-
tion isn’t broken by a premature flush. In the interim, you’re free to use transactions
to get proper read isolation or for any other purpose.

 Application transactions demonstrate the resourcefulness of the persistence con-
text when treated as a first-class citizen of a use case and not relegated to the handy-
man of a transaction. For more in-depth coverage of application transactions, consult
chapter 11 of Java Persistence with Hibernate (Manning, 2007).

9.5 Summary
This chapter introduced Seam’s managed persistence and transactions as an alterna-
tive to the container-managed counterparts in Java EE. I hope you were able to con-
clude that using Java persistence in Seam is quite compelling. You saw how the
persistence context is often mishandled and that by hosting the persistence manager
in the conversation, Seam makes these problems melt away, letting you realize the
true value of Java persistence. In fact, Seam makes it hard not to get persistence right.

 In addition to scoping the persistence manager properly, you discovered that Seam
gives it some nice upgrades. We examined the general enhancements and ones spe-
cific to Hibernate. To give Seam control of the persistence context, you have to feed it
a persistence unit at runtime. You learned how to configure Seam to bootstrap a JPA
or Hibernate persistence unit itself or grab one already loaded from JNDI. You also
saw how to define a Seam-managed persistence context for either persistence API.

 I then unveiled Seam’s transaction support. You saw that global transactions
extend the guarantees that transactions provide across the whole request, that Seam’s
transaction abstraction layer makes the transaction APIs far more accessible, and that
application transactions are the key to ensuring data consistency in a stateful applica-
tion—enhanced by Hibernate’s MANUAL flush mode extension.

 You’re ready to use Seam’s Application Framework to rapidly throw together CRUD
applications and gain some experience using Seam-managed persistence contexts and
transactions at the same time.

Doesn’t flush
changes to database

Flushes changes
to database

Rapid Seam development
If you think back to when you first learned golf—perhaps you are still learn-
ing—you were probably overwhelmed with all of the things you have to concentrate
on at once. To start, you have to judge the distance you want to hit the ball and
choose the right club for it. This “design decision” is a tough call even for the best
golfers. Once your aim is set and you’re ready to take your swing, you have to posi-
tion your stance, set your grip, align the clubface, keep your head down, your
shoulders level, and your eye on the ball. It’s all so mechanical that even a good
swing feels unnatural.

 Then, one day, it all clicks. You stop thinking about every last detail and you just
swing. It’s hard to explain how you know—it just becomes natural to you, like walk-
ing or riding a bike. When you look down the fairway, accounting for the obstacles
in front of you, you just get that sense of how far you want to send the ball and which
club to use to get it there. You are no longer “designing” your decisions based on
some prescribed distance chart, nor do you feel uncomfortable when you swing.

This chapter covers
■ The Seam Application Framework
■ Building CRUD screens for an entity
■ Paginating and sorting a query result set
■ Assigning restrictions to queries
380

381A framework within a framework
 This chapter is the culmination of everything you’ve learned so far about Seam,
and it’s your chance to make things click. You’ll be combining components, compo-
nent instances, conversations, page parameters, page actions, navigation rules, man-
aged persistence, and transactions to implement several new features in the Open 18
application. By the end of this chapter, developing with Seam should feel so natural
that you’ll be able to assemble a custom application and still enjoy the fresh air. The
key to increasing your productivity with Seam is learning about the component tem-
plates in the Seam Application Framework and knowing how to put them to use.
These templates enable you to develop rapidly by handling repetitive and mundane
tasks and putting Seam services close at hand. You’ll discover that these classes can be
put to use by extending them in Java, configuring them in the component descriptor,
or both. Let’s begin by exploring what this framework has to offer.

10.1 A framework within a framework
As you are well aware by now, Seam is an application framework for Java EE. It provides
a container that manages components and leverages those components to tie the layers
of an enterprise Java application together. Nestled within the Seam code base lies a hand-
ful of classes that comprise the Seam Application Framework. This “framework within
a framework” is a specialized collection of component templates that effortlessly blanket
the programming requirements of garden-variety web applications. Such tasks include
performing create, read, update, and delete (CRUD) operations on entity instances; que-
rying for data; and developing JSF page controllers. You may be hesitant to give this spat-
tering of classes much notice, but I assure you that they’ll carry you a long way.

NOTE The Seam reference documentation refers to this grouping of classes as
the Seam Application Framework. The title is a potential cause of confusion,
as it resembles the name of the broader Seam framework in which it
resides. Therefore, whenever I talk about this set of classes and the func-
tionality they provide, I address it using the proper noun Seam Application
Framework to remain consistent with the documentation. I define it as a
framework of classes for quickly building page controllers that perform CRUD and
query operations on entities.

At the end of chapter 2, you had a CRUD application in place that you could use to
impress your boss. Since then, you’ve made enhancements to the application to fur-
ther demonstrate that your investment in Seam is paying off (hopefully convincing
your boss to buy copies of this book for your coworkers). The trouble is, most of the
inner workings of those original CRUD screens, which are powered by the Seam Appli-
cation Framework, remain a mystery. You’ve learned how to manage the view-edit-save
sequence correctly using conversations and the extended persistence context. You’ll
now learn how this framework helps facilitate that use case. You’ll also discover that it
can generate status messages that keep the user informed along the way.

 You’ll see how the framework aids in creating pages that list entities of a particular
type retrieved from the database. But it doesn’t just dump all the records at once,

382 CHAPTER 10 Rapid Seam development
which could potentially be a costly operation. Instead, it provides support for truncat-
ing the list into pages. The component that manages the query responds to pagina-
tion and sorting commands, and helps you develop a search filter to allow the user to
pare down the result set.

 In this chapter, you’ll mirror the behavior and design of the screens created in
chapter 2 to incorporate a new entity into the application, Round, which represents a
round of golf. This time, you’ll build the functionality from the ground up and then
take it several steps further. This exercise allows you to become familiar with the Seam
Application Framework and shows you how to build on it. It should come as no sur-
prise that the cornerstone of this framework is persistence.

10.1.1 Wrapping the persistence API

Database-oriented applications live and die by their ability to read and write relational
database tables. In the previous two chapters you’ve seen how easy it is to manage per-
sistent entities in a Seam application, thanks in large part to the ability of JPA and
Hibernate to transparently map objects to relational database tables and to move
them back and forth through use of a persistence manager. These object-relational
mapping (ORM) frameworks do away with verbose JDBC/SQL code sprinkled through-
out the objects in the data access layer (or worse, directly in the view).

 Despite the convenience of using an ORM tool over straight JDBC, you must still
perform repetitive tasks. The general belief is that ORM operations need to be
wrapped in a data access object (DAO) to eliminate boilerplate code and remove code
duplication across projects. There’s a number of DAO frameworks that take care of
this tedious work either by generating code or by providing template classes to isolate
data operations and exceptions from the business logic. Here’s a small sampling of
these frameworks:

■ AppFuse: http://www.appfuse.org
■ Crank: http://code.google.com/p/krank
■ EL4J: http://el4j.sourceforge.net
■ OpenXava: http://www.openxava.org

DAO frameworks such as these are capable of handling the following tasks:

■ Create or obtain a reference to the persistence manager
■ Manage CRUD operations and transactions with parameterized template classes
■ Reduce casting by using generic types or generated code
■ Provide a facility to define queries declaratively and help manage the result set

There’s nothing stopping you from using a data access layer in a Seam application. In
fact, for large-scale projects, I might be inclined to encourage such a design. But Seam
dispels the myth that the persistence manager must be trapped inside a DAO. Instead,
Seam proposes that the persistence manager is the DAO. But the persistence manager
isn’t a page controller—that’s where your Seam component fits in. It negotiates with
the persistence manager to perform data access operations. Not only does this design

http://www.appfuse.org
http://el4j.sourceforge.net
http://code.google.com/p/krank
http://www.openxava.org

383A framework within a framework
collapse layers, it also introduces a stateful component. The data access layer has
become so ingrained in our minds that it seems we can’t just let it go and try to justify
its existence by convincing ourselves that it protects us from technology change (the
same goes for the service layer).

 While Seam can manage the persistence context and allows it to be easily shared
among components, which you learned about in the previous chapter, the Seam
developers recognized that you still need to write a page controller. The Seam Appli-
cation Framework is a variation on the generic DAO framework, except it gets the per-
sistence manager and the page controller to work as a single unit rather than
introducing an additional layer of stacking. In addition, the classes in the Seam Appli-
cation Framework are aware of the state of the entities being exchanged (making it
stateful), rather than just blindly passing on operations to the persistence manager.
The framework includes two categories of persistence controllers, which you’ll learn
about in the next section: one that manages a single entity and one that manages a
result set. These controllers cover the following tasks:

■ Act as a JSF form bean and action bean (page controller)
■ Create prototype instances, either to be persisted or used as part of a query
■ Assist in managing the state of the entity instance or query result set
■ Retrieve the entity instance or query result set on demand
■ Monitor the parameters to determine when the managed data needs to be

refreshed
■ Use Java 5 generics to provide type-safe checking and eliminate casting for

operations performed on the entity instance or query result set
■ Define transactional boundaries around persistence operations
■ Prepare status messages and raise events when the transaction wrapping the

operation commits successfully

Thus, the classes that comprise the Seam Application Framework don’t purposelessly
wrap the persistence API. Instead, they foster rapid development of database-oriented
applications by handling many of the auxiliary concerns required to manage persis-
tent entities. Let’s take a look at what classes are available and how they interact with
the persistence manager.

10.1.2 The persistence controllers

The Seam Application Framework is a hierarchical set of classes, all extending from
the Controller base class. Controller contains convenience methods for accessing
the Seam contexts and component instances, interacting with the Servlet API and JSF
life cycle, logging messages, registering JSF messages, and raising events. The classes in
this hierarchy make extensive use of Java 5 generics to provide strong typing.

 These classes are intended to be used as JavaBean components. If you wanted to
extend one to create an EJB component, you’d need to define an interface for the class
since one is not provided. Even then, the PersistenceController, which is the pri-
mary descendent in the class hierarchy, is designed to be used with a Seam-managed

384 CHAPTER 10 Rapid Seam development
persistence manager. In particular, it provides generic access—of the Java 5 variety—to
the persistence manager as part of its class definition, shown here:

public abstract class PersistenceController<T> extends Controller { ... }

In this declaration, the generic type parameter T is a placeholder for the persistence
manager. Extending from the PersistenceController are three branches of classes
that facilitate interaction with the persistence manager. Each branch has an imple-
mentation for JPA and one for Hibernate. For JPA, T is replaced with EntityManager
and for Hibernate it is replaced with Session. The controller classes in the Seam
Application Framework are summarized in table 10.1. In each of these classes, the
generic type parameter E is a placeholder for the entity class.1

The JPA implementation of this class hier-
archy is diagrammed in figure 10.1.

 So what’s the benefit of wrapping the
persistence manager? There are in fact
two: transaction boundaries and generics.
Although the persistence manager can
control or participate in a transaction, it
can’t dictate transaction boundaries. The
methods on the persistence controller, on
the other hand, are decorated with
the @Transactional annotation to guar-
antee that the persistence operations are
nestled within an explicit transaction. In

Table 10.1 The three branches of parent classes in the Seam Application Framework

Type/Purpose JPA Hibernate

Home<T, E>
Manages a single entity instance and
supports CRUD operations.

EntityHome<E> HibernateEntityHome<E>

Query<T, E>
Manages a JPQL/HQL query result
set. Supports restrictions, ordering,
and pagination.

EntityQuery<E> HibernateEntityQuery<E>

PersistenceController
Parent class for developing JSF page
controllers. Has convenience meth-
ods for interacting with the persis-
tence manager, Seam, and JSF.

EntityController HibernateEntityController

1 According to http://java.sun.com/docs/books/tutorial/java/generics/gentypes.html, T is the common
parameter name for a Type. E is common for Element, though here you can think of it as Entity.

Controller

Home

PersistenceController

EntityHome

Query

EntityQuery

EntityController

Figure 10.1 The Seam Application Framework
hierarchy for JPA. There’s an equivalent one for
Hibernate.

http://java.sun.com/docs/books/tutorial/java/generics/gentypes.html

385A framework within a framework
the previous chapter, you learned that Seam uses global transactions around a JSF
request, so this is only a concern outside that environment. Generics allow these classes
to be form-fitted to a persistence manager implementation and an entity class. Let’s
focus on the benefits of generics.
A GENERIC APPROACH

It’s no secret that Seam embraces the language extensions introduced in Java 5 in
order to simplify the Java EE programming model. You’ve already seen that Seam
makes extensive use of annotations as a means of providing declarative behavior.
Seam builds on this adoption of Java 5 by using generics throughout the Seam Appli-
cation Framework. Generics help cut down on casting,2 thus removing a lot of unnec-
essary clutter from your code. For example, you can adopt the EntityHome to the
Round entity using a parameterized type:

EntityHome<Round> roundHome = new EntityHome<Round>();

You can then initialize a new instance of the entity without the need for a cast:

Course newRound = roundHome.newInstance();

The generics support is only relevant if you extend the framework classes in Java. You
also have the option of declaring your framework components entirely in XML. In that
case, the generic type parameters don’t play a role since the instances are only refer-
enced using the dynamically typed (or “duck-typed”) EL. Let’s consider when each is
the appropriate choice.

10.1.3 Two ways to play

The classes in the Seam Application Framework aren’t components them-
selves—meaning they don’t bear the @Name annotation. They are component tem-
plates, akin to the Seam-managed persistence classes covered in the previous chapter.
As you learned, one way to commission a template class as a Seam component is by
declaring and configuring it in the component descriptor, as shown here for the
roundHome component, which you’ll encounter later in this chapter:

<framework:entity-home name="roundHome"
 entity-class="org.open18.model.Round"/>

This component declaration falls under the built-in component namespace http://
jboss.com/products/seam/framework, prefixed as framework throughout this chap-
ter. Like the persistence framework classes, the application framework classes are
designed to be controlled entirely through configuration. The XML-based approach is
amazingly flexible, in large part due to the capabilities of the Seam component model
and the ubiquitous EL. When defined in this way, the component is fully capable of
preparing an entity instance to bind to the JSF form inputs and handling the form’s
actions. All of the necessary functionality is built right into the Home class.

2 For a more detailed discussion of generics and how they help eliminate casting, please refer to the technical
article on generics at http://java.sun.com/developer/technicalArticles/J2SE/generics/.

http://java.sun.com/developer/technicalArticles/J2SE/generics/

386 CHAPTER 10 Rapid Seam development
 If the feature you’re looking for isn’t already covered by the framework class, the
configuration-only approach is going to come up short. Fortunately, these classes are
designed to be extended. You can extend them in Java or Groovy to build your own
custom components. This option gives you the most flexibility for all the reasons class
extension is useful. As an added bonus, you can fulfill the generic type parameters on
the parent class to get type-safe checking. Here’s the same roundHome component
defined in Java:

@Name("roundHome")
public class RoundHome extends EntityHome<Round> { ... }

Don’t feel that you have to make the decision between Java or XML up front. From the
standpoint of the rest of the application, the end result is the same, a Seam compo-
nent. You can comfortably mix the two styles in your application, or even on the same
component. In fact, the most flexible approach is to define properties in XML and the
methods on a subclass, referencing the subclass in the component descriptor. This
flexibility is the essence of the unified component model in Seam. You’re now ready
to swing away by implementing CRUD screens to manage instances of the Round entity
using a Home component.

10.2 Stateful CRUD using the Home component
Managed persistence has a history of being at odds with sound object-oriented design.
EJB 2 championed the use of distributed objects. As a consequence, developers
quickly resorted to using data transfer objects (DTOs) to push aggregated data over
the wire as a way to reduce network traffic. These domain objects were void of behav-
ior. Unfortunately, the intelligence in domain objects didn’t get restored once “light-
weight” DAO frameworks replaced EJB 2 because the same flawed architecture was
adopted. Treating domain objects as buckets for holding data, without giving them
real behavior, is an anti-pattern known as the Anemic Domain Model.3 As is the fate of
all things out of balance, a change was imminent.

10.2.1 Remedying the Anemic
Domain Model

In an attempt to swing the pendulum away from
the Anemic Domain Model, as illustrated in fig-
ure 10.2, some contemporary frameworks, such
as Ruby on Rails, promote the use of the Active
Record design pattern as a way of making domain
objects active participants in an object-oriented
design. In the Active Record pattern, the domain
object is mapped directly to a database record,
just like with ORM. But this relationship is pushed

3 Martin Fowler first presented the concept of an Anemic Domain Model on his bliki: http://martinfowler.
com/bliki/AnemicDomainModel.html.

Anemic Domain
Model

Active Record

Figure 10.2 An industry trend toward
adding more behavior to domain model
objects. The Anemic Domain Model only
holds state, whereas the Active Record
pattern encapsulates state and performs
data access logic.

http://martinfowler.com/bliki/AnemicDomainModel.html
http://martinfowler.com/bliki/AnemicDomainModel.html

387Stateful CRUD using the Home component
further by allowing the domain object to save and retrieve itself from the database. Thus,
in addition to encapsulating data, it encapsulates data access logic.

 Seam, being a progressive framework itself, supports the Active Record pattern,
right? Absolutely not. For one, the Active Record pattern has been attempted once in
J2EE and failed miserably. Entity beans from the EJB 2 era—not to be confused with JPA
entity classes in EJB 3—bear a close resemblance to the Active Record pattern since they
internalize data access logic. This interaction is particularly evident in bean-managed
persistence (BMP) entity beans, which embed SQL statements directly in the life-cycle
methods. Just like domain objects in the Active Record pattern, EJB 2 entity beans can
create, update, load, and remove the database records to which they map.

 One of the main factors in the failure of entity beans is the hard link between the
domain object and the persistence framework. There is no separation of concerns. To
put it simply, entity beans are not POJOs. In fact, it’s difficult to implement the Active
Record pattern using POJOs. Hopefully, by now, we are in agreement that POJOs are
indicators of a sound design. They are easy to test and they are reusable. The main
reason Seam doesn’t support the Active Record pattern is because it has a better solu-
tion based on POJOs that strikes a nice balance between the fading Anemic Domain
Model and the overeager Active Record pattern.

10.2.2 Giving the domain object a Home

Entity classes are POJOs. This trait is good for reasons just mentioned, but limiting
because they can’t set transaction boundaries and can’t manage their own persistent
state (1 for POJOs, 0 for active domain models). But history has taught us that entity
classes shouldn’t handle this work anyway since it’s not a good separation of
concerns. Ideally, we want a solution that provides a competent domain model
without introducing tight coupling between the domain object and the persis-
tence framework.
INTRODUCING THE HOME COMPONENT

Seam answers this challenge by introducing the Home component (herein referred
to as a Home). A Home manages an entity instance by caching it and coordinating
CRUD operations on it with the persistence manager, all completely transparent to
the entity instance. Each Home is represented by the Home class, which extends from
PersistenceController, or any subclass of Home. As I’ve alluded to throughout this
chapter, the framework classes, such as Home, are abstract classes that are, in reality,
just component templates. They are also agnostic of the persistence framework.
Seam provides two implementations of Home: one for JPA, EntityHome, and one for
Hibernate, HibernateEntityHome. The class diagram for EntityHome is shown in fig-
ure 10.3. This section teaches you how to use the Home component, focusing on the
JPA implementation.

 A Home is a keeper of an entity instance, hence the term (in case you were wonder-
ing). You can use the following analogy to give more meaning to the term. The entity
class is like a family, and an instance of that class is a member of the family. The Home,

388 CHAPTER 10 Rapid Seam development
illustrated in figure 10.4, is where you go
to find a family member. The only restric-
tion is that at any given time, a Home
can only accommodate a single family
member. (The whole house to yourself!
Wouldn’t that be nice?) The entity in-
stance is said to be the Home’s context.

 You use a Home to manage an existing
record by supplying an identifier value to
the setId() method on Home. The identifier value represents a unique entity instance
and is mapped to the database table through the @Id property on the entity class. The
getInstance() method on Home uses this identifier to look up the entity by calling the
find() method on the persistence manager. Figure 10.5 shows the lookup process.

 When a different identifier is assigned to a Home, the ensuing call to get-
Instance() performs a fresh lookup to retrieve the entity instance associated with

PersistenceController<T>

+ getPersistenceContext() : T
+ setPersistenceContext(T)
getPersistenceContextName() : String

Home<T, E>

instance: E
newInstance: ValueExpression
+ create()
+ getId() : Object
+ setId(Object)
+ isIdDefined() : boolean
+ getInstance() : E
+ setInstance(E)
+ clearInstance()
+ getNewInstance() : ValueExpression
+ setNewInstance(ValueExpression)
+ getEntityClass() : Class<E>
+ setEntityClass(Class<E>)
joinTransaction()
initInstance() : E
find() : E
createInstance() : E
handleNotFound() : E
raiseAfterTransactionSuccessEvent()
getSimpleEntityName() : String
getEntityName() : String

EntityHome<E>

+ isManaged() : boolean
+ create()
+ update() : String
+ persist() : String
+ remove() : String
+ find() : E
+ getEntityManager() : EntityManager
+ setEntityManager(EntityManager)
loadInstance() : E
joinTransaction()
getPersistenceContextName(): String
getEntityName() : String

Figure 10.3 The class diagram of EntityHome. Several supplemental operations have been excluded.

find()

Home Persistence ManagerClient

setId(Long)

entity instance

getInstance()

find(Class, Long)

entity instance
Figure 10.5 Sequence diagram
showing how the Home object
resolves an entity instance.

Figure 10.4 A Home manages an entity
instance, negotiating with the persistence
manager to retrieve it.

389Stateful CRUD using the Home component
that identifier. If an identifier isn’t assigned when getInstance() is called, a new
entity instance is created internally by a call to the createInstance() method.
Another method, isManaged(), reports whether the entity instance maintained is
transient or persistent. The three operations that change the entity instance managed
by the Home are listed in table 10.2.

The Home serves as the main interface of the domain model object in this design,
which is now an aggregate of classes rather than a single “active” class like with Active
Record.
A DOMAIN MODEL COALITION

A Home encapsulates the entity instance
and the persistence manager, facilitating
communication between them without
making them aware of each other, as
shown in figure 10.6. To the outside
world, this domain object appears as a
single unit, allowing the domain model
to be “active” without contaminating the
entity class with data access logic.

 This design most closely resembles the
Mediator Design pattern. In the words of
the Gang of Four (Design Patterns: Ele-
ments of Reusable Object-Oriented Software,
Addison-Wesley Professional, 1994):

A mediator serves as an intermediary that keeps objects in a group from referring to each
other explicitly.

A Home uses the persistence manager to manipulate the persistence state of the entity
instance it manages, seeing it through its entire life cycle, as shown in figure 8.3 in
chapter 8. To coordinate these state transitions, the Home performs the well-known
CRUD operations by delegating the work to the persistence manager. This encapsula-
tion and delegation is what makes the Home pattern a good object-oriented design.
These façade methods on the Home class are listed in table 10.3.

 What the Mediator pattern brings to the table, and how it sets the Home apart
from the entity instance itself, is that the Home is both transactional and stateful.

Table 10.2 The methods on Home that are used to set the instance that is managed

Method Description

setId() Assign the id. Supplied to the persistence manager to retrieve the instance.

setInstance() Manually establish the instance, bypassing the lookup by id mechanism.

clearInstance() Forcefully clear both the id and the instance.

Home

EntityEntityEntityEntityEntity Persistence
Manager

Domain Model Object

Figure 10.6 A Home acts as a façade for the
domain object, delegates operations to the
entity instance and the persistence manager,
and facilitates communication between them.

390 CHAPTER 10 Rapid Seam development
CONTROLLING TRANSACTIONS AND STATE

The Home class provides transactional boundaries around the methods on the persis-
tence manager, declared using Seam’s @Transactional annotation. An excerpt of the
persist() method on EntityHome is shown here:

@Transactional
public String persist() {
 getEntityManager().persist(getInstance());
 getEntityManager().flush();
 ...
 return "persisted";
}

In this method, you can see how the Home is mediating between the entity instance
and the persistence manager. But the Home’s work extends far beyond the boundar-
ies of a transaction. By default, an instance of Home is scoped to the conversation con-
text, allowing it to maintain the entity instance throughout the use case. When
combined with an extended persistence context, that translates into not having to
retrieve the entity instance on each page transition or having to merge it when
changes need to be sent to the database. Instead, the persistence manager can be
responsible for tracking the changes in the entity instance. That brings us to the
update operation.

 Assume that you retrieved an entity instance using a Home and overlaid it on a
form in a web page. You would bind the action of the form to the update() method
on Home to have those changes pushed to the database when the form is submitted. An
excerpt of the update() method on the EntityHome is shown here:

@Transactional
public String update() {
 joinTransaction();
 getEntityManager().flush();
 ...
 return "updated";
}

As you can see, the update() method performs two operations on the persistence man-
ager, neither of which issues an explicit update. It ensures the persistence manager is
enlisted in the active transaction, which is only applicable if Seam is configured to use

Table 10.3 The methods on Home dedicated to interacting with the persistence manager

Method Description

getInstance() Retrieves the instance managed by this Home object

isManaged() Reports whether the instance is in a transient or persistent state

persist() Saves the transient instance to the database

update() Synchronizes the persistent instance with the database

remove() Makes the instance transient by removing it from the database

391Stateful CRUD using the Home component
JTA transactions, and then flushes the persistence context to synchronize changes to
the database. The changes become permanent when the transaction commits.

NOTE The update() method doesn’t need to perform a merge operation, even
if the entity instance isn’t stored in a long-running conversation. The rea-
son is because the entity instance is fetched from the database in the
Update Model Values phase prior to the values from the form being applied
to it. Thus, the instance is guaranteed to be managed when the update()
method is called. Any changes made during the Update Model Values phase
are detected and synchronized to the database.

This transparent management of the entity instance is the quintessence of stateful
behavior and is arguably more “active” than what the Active Record pattern affords
you. It’s certainly a more sound object-oriented design than EJB 2 entity beans with
data transfer objects. With the transactional boundaries established at the fringes of
the methods on the Home class, you are free to give your entity classes behavior, even if
it necessitates a transaction. However, logic that requires direct interaction with the
persistence manager is better placed on the Home object itself.

 That’s enough practical discussion about the Home component. Let’s put it to
work by using it to develop a data-entry screen for a round of golf in the Open 18
application. We will task it to see if it lives up to its design goals.

10.2.3 Putting Home to work

After taking a leisurely stroll through 18 holes on the golf course—leaving plenty of
work for the groundskeepers in your wake—you’ll want to record your golf score to
track your improvement—or lack thereof. Eventually, this data can be used to calcu-
late a golf handicap value. Let’s put together logic to manage this data by following
the same design used in a seam-gen project. We need to create the entity class, a
Home object to manage it, and the JSF templates for rendering the view and edit
screens. Mimicking the layout that seam-gen uses, the edit screen should appear like
figure 10.7. The view screen only differs in that the data is displayed as read-only.

Figure 10.7 The
form for adding a
new round, the
final product of this
section’s tutorial

392 CHAPTER 10 Rapid Seam development
A golf round is represented by the Round entity class, shown in listing 10.1, which
establishes the O/R mapping to the ROUND table where the data is persisted. Note that
an entity class must implement Serializable if it’s to be stored in a stateful context
(e.g., conversation) or passed through a remote interface.

package org.open18.model;
import ...;

@Entity
@Table(name = "round")
public class Round implements Serializable {
 private Long id;
 private Integer version;
 private Date date;
 private String notes;
 private Golfer golfer;
 private TeeSet teeSet;
 private Integer totalScore;
 private Weather weather;

 @Id @GeneratedValue
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 @Version
 public Integer getVersion() { return version; }
 private void setVersion(Integer version) { this.version = version; }

 @Temporal(TemporalType.DATE)
 public Date getDate() { return date; }
 public void setDate(Date date) { this.date = date; }

 @Lob
 public String getNotes() { return notes; }
 public void setNotes(String notes) { this.notes = notes; }

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "GOLFER_ID", nullable = false)
 @NotNull
 public Golfer getGolfer() { return golfer; }
 public void setGolfer(Golfer golfer) { this.golfer = golfer; }

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "TEE_SET_ID", nullable = false)
 @NotNull
 public TeeSet getTeeSet() { return teeSet; }
 public void setTeeSet(TeeSet teeSet) { this.teeSet = teeSet; }

 @Column(name = "total_score")
 public Integer getTotalScore() { return totalScore; }
 public void setTotalScore(Integer score) { this.totalScore = score; }

 @Enumerated(EnumType.STRING)
 public Weather getWeather() { return weather; }
 public void setWeather(Weather weather) { this.weather = weather; }
}

Listing 10.1 The Round entity class

Permits use of
optimistic locking

Tells JPA how to
handle the date

Prepares
database
to accept
large
strings

393Stateful CRUD using the Home component
Note the @ManyToOne mappings to Golfer and TeeSet. The fetch type declared in this
annotation is the global fetch strategy, which in this case is lazy. Later on, you’ll learn
how to temporarily change the fetch strategy to eager for a single JPQL/HQL query to
optimize the data retrieval. As you’ve learned, though, it’s perfectly safe to cross lazy
associations in the view thanks to Seam’s proper scoping of the persistence context.

 A round is associated with a tee set—the area on the golf course where you begin
each hole. (A tee set isn’t a collection, but rather a singular entity that represents the
position and color of the tee box on each hole.) The relationship between a round
and a golf course is implied indirectly through the tee set relationship. A round is also
associated with a golfer, which we assume is the golfer using the application when a
new round is being entered. You will see how a Home can be used to establish these
two relationships. Let’s start by looking at the declaration of the Home object that
manages the Round entity.
DECLARING A HOME

The Home implementation class is typically quite sparse. The purpose of the imple-
mentation class is to fulfill the generic type parameter for the Home type and yield a
Seam component. It can also provide custom routines that the template class doesn’t
cover. The following class definition shows a bare-minimum implementation subclass
of Home:

package org.open18.action;
import org.jboss.seam.annotations.Name;
import org.jboss.seam.framework.EntityHome;
import org.open18.model.Round;

@Name("roundHome")
public class RoundHome extends EntityHome<Round> {}

Believe it or not, this declaration is capable of performing CRUD for a Round entity! All
of the necessary logic is inherited. The Round entity class is passed as a generic type
parameter in the extends clause to make the EntityHome class aware of the type of
entity it is managing. The @Name annotation makes it a Seam component. The scope
isn’t declared, so it defaults to the conversation context, inherited from the superclass.

 By extending EntityHome, we are implicitly selecting JPA as the persistence frame-
work to manage the Round entity. EntityHome feeds EntityManager to the generic
type parameter T in Home<T, E>:

public class EntityHome<E> extends Home<EntityManager, E> { ... }

If you’re using Hibernate natively, define the RoundHome component by extending the
HibernateEntityHome class instead:

@Name("roundHome")
public class RoundHome extends HibernateEntityHome<Round> { ... }

The Hibernate implementation of the Home superclass has exactly the same methods
as the JPA implementation, so switching between the two has a low impact on the
application.

394 CHAPTER 10 Rapid Seam development
RETRIEVING THE PERSISTENCE MANAGER

As with all the persistence controllers in the Seam Application Framework, the persis-
tence manager is retrieved by the method getPersistenceContext(). In the JPA
implementation, this method looks for a Seam-managed persistence context named
entityManager and in the Hibernate implementation, session (or, hibernate-
Session as of Seam 2.1). If you aren’t able to adhere to this naming convention, you
have three options to customize it:

■ Override the method getPersistenceContextName() method and supply an
alternative component name for Seam to use:
public String getPersistenceContextName() { return "em"; }

■ Override the getPersistenceContext() method and look up the persistence
manager explicitly:
public EntityManager getPersistenceContext() {
 return (EntityManager) Component.getInstance("em");
}

■ Use component configuration to wire in a persistence manager:
<framework:entity-home ... entity-manager="#{em}"/>

You can also override the getEntityManager() method if you’re using JPA or getSes-
sion() if you’re using Hibernate. These methods are the delegates of the getPersis-
tenceContext() method in the respective class hierarchy.
TAKING THE XML ROAD

As mentioned in section 10.1.3, you have the option of defining the Home compo-
nent in the component descriptor using XML. Since generic types are not available in
this case, you have to specify the entity class explicitly:

<framework:entity-home name="roundHome"
 entity-class="org.open18.model.Round"/>

The equivalent XML element for Hibernate is <framework:hibernate-entity-home>.
Using XML works for simple cases, but as you’ll soon discover, there’s more value in
extending the Home class in Java (or Groovy) to create a more intelligent domain
model. As another option, you can use XML to configure a Java component that is a
subclass of Home.
BINDING A HOME TO A FORM

The Home component plays a dual role in a JSF form. It exposes the entity instance,
whose properties are bound directly to the inputs in the form. It also responds to the
form actions. This direct binding cuts out the “middleman” so you can get right
down to business. The JSF form used in the RoundEdit.xhtml template is shown in
listing 10.2. We analyze this form in the remainder of this section. Note that the
<s:decorate> tags simplify the markup for each field, as described in chapter 3. The
possible enum constants for the weather select menu are retrieved by a factory
named weatherCategories, which isn’t shown here.

395Stateful CRUD using the Home component
<h:form id="roundForm">
 <rich:panel>
 <f:facet name="header">
 #{roundHome.managed ? 'Edit' : 'Add'} Round
 </f:facet>
 <s:decorate id="dateField" template="layout/edit.xhtml">
 <ui:define name="label">Date:</ui:define>
 <rich:calendar id="date" datePattern="MM/dd/yyyy"
 value="#{round.date}"/>
 </s:decorate>
 <s:decorate id="notesField" template="layout/edit.xhtml">
 <ui:define name="label">Notes:</ui:define>
 <h:inputTextarea id="notes" cols="80" rows="3"
 value="#{round.notes}"/>
 </s:decorate>
 <s:decorate id="totalScoreField" template="layout/edit.xhtml">
 <ui:define name="label">Total score:</ui:define>
 <h:inputText id="totalScore" value="#{round.totalScore}"/>
 </s:decorate>
 <s:decorate id="weatherField" template="layout/edit.xhtml">
 <ui:define name="label">Weather:</ui:define>
 <h:selectOneMenu id="weather" value="#{round.weather}">
 <s:selectItems var="_weather" value="#{weatherCategories}"
 label="#{_weather.label}" noSelectionLabel="-- Select --"/>
 <s:convertEnum/>
 </h:selectOneMenu>
 </s:decorate>
 <div style="clear: both;">
 * required fields
 </div>
 </rich:panel>
 <div class="actionButtons">
 <h:commandButton id="save" value="Save"
 action="#{roundHome.persist}"
 rendered="#{!roundHome.managed}" disabled="#{!roundHome.wired}"/>
 <h:commandButton id="update" value="Update"
 action="#{roundHome.update}"
 rendered="#{roundHome.managed}"/>
 <h:commandButton id="delete" value="Delete"
 action="#{roundHome.delete}"
 rendered="#{roundHome.managed}"/>
 <s:button id="discard" value="Discard changes" propagation="end"
 view="/Round.xhtml"
 rendered="#{roundHome.managed}"/>
 <s:button id="cancel" value="Cancel" propagation="end"
 view="/#{empty roundFrom ? 'RoundList' : roundFrom}.xhtml"
 rendered="#{!roundHome.managed}"/>
 </div>
</h:form>

The input elements are bound to an instance of Round managed by RoundHome
through the value expression root #{roundHome.instance}. Since the #{round-
Home.instance} is used so frequently in this template, it makes sense to create an alias

Listing 10.2 The editor form for a golf round

396 CHAPTER 10 Rapid Seam development
for it. As you learned in chapter 6, aliases are defined using a factory component. The
factory can be defined in Java using the @Factory annotation on a method or as a
<factory> element in the component descriptor. Let’s define it in XML:

<factory name="round" value="#{roundHome.instance}"/>

You can now use the expression root #{round} in place of #{roundHome.instance}
throughout the template. Not only does it save a couple of keystrokes, it also hides the
implementation details of the Home pattern, making it appear as though you are
working with the entity itself! When choosing an alias, make sure the name isn’t
already in use or doesn’t conflict with the name of an existing component. Otherwise,
you may be surprised when you don’t get the object you’re expecting.

 Two questions are raised by the form in listing 10.2 that are integral in understand-
ing how the Home object works:

■ When is the instance referenced by #{roundHome.instance} initialized?
■ What is the purpose of #{roundHome.managed}?

Let’s answer each in turn.
INITIALIZING AN INSTANCE FROM A PROTOTYPE

The RoundHome component is instantiated the first time its component name is refer-
enced on the RoundEdit.xhtml page. Most references are to the method get-
Instance(), the most frequently used method on Home. It serves the underlying entity
instance, whether it be transient—not yet saved—or persistent.

 As mentioned earlier, when the getInstance() method is first called, it either
looks up an existing entity instance using the find() method on the persistence man-
ager or creates a new transient instance, depending on whether an identifier has been
established on the Home, a determination which is made by a call to the isIdDe-
fined() method. Since we don’t yet have any rounds to manage, we focus on creating
a new instance.

 One of the Home’s functions is to create an entity instance from a prototype. It
can do more than just instantiate the entity class, though that’s the default case. The
getInstance() method delegates to the createInstance() method when a new
instance needs to be created. The Home figures out which entity class to instantiate in
one of two ways. If the Home was defined through class extension, and an entity class
was passed as a parameterized type, the Home uses reflection to determine the type.
In this case, the createInstance() method instructs the entity class to create a new
instance of itself:

protected E createInstance() {
 ...
 return getEntityClass().newInstance();
}

You can override the createInstance() method to provide a more sophisticated pro-
totype. Since the round must be associated with the current golfer, this method pro-
vides the perfect opportunity to establish this relationship.

397Stateful CRUD using the Home component
 Let’s assume that the current user is a golfer and the corresponding Golfer
instance is stored under the context variable currentGolfer. The initialization of this
variable is part of the authentication routine implemented in the next chapter. To get
by with the stub authentication prepared by seam-gen, you can use the following XML-
based configuration:

<framework:entity-query name="currentGolferQuery"
 ejbql="select g from Golfer g where g.username = #{identity.username}"/>
<factory name="currentGolfer" scope="conversation" auto-create="true"
 value="#{identity.loggedIn ? currentGolferQuery.singleResult : null}" />

The currentGolfer is injected into RoundHome using @In and wired to the Round
instance in the overridden createInstance() method. The injection point shown
here is marked optional to allow the Home to be used in the absence of an authenti-
cated golfer:

@In(required = false)
Golfer currentGolfer;

@Override
protected Round createInstance() {
 Round round = super.createInstance();
 round.setGolfer(currentGolfer);
 round.setDate(new java.sql.Date(System.currentTimeMillis()));
 return round;
}

If you’re using the XML-based approach, you instead supply a prototype instance as a
value expression to the new-instance attribute of <framework:entity-home> (or
<framework:hibernate-entity-home>). To support declaring a Home component in
XML, we create a prototype named roundPrototype, wire the authenticated golfer
instance and built-in current date component to it, and then assign it to the new-
instance property of the RoundHome component in the XML definition:

<component name="roundPrototype" class="org.open18.model.Round"
 scope="stateless">
 <property name="golfer">#{currentGolfer}</property>
 <property name="date">#{currentDate}</property>
</component>

<framework:entity-home name="roundHome" class="org.open18.action.RoundHome"
 new-instance="#{roundPrototype}"/>

You can also use the XML definition to configure the newInstance property of a
Home component defined in Java. Note that the #{roundPrototype} value expres-
sion isn’t resolved when assigned to the newInstance property. That’s because newIn-
stance property is of type ValueExpression. The expression is resolved in the
createInstance() method instead of calling getEntityClass().newInstance().
WHAT’S THE STATUS?
The entity instance held by the Home object can be in either a persistent or a tran-
sient state. The contains() method on the persistence manager is used to check the

398 CHAPTER 10 Rapid Seam development
state of an entity instance. The isManaged() method on EntityHome performs this
check, shown here:

@Transactional
public boolean isManaged() {
 return getEntityManager().contains(getInstance());
}

There is an equivalent method on HibernateEntityHome. Looking back at list-
ing 10.2, you’ll notice that different buttons are rendered based on the status
returned by this method. The editor only permits the user to persist the round if the
instance isn’t currently managed by the persistence context. Conversely, the user can
only delete or update the instance if it’s managed by the persistence context. This UI
restriction doesn’t avert an attempt to enter a duplicate record. You still need to
implement that logic. It just makes the form cognizant of whether it’s being used to
create or update a record.

 Let’s focus on the use case of saving a new round. When the user clicks the Save
button, the #{roundHome.persist} action method is activated and the create opera-
tion (the C in CRUD) is delegated to the persist() method of EntityManager. How-
ever, we can’t save an instance of a round until the association to a tee set is satisfied.
Let’s consider strategies to allow the user to make this selection.
WIRING IN A TEE SET

One logical place to start when adding a new round is the detail page of the tee set
played, rendered by the TeeSet.xhtml template. At the bottom of the page, a button
can be added that lets the user enter a new round. The button will pass the identifier
of the tee set using the teeSetId request parameter. The return page is also main-
tained using the roundFrom request parameter in the event the user decides to cancel.
The button is defined as follows:

<s:button value="Add round" view="/RoundEdit.xhtml">
 <f:param name="teeSetId" value="#{teeSetHome.instance.id}"/>
 <f:param name="roundFrom" value="TeeSet"/>
</s:button>

The TeeSetHome component, named teeSetHome and created in chapter 2 by seam-
gen, manages a TeeSet instance in the same way that RoundHome manages a Round
instance. Assuming the tee set has an identifier of 10, the following URL is created by
this button:

http://localhost:8080/open18/RoundEdit.seam?teeSetId=10&roundFrom=TeeSet

On the RoundEdit.xhtml page, TeeSetHome can once again be used to retrieve the tee
set instance using the value of the teeSetId parameter. The TeeSet is then wired into
the new Round instance. The identifier of the tee set is established on TeeSetHome
using a page parameter, defined in the RoundEdit.page.xml page descriptor, which is
adjacent to RoundEdit.xhtml. The other page parameter copies the value of the
roundFrom request parameter to the page-scoped roundFrom variable:

399Stateful CRUD using the Home component
<page>
 <param name="teeSetId" value="#{teeSetHome.teeSetId}"/>
 <param name="roundFrom"/>
</page>

The setTeeSetId() and getTeeSetId() methods on TeeSetHome delegate to setId()
and getId() on the superclass, performing a conversion to Long, the identifier’s type.

 The next step is to wire the TeeSet instance managed by TeeSetHome to the Round
instance. This logic is handled in the wire() method on RoundHome. The TeeSetHome
component must be injected into RoundHome so we can access the managed tee set:

@In(create = true)
private TeeSetHome teeSetHome;

public void wire() {
 TeeSet teeSet = teeSetHome.getDefinedInstance();
 if (teeSet != null) {
 getInstance().setTeeSet(teeSet);
 }
}

The method getDefinedInstance() on TeeSetHome is a custom method that strictly
attempts to retrieve a TeeSet instance from the persistence manager if the id is estab-
lished, as determined by the isIdDefined() method.

 The final step is to call the wire() method from a page action defined in Round-
Edit.page.xml so that the association is established prior to the editor being rendered:

<page>
 <param name="teeSetId" value="#{teeSetHome.teeSetId}"/>
 <param name="roundFrom"/>
 <action execute="#{roundHome.wire}"/>
</page>

To prevent users from clicking the Save button if they haven’t yet selected a tee set , we
can add the convenience method isWired() to RoundHome that is used to toggle the
disabled attribute of the Save button:

public boolean isWired() {
 if (getInstance().getTeeSet() == null) {
 return false;
 }
 return true;
}

The page fragment in listing 10.3 renders the tee set associated with the round below
the editor form. Information about the tee set is read from the teeSet property on
Round.

<rich:tabPanel>
 <rich:tab label="Tee Set">
 <div class="association">

Listing 10.3 The panel showing the tee set associated with the round

400 CHAPTER 10 Rapid Seam development
 <h:outputText value="Tee set not selected"
 rendered="#{round.teeSet == null}"/>
 <rich:dataTable var="_teeSet" value="#{round.teeSet}"
 rendered="#{round.teeSet != null}">
 <h:column>
 <f:facet name="header">Course</f:facet>
 #{_teeSet.course.name}
 </h:column>
 <h:column>
 <f:facet name="header">Color</f:facet>
 <div title="#{_teeSet.color}" class="colorSwatch"
 style="background-color: #{_teeSet.color}"/>
 </h:column>
 ...
 <h:column>
 <f:facet name="header">Position</f:facet>
 #{_teeSet.position}
 </h:column>
 </rich:dataTable>
 </div>
 </rich:tab>
</rich:tabPanel>

Everything’s in place for a new round to be persisted! Although there was a lot of
explaining, the work boiled down to creating a Home implementation class, a page
parameter, a page action, and a JSF template. The rest of the work is handled by JSF
and the Home component working together. JSF binds the values from the form to
the properties on the Round entity instance, and the Home component delegates to
the persistence manager to save the record.

 Now that a round is stored in the table (assuming you were brave enough to click
the Save button), we can move on to the other letters in the CRUD acronym. Let’s
tackle R by creating a page to display the round just entered.
PULLING UP A ROUND

The template Round.xhtml, shown in listing 10.4, handles the task of displaying the
details of a round. It’s identical to the RoundEdit.xhtml template except that the
input fields are replaced with read-only output.

<rich:panel><f:facet name="header">Round</f:facet>
 <s:decorate id="date" template="layout/display.xhtml">
 <ui:define name="label">Date:</ui:define>
 <h:outputText value="#{round.date}">
 <s:convertDateTime type="date"/>
 </h:outputText>
 </s:decorate>
 <s:decorate id="golfer" template="layout/display.xhtml">
 <ui:define name="label">Golfer:</ui:define>
 #{round.golfer.name}
 </s:decorate>
 <s:decorate id="totalScore" template="layout/display.xhtml">

Listing 10.4 The panel that renders the details of a round

Formats date
according to locale

401Stateful CRUD using the Home component
 <ui:define name="label">Total score:</ui:define>
 #{round.totalScore}
 </s:decorate>
 <s:decorate id="weather" template="layout/display.xhtml">
 <ui:define name="label">Weather:</ui:define>
 #{round.weather}
 </s:decorate>
 <s:decorate id="notes" template="layout/display.xhtml">
 <ui:define name="label">Notes:</ui:define>
 #{round.notes}
 </s:decorate>
</rich:panel>

To render the data of an existing round, the getInstance() method needs to return
the record in the database. That means the identifier of the round must be assigned
to the RoundHome component prior to the getInstance() method being called. This
assignment is a good fit for a page parameter. However, the id property on Home is of
type java.lang.Object, which doesn’t provide JSF with enough information to con-
vert the incoming parameter to the identifier’s type, which is java.lang.Long. We
could create a typed “getter” method that passes the converted value to setId(). But a
better solution is to leverage the converter feature of page parameters. The
javax.faces.Long converter is registered on the page parameter for roundId in the
Round.page.xml descriptor to instruct JSF to convert the string-based request parame-
ter to a java.lang.Long:

<param name="roundId" value="#{roundHome.id}"
 converterId="javax.faces.Long"/>

That’s all there is to it! When the Round.xhtml template is requested, the correspond-
ing entity instance is loaded from the database according to the request parameter
value.

 As an alternative to using a page parameter to assign the identifier request param-
eter to Home, you can inject the parameter into the component directly by using the
@RequestParameter annotation. In the case of RoundHome, you create a setRoundId()
method to receive the injected request parameter and then set the identifier on the
superclass. JSF converts the value to the method parameter’s type:

@RequestParameter
public void setRoundId(Long id) {
 super.setId(id);
}

The option of using the @RequestParameter annotation or the XML-based page
parameter is up to you. Keep in mind, though, that page parameters also outject val-
ues back to the query string in addition to injecting request parameter values. Let’s
consider how the presence of the page parameter affects the Edit button:

<div class="actionButtons">
 <s:button id="edit" view="/RoundEdit.xhtml" value="Edit"/>
</div>

402 CHAPTER 10 Rapid Seam development
Notice that there are no parameters nested in the button component. Thanks to page
parameters, the roundId is automatically added to the generated URL, saving you the
trouble of having to use <f:param> to include it explicitly. When thinking about how
the URL is built, keep in mind that the page parameters are read from the page
descriptor corresponding to the target view ID, which in this case is RoundEdit.xhtml.
Thus, the page parameters are read from the RoundEdit.page.xml descriptor. That
means the roundId page parameter must be added there as well.

<page>
 <param name="roundId" value="#{roundHome.id}"/>
 <param name="roundFrom"/>
 <param name="teeSetId" value="#{teeSetHome.teeSetId}"/>
 <action execute="#{roundHome.wire}"/>
</page>

Before we move on, there’s one last thing to consider. Recall that the getInstance()
method retrieves the entity instance using the persistence manager’s finder method:

getEntityManager().find(getEntityClass(), getId());

This default lookup is naïve because it leaves all lazy associations uninitialized.
Although the conversation-scoped persistence context makes worrying about loading
lazy associations a thing of the past, it’s a good idea to eagerly fetch data when you
know you’ll be traversing associations or collections in the view. Eager fetching is para-
mount to preventing the n + 1 select problem.

TIP When using Hibernate, you can detect n + 1 select problems by observing
the log output or by producing a report from the return value of the get-
Statistics() method on SessionFactory. These two features require the
properties hibernate.show_sql and hibernate.generate_statistics
to be enabled in Hibernate, respectively.

On the round detail page, we know we need to render the tee set, course, and golfer,
so we might as well initialize these associations in the finder query. This is done by
temporarily promoting the fetching strategy from lazy to eager using the join fetch
JPQL operator. You customize the loading behavior by overriding the loadInstance()
method on EntityHome:

protected Round loadInstance() {
 return (Round) getEntityManager.createQuery(
 "select r from Round r " +
 "join fetch r.golfer g " +
 "join fetch r.teeSet ts " +
 "join fetch ts.course c " +
 "where r.id = :id")
 .setParameter("id", getId())
 .getSingleResult();
}

Consult a JPA reference for more information on the join fetch operator. The load-
Instance() method can also be used to postprocess the instance after it’s loaded. For

403Stateful CRUD using the Home component
instance, if you store XML in one of the columns and need to unmarshal that data to a
Java structure, you can take this opportunity to perform such logic.

 With the detail page out of the way, things start to get interesting in the case of
editing an existing entity. That brings us to the U and D in CRUD, which we cover in
the next section.

10.2.4 Venturing away from home

A Home can only maintain state for as long as it lives. To stretch out the lifetime of a
Home, which is scoped to the conversation by default, you need to activate a long-
running conversation. This ensures that the RoundHome component, the entity
instance, and the persistence manager remain in scope while the user is working on
modifying the round, even if it means departing the editor screen to go find a tee set.
SWITCHING TO A LONG-RUNNING CONVERSATION

As you learned in chapter 7, there are many ways to begin a long-running conversa-
tion. Since we already have the RoundEdit.page.xml descriptor setting up the entity
instance, we might as well keep it busy by having it begin the long-running conversa-
tion as well:

<page>
 <begin-conversation join="true"/>
 <param name="roundId" value="#{roundHome.id}"/>
 <param name="roundFrom"/>
 <param name="teeSetId" value="#{teeSetHome.teeSetId}"/>
 <action execute="#{roundHome.wire}"/>
</page>

Depending on how the round editor ties into the application, you may decide that
nesting the conversation is more appropriate. With the long-running conversation in
place, the Round instance being edited remains managed by both the Home and the
persistence context between the time the editor is first rendered to when the user sub-
mits the form successfully. You can tell that the Round instance is managed (it’s in the
persistent entity state) because the buttons that call the update() and remove()
action methods on Home are displayed below the form.

 But keeping the entity managed involves more than just showing the right con-
trols. As you learned in the previous two chapters, using an extended persistence con-
text yields important benefits. First, the database only has to be asked once for a
record during the use case since the application does its part to “remember” what the
database retrieved for it. The other benefit is that the update statement only executes
if the entity instance changes. If the entity instance hasn’t changed, there’s nothing to ask
the database to do.
OFF TO FIND A TEE SET

With a long-running conversation active, the user is not stuck on the editor screen.
You can allow users to roam freely throughout the application, as long as the conversa-
tion token is restored when they return. In the case of the round editor, this allows the
user to traverse to the tee set listing page, search for, and select a new tee set to link to
the round. This step is necessary when the user wants to change the tee set for the

404 CHAPTER 10 Rapid Seam development
round being edited or when a tee set identifier wasn’t provided when the user began
creating a new round.

 We add a button to the bottom of the editor that takes the user to the tee set listing
page, where the user can select a tee set to associate with the round:

<s:button value="Select Tee Set" view="/TeeSetList.xhtml">
 <f:param name="from" value="RoundEdit"/>
</s:button>

The from parameter is used by the tee set listing page to know where to send the user
after a tee set is selected. (You could also store this information in the conversation
context.) The default behavior is to show the detail page of the tee set, which we don’t
want in this case. Recall that the <s:button> component passes the conversation
token automatically, thus preserving the long-running conversation.

 On the tee set listing page, each row has a Select link, which appends the teeSetId
request parameter to the URL with the value of the identifier for the tee set in the cur-
rent row. The tee set for the current row is bound to the iteration variable teeSet.
The Select link is defined as follows:

<s:link view="/#{empty from ? 'TeeSet' : from}.xhtml"
 value="#{empty from ? 'View' : 'Select'}">
 <f:param name="teeSetId" value="#{teeSet.id}"/>
</s:link>

Once again, the <s:link> component takes care of passing along the conversation
token. The RoundHome is still active in the conversation and awaiting the user’s return,
which happens when the user clicks one of the Select links. When the Round-
Edit.xhtml page is requested, the teeSetId is assigned to the TeeSetHome component,
and the wire() method uses TeeSetHome to retrieve the selected TeeSet instance and
assign it to the Round. These steps are exactly the same as those I described earlier
when we were creating a new round. The only difference is that now the tee set is
being wired to an instance of Round that’s managed by the persistence context (and is
therefore in the database).

 The benefit of navigating to the tee set listing page is that the user can use the
search form to locate a tee set. However, this page flow presents a problem. If the user
has made any changes to the values of the inputs in the form, those changes are lost
when the user navigates away to select a tee set. That’s because the <s:button> com-
ponent issues a GET request to navigate to the next page and does not submit the form,
a point that I’ve raised many times in this book. You have two options for preserving
the pending changes:

■ Submit the form before navigating
■ Periodically push the form values to the model using Ajax

The first option requires that you replace <s:button> with a UI command component:

<h:commandButton value="Select Tee Set" action="selectTeeSet"/>

When a UI command button is used, the from parameter must be appended to the
URL using a navigation rule in the RoundEdit.page.xml page descriptor:

405Stateful CRUD using the Home component
<navigation from-action="selectTeeSet">
 <redirect view-id="/TeeSetList.xhtml">
 <param name="from" value="RoundEdit"/>
 </redirect>
</navigation>

The second option requires that you use an Ajax-enabled JSF component library such
as Ajax4jsf or ICEfaces, which you’ll learn more about in chapter 12. Here’s an example
of using the <a:support> component tag from Ajax4jsf to synchronize the changes in
one of the fields with the component on the server when the field loses focus:

<s:decorate id="scoreField" template="layout/edit.xhtml">
 <ui:define name="label">Total score:</ui:define>
 <h:inputText id="score" value="#{round.totalScore}">
 <a:support event="onblur" reRender="scoreField" ajaxSingle="true"/>
 </h:inputText>
</s:decorate>

There’s a side effect to proactively pushing changes onto the managed entity (which
occurs in the Update Model Values phase). The changes are flushed to the database
before the user has finished editing the record. To avoid that situation, we need to
switch to manual flushing.
HOLDING BACK CHANGES

As you’ll recall from the previous two chapters, the persistence manager flushes the
persistence context when the transaction is closed, or possibly sooner. To hold off the
changes until the user explicitly requests that they be flushed to the database, we need
to enable manual flushing of the persistence context. You can have Seam handle the
switch by declaring a flush mode on the <begin-conversation> element in page
descriptor (e.g., RoundEdit.page.xml) or on the @Begin annotation. Remember that
to use manual flushing, you must be using Hibernate natively or as the JPA provider:

<begin-conversation join="true" flush-mode="manual"/>

With this configuration in place, database transactions may come and go, but the
changes to the entity instance aren’t migrating to the database until the flush()
method on the persistence manager is called. The right time for these changes to be
made is when the user clicks the Save, Update, or Delete button, signaling the end of
an application transaction. Fortunately, you don’t have to worry about calling flush().
The persist(), update(), and remove() methods on Home take care of flushing the per-
sistence context.
SELECTING A TEE SET IN PLACE

After examining the navigation routine to select a tee set, you may be thinking that it
would make more sense to have the user choose the tee set from a select menu within
the editor form. That’s certainly a reasonable approach. The challenge is how to
assign a value to a property whose type is an entity class using a JSF form input. As you
learned in chapter 9, Seam’s entity converter, registered using the <s:convert-
Entity> tag, takes care of converting entity instances to and from their identifier val-
ues when used as options in a select menu. Keep in mind that this negotiation relies
on the Seam-managed persistence context. Here’s how you define the form input for
selecting a tee set in the round editor:

406 CHAPTER 10 Rapid Seam development
<h:selectOneMenu value="#{round.teeSet}">
 <s:selectItems var="_teeSet" value="#{teeSets}"
 label="#{_teeSet.course.name} - #{_teeSet.color}"/>
 <s:convertEntity/>
</h:selectOneMenu>

The request-scoped context variable teeSets supplies the collection of tee sets, some-
thing you learn to create with ease using the Query component in section 10.4. Note
that it’s no longer necessary to wire in a tee set in the wire() method. With the form
fields in the round editor populated, let’s take a look at the user’s exit strategies.
REVERTING CHANGES

There is one caveat to watch out for when working with an extended persistence con-
text. If the user makes changes to the entity instance but doesn’t follow up with a save,
update, or delete operation, the changes remain on the instance (i.e., it’s dirty) for
the duration of the conversation, unless it’s refreshed from the database. The dirty
instance will also be used in a result set retrieved in the same conversation if its identi-
fier matches one of the results.

 Consider the case when the user clicks Cancel and is redirected to the detail page
by a navigation rule, but the navigation rule doesn’t end the conversation prior to the
redirect, perhaps to avoid dropping JSF messages. Now there’s a chance that the data
shown doesn’t coincide with the record in the database. This doesn’t jeopardize the
data’s integrity, but it can mislead the user. What you want to do in this scenario is
revert the managed entity back to its old self. There may be other use cases when you
want to “reset” the pending changes.

 Fortunately, the persistence manager includes a method that handles this task. The
refresh() method synchronizes from the database to the entity instance, overwriting
any changes that might have been made to the instance since being retrieved from the
database. (Any collections containing transient entity instances must be first cleared.)
This method is the exact opposite of persist(). First, we need to add a method to
RoundHome that delegates to refresh() and clears the selected tee set:

@Transactional
public String revert() {
 getEntityManager().refresh(getInstance());
 teeSetHome.clearInstance();
 return "reverted";
}

Next, this method is attached to the Cancel button at the bottom of the round editor:

<s:button id="revert" value="Discard changes"
 action="#{roundHome.revert}" rendered="#{roundHome.managed}"/>

Finally, we need a navigation rule:

<navigation from-action="#{roundHome.revert}">
 <end-conversation/>
 <redirect view-id="/Round.xhtml"/>
</navigation>

When the user clicks the Discard Changes button, any changes are washed away and the
data shown on the round detail page reflects the current values stored in the database.

407Stateful CRUD using the Home component
It’s a good idea to provide the user with the ability to cancel cleanly like this on all CRUD
forms. As an alternative, users always have the option of abandoning the conversation.
NUKING AN INSTANCE

Although it would certainly fit, the D in CRUD doesn’t stand for Discard changes. As you
know, the D stands for Delete. Fortunately, there’s nothing you have to do to implement
the delete operation. The user can already click the Delete button that we added to
the form in listing 10.2. This button activates the remove() method on Home, which
delegates to the remove() method on the persistence manager to remove the instance
from the database, putting the instance of Round back into the transient entity state.
The only work required from you is to navigate the user somewhere afterward, such as
the previous page or the listing of rounds:

<navigation from-action="#{roundHome.remove}">
 <end-conversation/>
 <redirect view-id="#{roundFrom != '/Round.xhtml' ?
 roundFrom : '/RoundList.xhtml'}"/>
</navigation>

That segues us into the next task, which is to fill in the remainder of the navigation
rules to ensure the user is returned to an appropriate page after each CRUD operation
is complete.
WRAPPING THINGS UP

All that’s left is to add the remaining navigation rules, secure the page, and deal with
exceptions. The navigation rule for the persist and update operations follows the
same pattern used by the navigation rule for the remove operation. The navigation
rule for the persist operation is shown here:

 <navigation from-action="#{roundHome.persist}">
 <end-conversation/>
 <redirect view-id="#{roundFrom != null ?
 roundFrom : '/Round.xhtml'}"/>
 </navigation>

The long-running conversation is terminated by the <end-conversation> element
following the execution of each CRUD operation since these methods define the
boundaries of our use case. Although the conversation is ended, the status messages
queued by the CRUD methods still carry over to the next page since we aren’t ending
the conversation before the redirect. You’ll learn how to configure the messages that
the Home component produces in section 10.3.1.

 We need to add the login-required restriction to the <page> node to ensure that
the user is authenticated before creating or editing a round. In the next chapter,
you’ll learn how to create more restrictive security rules.

<page login-required="true">
 ...
</page>

If an existing entity can’t be located in the database, the Home component raises the
exception org.jboss.seam.framework.EntityNotFoundException, which results in
a 404 error page being displayed as declared by the @HttpError annotation on the

408 CHAPTER 10 Rapid Seam development
exception class. If a persistence exception is thrown, you can handle it in one of two
ways. You can override the CRUD methods on Home and implement a try/catch block,
or you can register an exception handler in the global page descriptor to direct the
user to an error page as follows:

<exception class="javax.persistence.OptimisticLockException">
 <redirect view-id="/error.xhtml">
 <end-conversation/>
 <message>The record was modified by another user.</message>
 </redirect>
</exception>
<exception class="javax.persistence.PersistenceException">
 <redirect view-id="/error.xhtml">
 <message>The operation failed. Please try again.</message>
 </redirect>
</exception>

You’ve now seen the key aspects of the Home component and how it’s used to imple-
ment a CRUD scenario. Although there wasn’t a lot of Java code, you did have to write
code to make it work (the wiring of the tee set and the revert logic). If you’re one of
those people who would rather “program in XML”—you know who you are—you’ll be
excited to hear that you can commission a Home while steering clear of Java. To dem-
onstrate, we add a new feature that lets a golfer add a review to a golf course.

10.2.5 CRUD a la XML

A Home component is “programmed” in XML by declaring and configuring it in the
component descriptor. You primarily interact with its instances using the EL. If you do
intend on injecting the instance into another component, the receiving property’s
type must be EntityHome (or HibernateEntityHome) parameterized with the entity
class since there’s no application-specific subclass:

private EntityHome<RoundHome> roundHome;

As you might imagine, defining a component entirely in XML is best suited for
relatively straightforward use cases. In this case, you are merely the Home’s puppe-
teer. You can pull its strings in different ways, but your options are limited. Fortu-
nately, the EL and the component descriptor give us enough flexibility to establish
relationships for the entity instance that the Home manages. This wiring is done
by creating a prototype for the entity using component configuration, then passing
that prototype to the newInstance property on Home, the approach followed in this
next example.

 From the course detail page you’ll provide a form to let users comment on a
course. The course detail page was built by seam-gen in chapter 2. All we need to do in
this section is define the CourseComment entity class, create a Home component to
manage it, and add a new form to the bottom of the course detail page where the
comment is entered. We assume that the author of the comment is the current golfer.

 Let’s start with the CourseComment entity class, shown in listing 10.5.

409Stateful CRUD using the Home component
package org.open18.model;
import ...;

@Entity
@Table(name = "course_comment")
public class CourseComment implements Serializable {
 private Long id;
 private Integer version;
 private Date datePosted;
 private String text;
 private Course course;
 private Golfer golfer;

 @Id @GeneratedValue
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 @Version
 public Integer getVersion() { return version; }
 private void setVersion(Integer version) { this.version = version; }

 @Temporal(TemporalType.TIMESTAMP)
 public Date getDatePosted() { return datePosted; }
 public void setDatePosted(Date date) { this.datePosted = date; }

 @Lob
 public String getText() { return text; }
 public void setText(String text) { this.text = text; }

 @ManyToOne(fetch = FetchType.LAZY) @NotNull
 @JoinColumn(name = "COURSE_ID", nullable = false)
 public Course getCourse() { return course; }
 public void setCourse(Course course) { this.course = course; }

 @ManyToOne(fetch = FetchType.LAZY) @NotNull
 @JoinColumn(name = "GOLFER_ID", nullable = false)
 public Golfer getGolfer() { return golfer; }
 public void setGolfer(Golfer golfer) { this.golfer = golfer; }
}

Next, we configure a prototype that initializes a transient instance of CourseComment,
inject the value expression for the prototype into the Home component that manages
this entity, and finally define an alias for the getInstance() method:

<component name="courseCommentPrototype"
 class="org.open18.model.CourseComment">
 <property name="datePosted">#{currentDatetime}</property>
 <property name="course">#{courseHome.instance}</property>
 <property name="golfer">#{currentGolfer}</property>
</component>

<framework:entity-home name="courseCommentHome"
 entity-class="org.open18.model.CourseComment"
 new-instance="#{courseCommentPrototype}"/>

<factory name="courseComment" value="#{courseCommentHome.instance}"/>

Listing 10.5 The entity class representing a comment on a course

410 CHAPTER 10 Rapid Seam development
The expression #{currentDatetime} references a built-in component provided by
the Seam Application Framework that resolves to a SQL-compliant timestamp repre-
senting the time it is resolved. Seam also has built-in components that resolve to the
current SQL-compliant date and SQL-compliant time, currentDate and currentTime,
respectively.

 All that’s left is to define the form for creating a comment. The form is only ren-
dered if the user is logged so that there’s someone to blame for the comment.

<h:form id="commentForm" rendered="#{currentGolfer != null}">
 <rich:panel><f:facet name="header">Leave a comment</f:facet>
 <s:decorate id="textField" template="layout/edit.xhtml">
 <ui:define name="label">Comment:</ui:define>
 <h:inputTextarea id="text" value="#{courseComment.text}"/>
 </s:decorate>
 <div class="actionButtons">
 <h:commandButton id="save" value="Post"
 action="#{courseCommentHome.persist}"/>
 </div>
 </rich:panel>
</h:form>

You’re done! With all the time you saved, you can spend the rest of the day making the
application prettier for your boss. Granted, not all forms are going to be this simple,
but that’s why you can mix and match the XML configuration with Java at the compo-
nent or application level. When the forms are this simple, you should be glad to know
you can simply whip out the component descriptor and get the job done in no time
flat. When things are more complex, you can use the Java API and earn your living. If
complex coding is required, your best bet may be to use Groovy!

 Amid all the CRUD that has taken place, we’ve overlooked one very important
detail. We’re pleased that data is being persisted to the database, but we aren’t letting
the user know how things are going. Let’s see how to keep the user informed after
the submit.

10.3 Providing feedback
Communication is important. That’s why the Home component supports two ways of
providing feedback. The first is a success message that’s displayed to the user. The sec-
ond is a set of internal events that notify other components of the transaction’s com-
pletion. This section explores these two communication mechanisms.

10.3.1 Customizing the status messages

The Home component prepares a generic, info-level status message after successful
completion of any CRUD operation. At the time of this writing, the messages gener-
ated are specific to JSF, though in the future, the controller classes in the Seam Appli-
cation Framework will produce status messages appropriate for the UI framework
being used. All you have to do is display the message on the ensuing page:

<h:messages globalOnly="true"/>

411Providing feedback
But who wants generic messages? I’m sure you want to give the users lots of good
information so that it’s very clear to them what happened. Let’s customize the
CourseHome component generated by seam-gen in chapter 2 to give the user personal-
ized messages rather than the canned responses that Seam provides.

 As you’ve learned, Seam is very flexible when it comes to message handling, espe-
cially since you can use EL notation in message templates to reference contextual data.
Messages are added to the response using the built-in FacesMessages component. One
way to access this component is by calling the getFacesMessages() method on any
Controller component. The FacesMessages component allows you to

■ Use EL notation in message templates to take advantage of context variables
■ Load message templates from a Seam-managed resource bundle for i18n support
■ Configure a fall-back message string to use if a key isn’t found in the resource

bundle

There are two ways to override the message templates used by the Home component.
You can either define them directly on the component or you can place them in a
resource bundle. Listing 10.6 shows the CourseHome component, which sets up cus-
tom message templates in the create() method. This method is called immediately
after the component is instantiated, as indicated by the @Create annotation inherited
from the overridden method. The message templates all use the value expression
#{course}, which is satisfied by the @Factory method on the same component.

package org.open18.action;
import ...;

@Name("courseHome")
public class CourseHome extends EntityHome<Course> {
 @Override
 public void create() {
 setCreatedMessage("You've successfully added #{course.name}. " +
 "Thanks for contributing!");
 setUpdatedMessage("Thanks for updating #{course.name}. " +
 "Your careful eye is appreciated!");
 setDeletedMessage("#{course.name} has been removed. " +
 "We never liked it anyway.");
 }

 @Override
 @Factory(value = "course", scope = ScopeType.EVENT)
 public Course getInstance() {
 return super.getInstance();
 }
}

Alternatively, you could set these messages using component configuration:

<framework:entity-home name="courseHome"
 class="org.open18.action.CourseHome"

Listing 10.6 The CourseHome component configured to use custom messages

Inherits @Create
from superclass

412 CHAPTER 10 Rapid Seam development
 created-message="You've successfully added #{course.name}.

 ➥Thanks for contributing!"
 updated-message="Thanks for updating #{course.name}.

 ➥Your careful eye is appreciated!"
 deleted-message="‍#{course.name} has been removed.

 ➥We never liked it anyway."/>

NOTE Notice the use of ‍ at the start of the deleted-message attribute.
Seam evaluates strings that begin with the character sequence #{ at the
time they’re assigned to the property. This XHTML entity reference, a
zero-width space, offsets the first character, allowing the evaluation to be
deferred until the status message is created.

The limitation of configuring the message templates directly on the component is
that, even though the templates have dynamic parts, only a single language is sup-
ported. Let’s see how to define message templates that can be selected according to
the user’s locale.

10.3.2 Creating i18n-compliant messages

To enable internationalization (i18n) support for the success messages, you define
them in the Seam resource bundle. Refer back to section 5.5.2 in chapter 5 to see how
to configure the Seam resource bundle. Fortunately, you don’t have to establish a con-
nection between the Home component and the resource bundle since logic is built-in
to the Home class to consume messages in this bundle.

 Before consulting the messages defined on its own message properties, Home looks
for message bundle keys associated with the entity class being managed. It assembles the
message key by combining the simple name of the
entity class (as returned by the getSimpleName()
method on the class object) with the operation being
performed, separated by an underscore (_), as illus-
trated in figure 10.8.

 Here are the English message bundle keys for the
CourseHome component that were configured previ-
ously, now defined in messages_en.properties:

Course_created=You've successfully added #{course.name}.

 ➥Thanks for contributing!
Course_updated=Thanks for updating #{course.name}.

 ➥Your careful eye is appreciated!
Course_deleted=#{course.name} has been removed.

 ➥We never liked it anyway.

If the message key can’t be found in the Seam resource bundle, the Home component
falls back to using the message templates configured on the component or, if those
aren’t set, the built-in messages. In section 13.6.1 in chapter 13 you’ll learn how the
default language is selected and how to create a UI control that allows users to change
the language for their session. In addition to keeping the user informed, Seam broad-
casts the success of the CRUD operations to other components using its event facility.

Course_updated

Simple name
of entity class Operation

Figure 10.8 The way Home
assembles a message bundle
key for a CRUD operation.

413Smarter queries with the Query component
10.3.3 Transaction success events

When a CRUD operation completes successfully, so does a transaction. The Home
component schedules two events to be raised when the transaction is committed,
using the raiseAfterTransactionSuccessEvent() method. The first is a generic
event indicating the success of the transaction, duplicating the org.jboss.seam.
afterTransactionCompletion event raised by the Seam transaction infrastructure.
The second event is customized to the simple name of the entity class whose persis-
tence state is being modified. Unfortunately, neither event tells you which operation
was performed. If this were the RoundHome component, the events would be as follows:

■ org.jboss.seam.afterTransactionSuccess

■ org.jboss.seam.afterTransactionSuccess.Round

The second event can be used to refresh a result set which may now hold a stale refer-
ence to the modified entity. Assuming the result set is managed by a roundList com-
ponent, introduced in the next section, you can bind its refresh methods to the
transaction success event using the component descriptor:

<event type="org.jboss.seam.afterTransactionSuccess.Round">
 <action execute="#{roundList.refresh}"/>
 <action execute="#{roundList.getResultList}"/>
</event>

What’s unique about these events is that they aren’t raised immediately, but only after
the transaction completes. If you’re using Seam’s global transactions, the commit hap-
pens at the end of the Invoke Application phase. This scheduling is handled by registering
these events using transaction synchronization, an interface that allows callback code to
be executed by the transaction. You learned in the previous chapter that Seam allows
transaction synchronizations to be used even when using resource-local transactions.

 In this section, you’ve learned to appreciate that the Home class is much more than
a generic CRUD interface. It can be a stateful component and active domain model
object that wraps an entity instance, manages its state, and provides declarative trans-
action boundaries around the CRUD operations performed on it. It can also coordi-
nate with other Home components to establish associations to other entity instances.
To add polish, it even prepares success messages for the user and raises transaction
completion events to notify other components when the transaction completes.

 While the Home component manages a single entity instance, the component
template we look at next manages the result set of a JPQL or HQL query. You can even
create stateful lists just as you’ve created stateful domain objects.

10.4 Smarter queries with the Query component
When you introduce queries into your application, you’re immediately faced with the
decision of how to manage the result set. Knowing the right time to execute the query
can be difficult to determine. If you execute the query every time you need to present
the results, you put undo pressure on the database. At the other extreme, if you hold
onto the results for too long, you end up feeding users with stale information that

414 CHAPTER 10 Rapid Seam development
may confuse them, or worse, cause them to make wrong decisions. Once again, you
need a strategy.

 Fortunately, the Seam Application Framework includes a class that helps you man-
age the results of a query, appropriately named Query. As you soon discover, the Query
component manages contextual queries, which means that the query can change
dynamically as its parameters (which are mapped to context variables) change. Just
like the Home component template, there are implementations of the Query class for
both JPA and Hibernate, EntityQuery and HibernateEntityQuery, respectively. The
class diagram for the EntityQuery component is shown in figure 10.9. This section
shows you how to use the Query component, focusing on the JPA implementation.

As with the Home component, you can use the Query component either by extend-
ing the Query class, configuring it directly in the component descriptor, or a combina-
tion of the two. Query is a sufficiently flexible component template, so typically there
isn’t a need to write custom Java code. Let’s build on the example in the previous sec-
tion by creating a page that lists all the Round instances stored in the database. We use
a Query component to manage the result set.

10.4.1 Creating a result set listing

To use the Query component, at a minimum, you must supply it with an entity query,
written in JPQL (when using JPA) or in HSQL (when using native Hibernate). You
assign the query to the component’s ejbql property (despite the name of the prop-
erty, it isn’t specific to JPA).

PersistenceController<T>

+ getPersistenceContext() : T
+ setPersistenceContext(T)
getPersistenceContextName() : String

Query<T, E>

+ getEjbql() : String
+ setEjbql(String)
+ getRestrictions() : List<String>
+ setRestrictions(List<String>)
+ getOrder() : String
+ setOrder(String)
+ getMaxResults() : Integer
+ setMaxResults(Integer)
+ getFirstResult() : Integer
+ setFirstResult(Integer)
+ validate()
+ getResultList() : List<E>
+ getSingleResult() : E
+ getResultCount() : Long
+ refresh()
+ last()
+ next()
+ previous()
+ first()
+ isPreviousExists() : boolean
+ isNextExists() : boolean
+ getNextFirstResult() : int
+ getPreviousFirstResult() : int
+ getLastFirstResult() : Long
+ getPageCount() : Long
+ getDataModel() : DataModel
+ getDataModelSelection() : E
+ getDataModelSelectionIndex() : int
+ clearDataModel()
getRenderedEjbql() : String
getCountEjbql() : String

EntityQuery<E>

+ validate()
+ getResultList() : List<E>
+ getSingleResult() : E
+ getResultCount() : Long
+ isNextExists() : boolean
+ refresh()
+ getEntityManager() : EntityManager
+ setEntityManager(EntityManager)
getPersistenceContextName() : String
createQuery() : Query
createCountQuery() : Query
joinTransaction()

Figure 10.9 The class diagram
of EntityQuery

415Smarter queries with the Query component
 The declaration of the Query component used to manage the list of rounds is
shown here:

<framework:entity-query name="roundList" ejbql="select r from Round r"/>

The ejbql property holds the static portion of the query. This fragment includes the
select clause, join operators, and static conditions. The contextual restrictions are
added in a later section. Rather than pulling all of the rounds, let’s set a limit of 15
using the maxResults property of the Query class, which you’ll eventually bind to a
UI control:

<framework:entity-query name="roundList" ejbql="select r from Round r"
 max-results="15"/>

Preparing and executing the query is handled entirely by the Query class, which dele-
gates the work of running the query to the persistence manager. Three operations are
supported by the query: You can query for a list of results, a single result, or the result
count. If you’re only expecting one result and more than one result is found, a NonU-
niqueResultException is thrown. The Query class also includes a convenience
method for wrapping the result set in a JSF DataModel. The methods for retrieving the
result set data are shown in table 10.4.

The query methods listed in table 10.4 avoid redundant database queries by caching
the results in a private property on the class. The query isn’t executed again until the
component considers the state of the results to be “dirty,” as defined by any of the fol-
lowing conditions:

■ A query restriction parameter changes.
■ The sort order changes.
■ The maximum result value changes.
■ The first result offset changes.
■ The results are manually cleared by a call to refresh() on Query.

Table 10.4 The methods on Query that execute JPQL/HQL queries

Method Description

getResultList() Executes the query if a local result set isn’t available. The result set is
stored to avoid redundant queries. Returns the result set as a
java.util.List.

getSingleResult() Executes the query if a local result value isn’t available. The result value is
stored to avoid redundant fetches. Returns the result as an object.

getResultCount() Executes the count equivalent of the query if a result count isn’t available.
The count is stored to avoid redundant fetches. Returns the row count as a
java.lang.Long. May require customization if the query is complex.

getDataModel() Wraps the return value of getResultList() in the appropriate
javax.faces.DataModel type and stores it until the query is
executed again. Returns the wrapped value.

416 CHAPTER 10 Rapid Seam development
The retention of the query results is especially important for components that are
used in JSF templates since the encoding and decoding process of a JSF component
tree can cause methods in table 10.4 to be executed many times. Ensuring that the
query only executes when necessary avoids taxing the database.

 By default, an instance of Query is scoped to the event context. If you scope it to
the conversation context instead, the caching of the result is able to span multiple
requests:

<framework:entity-query name="roundList" scope="conversation"
 ejbql="select r from Round r" max-results="15"/>

Caching the result does run the risk of stale data, but thanks to the aforementioned
dirty checks the Query class ensures that the query is executed at the appropriate time.
An event can also be used to refresh the query, as demonstrated earlier.

 The roundList component is now ready to be used to display the collection of
Round instances in a data table. The relevant portions of the RoundList.xhtml JSF tem-
plate that renders these results are shown in listing 10.7.

<rich:panel><f:facet name="header">Round search results</f:facet>
 <h:outputText value="No rounds were found"
 rendered="#{empty roundList.resultList}"/>
 <rich:dataTable var="_round" value="#{roundList.resultList}"
 rendered="#{not empty roundList.resultList}">
 <h:column>
 <f:facet name="header">Golfer</f:facet>
 #{_round.golfer.name}
 </h:column>
 <h:column>
 <f:facet name="header">Date</f:facet>
 <h:outputText value="#{_round.date}">
 <s:convertDateTime type="date"/>
 </h:outputText>
 </h:column>
 <h:column>
 <f:facet name="header">Course</f:facet>
 #{_round.teeSet.course.name}
 </h:column>
 <h:column>
 <f:facet name="header">Tee set (color)</f:facet>
 <div title="#{_round.teeSet.color}" class="colorSwatch"
 style="background-color: #{_round.teeSet.color};"/>
 </h:column>
 ...
 <h:column>
 <f:facet name="header">action</f:facet>
 <s:link id="round" view="/Round.xhtml" value="View">
 <f:param name="roundId" value="#{_round.id}"/>
 </s:link>
 </h:column>
 </rich:dataTable>
</rich:panel>

Listing 10.7 A table showing the results of the query that fetches the list of rounds

417Smarter queries with the Query component
Notice in listing 10.7 how the lazy associations on the Round entity are casually tra-
versed. Once again, it’s a good idea to optimize the initial query to prevent excessive
querying in the view. The first optimization is to tune the persistence manager to
anticipate lazy fetches and batch fetch the data. In Hibernate, this behavior is config-
ured by setting the default batch fetch size in the persistence unit configuration:

<property name="hibernate.default_batch_fetch_size" value="16"/>

Play around with the batch size while monitoring the SQL statements logged by Hiber-
nate to see how it affects the number of queries that are executed. The other
approach you can take is to modify the query to fetch associations eagerly. If the asso-
ciation mapping is marked as FetchType.LAZY, it can be temporarily promoted to
eager by using the join fetch clause. The following query grabs all the information
needed on the round list page in one aggregate query:

select r from Round r
 join fetch r.golfer
 join fetch r.teeSet ts
 join fetch ts.course

I recommend always using lazy associations in the mapping and enabling eager fetch-
ing at the query level. For other ways of cutting down on lazy-loading queries, consult
the reference documentation for your persistence provider. To help your DBA find the
source of a SQL statement, you can add a comment to the query using a query hint:

<framework:entity-query ...>
 <framework:hints>
 <key>org.hibernate.comment</key>
 <value>Query for rounds used on RoundList.xhtml</value>
 </framework:hints>
</framework:entity-query>

The hints property accepts any hint that the persistence provider supports. Let’s see
what else we can do with the query.

10.4.2 Paging the result set

The RoundList.xhtml page has one serious flaw at the moment. If there are more
than 15 results, there’s no way to see beyond the first page. The UI needs to give the
user a way to paginate to other regions of the query. It should come as no surprise
that the Query class has built-in support for pagination. Query paging is controlled by
the firstResult and maxResults properties on this component, which alter the
underlying JPQL/HQL to load the corresponding region of the result set. Anytime
either of these properties change, the result set is refreshed. Table 10.5 lists the meth-
ods on the Query class that assist in creating UI controls to manipulate the value of
these two properties.

 The logic in the Query class is able to extract the pagination offset information
without having to use a second query. While most of the methods are simple calcula-
tions based on the current offset value, isNextExists() is a special case. The Query

418 CHAPTER 10 Rapid Seam development
class avoids using an extra query by always fetching one more record than the page
size (i.e., the maxResults value). If the extra record is present in the result set, the
Query class knows another page is available. It then truncates the result set back to the
page size to remove trace of this “feeler” record. The getPageCount() is the one
method that requires an extra query to be executed, but only if the page size is non-
null, because it needs to know the total number of records in the database.

 With the pagination information in hand, there’s still the matter of keeping track
of pagination offset between requests. If you aren’t using a long-running conversa-
tion on the listing page, then the offset must be passed as a request parameter. This
strategy is accomplished by combining a page parameter with links that include the
offset in the query string. Begin by declaring a page parameter in the RoundList.
page.xml descriptor:

<page>
 <param name="firstResult" value="#{roundList.firstResult}"/>
</page>

Next, add links for the user to navigate between pages. The following link advances
the user to the next page in the result set, if it’s available:

<s:link id="next" value="Next Page" rendered="#{roundList.nextExists}">
 <f:param name="firstResult" value="#{roundList.nextFirstResult}"/>
</s:link>

You can see examples of this approach in the listing pages generated by seam-gen in
chapter 2. Page parameters are great because they create RESTful URLs. However, they
break down when the user has to navigate away from the page because they get dropped.
Another way to maintain the state of the offset is to use a long-running conversation.

 The benefit of using a long-running conversation with a conversation-scoped
Query component is that the user is free to roam the application without losing the
current position in the result set. If the user manages to abandon the conversation, it
can be restored using a conversation switcher, revealing that the result set is in the
exact state the user left it in.

Table 10.5 The methods on Query that provide information about pagination

Method Description

isNextExists() Indicates whether more results exist beyond the current page

isPreviousExists() Indicates whether results exist before the current page

getNextFirstResult() Returns the offset of the first result on the next page

getPreviousFirstResult() Returns the offset of the first result on the previous page

getLastFirstResult() Returns the offset of the first result on the last page

getPageCount() Returns the number of pages in the result set, using the maxi-
mum results setting as the page size

419Smarter queries with the Query component
 You have to determine whether it’s more important to you to produce RESTful URLs
or for the state of the query to be maintained. While it’s possible to implement both
simultaneously, it takes some work. For the remainder of the chapter, we work within the
context of a long-running conversation to demonstrate the stateful approach.

 The first step to creating a stateful Query component is to begin a long-running
conversation when the round list page is rendered, which is defined in the Round-
List.page.xml descriptor. The page is also given a description to allow the user to
return to this conversation using a conversation switcher:

<page>
 <description>
 Round List: #{roundList.resultList.size} of #{roundList.resultCount}
 </description>
 <begin-conversation join="true"/>
</page>

Now that the roundList is maintained in a long-running conversation, it’s no longer
necessary to set the pagination offset explicitly. Instead, it’s possible to use the built-
in pagination methods on the Query class, listed in table 10.6. These actions take
care of setting the firstResult property internally and also resetting the cached
result set when called.

All that’s left is to add command links that execute the pagination action methods.
The links must be nested within a JSF form as required by the JSF specification.
Between the links is a select menu to change the page size. A value change listener is
used on the select menu to reset the pagination offset when the page size is changed:

<div id="tableControl">
 <h:form id="pagination">
 <h:commandLink id="first" action="#{roundList.first}"
 value="First Page" rendered="#{roundList.previousExists}"/>
 <h:commandLink id="previous" action="#{roundList.previous}"
 value="Previous Page" rendered="#{roundList.previousExists}"/>
 <h:selectOneMenu id="pageSize" value="#{roundList.maxResults}"
 valueChangeListener="#{roundList.first}"
 onchange="this.form.submit();">
 <f:selectItem itemValue="25"/>
 <f:selectItem itemValue="50"/>
 </h:selectOneMenu>
 <h:commandLink id="next" action="#{roundList.next}"
 value="Next Page" rendered="#{roundList.nextExists}"/>

Table 10.6 The methods on Query that paginate the result set

Method Description

next() Advances the first result value to the offset of the next page

previous() Reverts the first result value to the offset of the previous page

last() Advances the first result value to the offset of the last page

first() Reverts the first result value to the offset of the first page, which is always 0

420 CHAPTER 10 Rapid Seam development
 <h:commandLink id="last" action="#{roundList.last}"
 value="Last Page" rendered="#{roundList.nextExists}"/>
 </h:form>
</div>

Now that the user has access to all the rounds in the database and the list remains sta-
ble on postback, it’s the perfect opportunity to implement multirow deletions.

10.4.3 Deleting multiple records at once

Let’s steer slightly off topic for a moment to implement a CRUD feature that wasn’t pos-
sible earlier in the chapter. Any operation on multiple records at once is typically done
from the listing page. Fortunately, the process is straightforward. First, add a transient
boolean property to the Round class that indicates whether the record is selected:

private boolean selected;

@Transient public boolean isSelected() { return this.selected; }
public void setSelected(boolean selected) { this.selected = selected; }

Next, add a new column to the listing table with a checkbox for selecting a record:

<h:column>
 <h:selectBooleanCheckbox value="#{_round.selected}"/>
</h:column>

Then, add a button below the list that invokes the delete() method when clicked:

<h:commandButton action="#{multiRoundAction.delete}"
 value="Delete selected"/>

Finally, implement the delete() method on the new MultiRoundAction component.
For fun, we implement the component in Groovy, naming the file MultiRoundAc-
tion.groovy.

@Name("multiRoundAction")
class MultiRoundAction {
 @In private def entityManager
 @In private def roundList
 void delete() {
 roundList.resultList.findAll { r -> r.selected }
 .each { r -> entityManager.remove r }
 roundList.refresh()
 "/RoundList.xhtml"
 }
}

The types on the properties are not required since Seam uses name-based injections.
Let’s return to managing the query by giving the user the ability to sort the results by
clicking on the column headers.

10.4.4 Putting the results in order-

The Query class has built-in support for sorting the result set. The sort order is main-
tained in a property named order, which holds both the sort column and sort direc-
tion, and is appended to the managed JPQL/HQL query. Whenever the order
property changes, the cached result set is invalidated and the query is executed again.

421Smarter queries with the Query component
Keep in mind that the Query class sanitizes the order property to check for SQL injec-
tion. Seam 2.1 increases the resilience to SQL injection by splitting the order property
into orderColumn and orderDirection, which I strongly encourage you to use.

 Let’s start by establishing a default sort by assigning a value to the order property:

<framework:entity-query name="roundList" scope="conversation"
 ejbql="select r from Round r
 join fetch r.golfer g
 join fetch r.teeSet ts
 join fetch ts.course c"
 max-results="15" order="r.date desc"/>

The result set of this query will be sorted by the date of the round in descending order.
The date property on Round is qualified in this query as r.date to distinguish it from
a property named date on any other entity in the query. It’s always a good idea to qualify
the name of the property by prefixing it with the alias defined in the select clause. The
aliases in this query are r for Round, g for Golfer, ts for TeeSet, and c for Course. These
aliases will be used throughout the remainder of this chapter. To sort on the name of
the golfer, you’d set the order property to g.lastName asc, g.firstName asc.

 Once again, your job is to provide the user with a UI control, this time to assign the
order property of the Query component. As is standard practice, we make each col-
umn header a sort link. In our case, the link will pass the sort clause to the Query
class’s setOrder() method using a parameterized method expression in the action of
the UI command component. Here’s the link in the column header for the course
name column:

<s:link value="Course Name"
 styleClass="#{roundList.order == 'c.name asc' ? 'asc' :
 (roundList.order == 'c.name desc' ? 'desc' : '')}"
 action="#{roundList.setOrder(roundList.order eq
 'c.name asc' ? 'c.name desc' : 'c.name asc')}"/>

Two bits of logic are performed by this component tag. In the parameter of the action
method, a check is performed to determine if the sort needs to be reversed or the
default sort applied, depending on whether the column is currently sorted. In the
styleClass attribute, a similar check is performed to determine if this column is
sorted and, if so, the direction of the sort. The work of rendering a sort indicator is
left up to two CSS classes, shown here:

th a.asc {
 background-image: url(../img/sort_asc.gif);
}
th a.desc {
 background-image: url(../img/sort_desc.gif);
}

Since this markup has to be reproduced for every column, it’s just screaming to be
converted to a Facelets composition template,4 which you learned about in chapter 3.

4 For more information regarding how to define and use Facelets composition templates, please refer to the
Facelets reference documentation at https://facelets.dev.java.net/nonav/docs/dev/docbook.html.

422 CHAPTER 10 Rapid Seam development
Let’s push this logic into the template layout/sort.xhtml to encapsulate the complex-
ity of this link:

<ui:composition ...>
 <h:commandLink value="#{name}" action="#{query.setOrder(param.order)}"
 styleClass="#{query.order == property.concat(' asc') ? 'asc' :
 (query.order == property.concat(' desc') ? 'desc' : '')}">
 <f:param name="order" value="#{query.order ==
 property.concat(' asc') ? property.concat(' desc') :
 property.concat(' asc')}"/>
 </h:commandLink>
</ui:composition>

Now, the logic of the sort link is only defined in one place. However, some changes
had to be made to accommodate Facelets: We are now using a standard UI command
link and there’s extensive use of parameterized EL. But all of that is behind you now.
All you have to do is fill in the template parameters. Here’s the sort link for the course
name column again:

<s:decorate template="layout/sort.xhtml">
 <ui:param name="query" value="#{roundList}"/>
 <ui:param name="name" value="Course Name"/>
 <ui:param name="property" value="c.name"/>
</s:decorate>

That takes care of sorting! The Query class handles the task of applying the order
clause to the JPQL/HSQL query. If you need features like multicolumn sort or col-
umn reordering, I recommend using an advanced table component from a JSF com-
ponent library instead.

 Query paging and sorting only scratches the surface of the Query component’s
capabilities. The most powerful feature is conditional restrictions. Let’s explore this
feature by implementing a form that allows the user to search for rounds.

10.4.5 Placing restrictions on the result set

Paging through hundreds of results can take its toll on your user. To make for a better
experience, you need to let users help themselves to the data by giving them a way to sup-
ply criteria that pares down the result set. Searching is one of those tasks that has been
long dreaded by developers because it almost always means building dynamic queries.
If you’ve ever had to maintain code that uses a custom SQL builder to implement a
search page, you can appreciate how much pain is involved. That’s why effort was put
into establishing an intelligent restriction mechanism for the Query component.
RESTRICTIONS AS A BUILT-IN QUERY BUILDER

Restrictions are assigned to the Query component as a collection of conditions, each
having exactly one embedded value expression. At runtime, the restrictions are
adjoined to the where clause of the JPQL/HQL query using the AND operator. Thus,
each restriction works to limit the result set. Here’s an example restriction that
searches by the golfer’s last name:

g.lastName = #{roundExample.golfer.lastName}

423Smarter queries with the Query component
We’re going to get to the roundExample context variable in a moment. What’s impor-
tant to recognize is that the condition is derived from an EL value expression. Each
restriction must have exactly one value expression embedded in it. That value expres-
sion is the equivalent of a query parameter, but with one crucial enhancement. If the
expression resolves to null or an empty string value, the restriction is omitted from the
query. That’s how Seam is able to formulate dynamic queries using restrictions.

 Aside from the obvious benefit of being able to reference context variables in your
queries, using the EL gives Seam the opportunity to prepare the values as query
parameters so they’re properly escaped. That way, your application isn’t vulnerable to
SQL injection attacks. What’s nice about the restriction facility in general is that query
building is just a matter of configuration, rather than yet another hand-built solution.

 The restrictions are stored as a collection of strings on the restrictions prop-
erty of Query. You can initialize the collection in Java or assign the values using com-
ponent configuration. The remainder of this section explores various ways to apply
the restrictions.
QUERY BY EXAMPLE

Restrictions are a way to make a JPQL/HQL query contextual. The context—or state,
in this case—is the criteria the user has entered in the search form. To get the criteria
values from the form to the query, they need to be bound to the properties of a com-
ponent instance. The Query by Example (QBE) pattern lends itself nicely to this prob-
lem. In QBE, you pass a criteria object to the query engine and tell it to “find results
like this.” The object that you pass to the query engine is a partial representation of
the objects in the result set. Since the results in the listing page are instances of an
entity class, in this case Round, then the example object must be an instance of Round.

 Let’s create a new component role for Round named roundExample that’s fed as the
example criteria for the round search. It’s scoped to the conversation, the default
scope for an entity class, so that the criteria doesn’t get lost when the user paginates or
sorts the result set or navigates away from the listing page.

 The properties on this criteria object will be referenced in the restriction clauses
on the Query component for the round list page. However, just searching on the
properties of the Round entity is going to be limiting. Thus, we need to build up a hier-
archical example object that can be fed into the join query introduced in the previous
section. We create several additional component roles and wire instances of them
together using component configuration:

<component name="teeSetExample" class="org.open18.model.TeeSet"/>
<component name="golferExample" class="org.open18.model.Golfer"/>
<component name="roundExample" class="org.open18.model.Round">
 <property name="golfer">#{golferExample}</property>
 <property name="teeSet">#{teeSetExample}</property>
</component>

With the example object ready to go, let’s put it to use building restriction clauses. We
start small by allowing the user to perform a case-insensitive wildcard search on the
name of the golfer and the color of the tee set played:

424 CHAPTER 10 Rapid Seam development
<framework:entity-query name="roundList" ...>
 <framework:restrictions>
 <value>
 lower(g.firstName) like
 concat(lower(#{roundExample.golfer.firstName}),'%')
 </value>
 <value>
 lower(g.lastName) like
 concat(lower(#{roundExample.golfer.lastName}),'%')
 </value>
 <value>
 lower(ts.color) like
 concat(lower(#{roundExample.teeSet.color}),'%')
 </value>
 </framework:restrictions>
</framework:entity-query>

The restrictions comprise the where clause of the JPQL/HQL query. The entity proper-
ties in the restriction must be qualified to the entity alias to which they belong. For
instance, in the first restriction, the g prefix in g.firstName is an alias to the Golfer
entity. When defining a restriction, you have the full power of JPQL at your disposal.
That means you can use built-in JPQL/HQL functions (not SQL functions) such as
concat() and lower() to customize the condition, as shown earlier. Unfortunately,
you can’t apply two different value expressions in the same restriction. In that case,
you probably need to rethink the problem or consider if you’ve outgrown the inten-
tionally focused restriction facility, perhaps graduating to Hibernate Search.

 The restrictions are one half of the equation. The other is the search form. The
properties of the example object are bound to the inputs in the search form to cap-
ture the criteria values from the user:

<h:form id="roundSearch">
 <rich:panel><f:facet name="header">Round search parameters</f:facet>
 <s:decorate id="firstNameField" template="layout/display.xhtml">
 <ui:define name="label">First name:</ui:define>
 <h:inputText id="firstName"
 value="#{roundExample.golfer.firstName}"/>
 </s:decorate>
 <s:decorate id="lastNameField" template="layout/display.xhtml">
 <ui:define name="label">Last name:</ui:define>
 <h:inputText id="lastName"
 value="#{roundExample.golfer.lastName}"/>
 </s:decorate>
 <s:decorate id="colorField" template="layout/display.xhtml">
 <ui:define name="label">Tee set color:</ui:define>
 <h:inputText id="color" value="#{roundExample.teeSet.color}"/>
 </s:decorate>
 </rich:panel>
 <div class="actionButtons">
 <h:commandButton id="search" value="Search"
 actionListener="#{roundList.first}"/>
 </div>
</h:form>

425Smarter queries with the Query component
Notice the #{roundList.first} method expression used in the action listener of the
UI command component that submits the form. This action listener ensures that the
pagination offset is reset before the search is performed. Although the Query class
clears the result set when it detects a change to the restrictions, it doesn’t reset the
pagination offset. It’s important to rewind the offset back to the first page because it
ensures that if the search criteria were to reduce the size of the result set, the pagina-
tion offset wouldn’t be left beyond the last result. If that happened, no results would
be displayed, even though results might have been returned by the query. To avoid
putting the user in this confusing situation, we introduce the minor inconvenience of
resetting the pagination.

 Since restrictions are joined using the AND operator, if the user fills in a value for
first name, last name, and tee set color, a record must match all of these conditions to
be included in the result set. Query doesn’t have built-in support for the OR operator,
though you can find an insider trick in the example code to get partial support.

 So far, we’ve only used string-based properties in the restriction clause. In addition
to primitive types, JPQL and HQL support complex types. Let’s start with dates.
DO YOU SPEAK CALENDAR?
It’s possible to use a value expression that resolves to a java.util.Date object directly
in the JPQL/HQL query, and hence the restriction clause, just like any other primitive
type. This will be demonstrated by allowing the user to filter the rounds within a date
range. However, the Round entity class doesn’t have a way to represent a date range.
Alas, we’ve outgrown the basic QBE use case. We introduce a new criteria object,
RoundCriteria, that can host property values that cannot be captured by the entity:

@Name("roundCriteria")
@Scope(ScopeType.CONVERSATION)
public class RoundCriteria {
 private Date beforeDate;
 private Date afterDate;

 public Date getBeforeDate() { return this.beforeDate; }
 public void setBeforeDate(Date date) { this.beforeDate = date; }

 public Date getAfterDate() { return this.afterDate; }
 public void setAfterDate(Date date) { this.afterDate = date; }
}

Next, add the restrictions to the roundList component definition:

<value>r.date >= #{roundCriteria.afterDate}</value>
<value>r.date <= #{roundCriteria.beforeDate}</value>

If either date filter resolves to null, the date range will be open ended on that side.
Notice that when you’re defining restrictions in the component descriptor, less-than
and greater-than signs must be escaped. Finally, add the date input fields on the
search form:

<s:decorate id="afterDateField" template="layout/display.xhtml">
 <ui:define name="label">From:</ui:define>
 <rich:calendar id="afterDate" datePattern="MM/dd/yyyy"

426 CHAPTER 10 Rapid Seam development
 value="#{roundCriteria.afterDate}"/>
</s:decorate>
<s:decorate id="beforeDateField" template="layout/display.xhtml">
 <ui:define name="label">To:</ui:define>
 <rich:calendar id="beforeDate" datePattern="MM/dd/yyyy"
 value="#{roundCriteria.beforeDate}"/>
</s:decorate>

The date filter example helps emphasize how convenient it is to attach a value from a
nonprimitive UI input component to a query with little effort. The converting and
formatting is handled for you and it just works. Next, you discover the same is true
for collections.
ANY OF THESE WILL DO

Like SQL, JPQL/HQL queries support the IN operator to find rows with a column value
that matches any one of a collection of parameter values. This feature is often com-
bined with “pick lists” where the user is presented with a set of options from which the
search values can be selected. Searching on collections of simple types such as strings
and numbers is fairly straightforward. What makes JPQL/HQL, and in turn the restric-
tion clauses, so powerful is that the values in this collection can be entity instances,
not just primitive values.

 In the next example, the user is presented with a list of courses that can be used to
filter the rounds by the courses selected. As you know, you can use entity instances in the
options of a UI select menu when combined with the <s:convertEntity> converter tag.
So far, we have used this technique to “wire” one entity instance to another. Now, we take
this a step further by combining <s:convertEntity> with <h:selectManyListbox> to
assign a collection of selected entity instances to the collection bound to the input. That
collection will then be used in a restriction clause of the roundList component. To sup-
port these search criteria, a new java.util.List property is added to RoundCriteria
to capture a collection of selected Course entity instances:

private List<Course> courses;

public List<Course> getCourses() { return this.courses; }
public void setCourses(List<Course> courses) { this.courses = courses; }

Note that JSF can only process a multivalue selection that is bound to an array prop-
erty or a parameterized collection property that extends java.util.List. You cannot
bind to a java.util.Set property, for instance.

 Next, we add a restriction that uses the courses property within an IN operator:

<value>c IN(#{not empty roundCriteria.courses ?
 roundCriteria.courses : null})</value>

NOTE An explicit check for an empty collection must be performed or an
empty IN() clause is generated, resulting in a SQL error.

You may wonder how JPA manages to stuff a whole entity instance into a SQL query.
Actually, it doesn’t. When entities are compared in a JPQL/HQL query, the query is
rewritten to compare the identifier values of the records.

427Smarter queries with the Query component
 Two steps remain: We need to prepare a collection of courses from which the user
can select and render the pick list. Let’s start by defining a Query component that
fetches the courses. An alias is defined for the result set and scoped to the conversa-
tion to prevent redundant fetches (though request-scoped would also work here):

<framework:entity-query name="coursesQuery" ejbql="select c from Course c"
 order="c.state asc, c.name asc"/>
<factory name="courses" value="#{coursesQuery.resultList}"
 scope="conversation"/>

The courses context variable can now be used to back the <h:selectManyListbox>
component. Here is the form fragment that renders the course pick list:

<s:decorate id="coursesField" template="layout/display.xhtml">
 <ui:define name="label">Courses:<ui:define>
 <h:selectManyListbox id="courses" value="#{roundCriteria.courses}">
 <s:selectItems var="_course" value="#{courses}"
 label="#{_course.state} - #{_course.name}"/>
 <s:convertEntity/>
 </h:selectManyListbox>
</s:decorate>

Seam also has parallel support for converting enum constants, activated by nesting the
<s:convertEnum> tag within any form input. You can use it with a text field, in which
case the user has to enter the enum constant, or a select menu, in which case the
select items need to map to a collection of enum constants.

 Thus far, you’ve seen restrictions that bind a property value to a query parameter
through the use of a value expression. The restriction is enabled if that property value
is non-null or non-empty. You may instead want to use a boolean property in the value
expression to create a switched restriction.
SWITCHED RESTRICTIONS

To incorporate a dynamic parameter value in a restriction clause, you place decision
logic in the value expression using the ternary operator. In this case, the criteria value
is acting as a controller rather than the value of the parameter. This adds a shade of
gray to the Query component’s black-and-white view of the restriction clauses.

 As an example, we will add a checkbox to the criteria form that allows the user to
toggle between all rounds and just the ones the user has played. First, a boolean prop-
erty is added to the RoundCriteria class to capture the vanity flag:

private boolean self = false;

public boolean isSelf () { return this.self; }
public void setSelf (boolean self) { this.self = self; }

Next, a restriction is added that checks the value of the self property and, if true,
returns the currentGolfer context variable. If the value is false, or the current-
Golfer is null because the user isn’t authenticated, the restriction is excluded:

<value>g = #{roundCriteria.self ? currentGolfer : null}</value>

The search criteria appears in the form as a check box:

428 CHAPTER 10 Rapid Seam development
<s:decorate id="selfField" template="layout/display.xhtml"
 rendered="#{currentGolfer != null}">
 <ui:define name="label">My rounds:</ui:define>
 <h:selectBooleanCheckbox id="self" value="#{roundCriteria.self}"/>
</s:decorate>

Having seen this example, you should now recognize the added power that the EL
gives you to make the restrictions contextual and to control whether the restriction is
used through the use of a conditional.

 When you’re all done, assuming you haven’t made any customizations, the round
search page should look like figure 10.10.

Before we close the books on query restrictions, I want to highlight one final scenario.
JUST GIVE ME THE NUMBERS

Throughout this section, the focus has been on displaying a result set. But what if you
want to use all of this great restriction functionality but in the end just retrieve a single
number? Well, guess what? There’s really nothing to show. You simply change your
JPQL/HQL to fetch a single result and then use the getSingleResult() method
instead of getResultList() on the Query class. Let’s say the user wanted to get an
average score of all rounds. You just define a new Query component, specify an aggre-
gate query, and then find a place on the page to place the result:

<framework:entity-query name="averageScore" scope="conversation"
 ejbql="select avg(r.totalScore) from Round r join r.golfer g">
 <framework:restrictions>
 <value>g = #{roundCriteria.self ? currentGolfer : null}</value>
 </framework:restrictions>
</framework:entity-query>

Figure 10.10 The round search screen supported by a Query component

429Summary
The Query component is convenient because it allows you to get information up on
the screen without having to hassle with boilerplate result set logic and unnecessary
layers. It’s especially helpful when the feature requests come flying in. Storing the
instance of Query in a long-term scope combined with its intelligence about when to
execute a query can ensure minimal load on the database and thus good perfor-
mance. I’ll leave it as an exercise for you to list the top rounds played at a course and
for a golfer on the respective detail pages.

10.5 Summary
This chapter brought together everything you’ve learned about Seam. You used the
component template classes in the Seam Application Framework to create screens for
managing and listing golf rounds. The editor and detail screens were powered by a
Home component, allowing the current golfer to create, read, update, and delete
rounds. The editor screen used a long-running conversation to establish the tee set
association and an application transaction to prevent changes from being made to the
database prematurely. The listing screen was powered by a Query component, allow-
ing the user to paginate, sort, and filter the rounds in the database. All of this func-
tionality has traditionally been time consuming to implement, but with the Seam
Application Framework component templates, you find yourself going for extra credit
before the day is through.

 The Seam Application Framework exemplifies how to create active domain models
in Seam. The Home component, in particular, wraps an entity instance and the persis-
tence manager into one cohesive unit, making it appear as though the entity is capa-
ble of reading and writing itself from the database. The Query component infuses
behavior into a JPQL/HQL query and result set. From a design perspective, the tight
coupling between the managed object and the persistence framework, present in the
Active Record pattern and EJB 2, is avoided. You don’t have to use the template classes
in the Seam Application Framework, but you may want to study them as a reference if
you plan on implementing your own solution.

 At this point you should be comfortable enough with Seam to start using it day to
day. But there’s still a critical part missing from your knowledge, which I mentioned
several times in this chapter: proper authentication of the user. In the next chapter,
you finally get to fill out the stub authentication component installed by seam-gen and
discover how to lock down the application at both the component and page levels.

Part 4

Sinking the
 business requirements

Seam goes well beyond being simply a web application framework. It gives
you support to cover all the business requirements, which you’ll learn to appreci-
ate in this part of the book.

 Chapter 11 shows how quickly you can weave security into a Seam applica-
tion. A single method on a POJO gives you both authentication and role-based
authorization. You use annotations and the EL to define restrictions. Going
deeper, you’ll get a crash course in the Drools rule engine and use it to create
fine-grained, contextual restrictions. Finally, you’ll learn to keep out pesky spam-
mers and bots using CAPTCHA, a nearly zero-effort integration.

 Though critical, security can often be a dry topic. But everyone loves Ajax!
Chapter 12 highlights the two flavors of Ajax in a Seam application. First you’ll
study Ajax-enabled UI components, which honor the JSF life cycle and let you
avoid the JavaScript and CSS nightmares that typically come with adopting Ajax.
If you prefer the low-level control, the JavaScript Remoting library lets you inter-
act directly with server-side components from JavaScript, stepping outside of the
JSF life cycle. The latter approach opens the door to alternative front ends such
as GWT.

 If this book is a full-course meal, then chapter 13 is definitely dessert. This is
the chapter where you’ll learn to make your application pop. It begins by show-
ing how to accept file uploads using a JSF input binding. You’ll then discover the
versatility of Facelets templates to create and serve PDF documents, compose
and send email messages with attachments, and produce RSS. Finally, you’ll
learn to use themes and i18n to customize the application.

 That’s where the book ends and the online chapters pick up. Chapter 14 eases you
into Seam’s business process integration and shows that a business process is simply a
multiuser conversation, controlled using the same declarative approach as a single-
user conversation. Chapter 15 reveals how Seam taps into the Spring container. The
Spring integration is vital because it allows Spring to leverage Seam’s proper manage-
ment of the persistence context.

 The underlying theme of this final part is that Seam’s programming model
remains consistent, regardless of which integration you use, making the technologies
accessible.

Securing
 Seam applications
While winding down after a round of golf, I came across a magazine ad for Micro-
soft Visual Studio 2005 that serves as an example of how not to treat security. The ad
shows side-by-side shots of a software development scene in which two developers
are discussing a web application, one before the product is introduced and one
after. The developer paraphernalia and the to-do list on the whiteboard reflect the
state of the project, with the before scene being far more cluttered and laden with
stress. But the contrast reveals a critical oversight in the after scene. An outstanding
item on the to-do list reads “TEST CODE FOR SECURITY!!” The items crossed off are
personalization features, consistency review of UI, accessibility, and breadcrumbs.
At least the application will look pretty while it’s being hacked.

This chapter covers
■ Developing an authentication routine
■ Enforcing role-based authorization
■ Writing permission rules with Drools
■ Adding a CAPTCHA challenge to a form
433

434 CHAPTER 11 Securing Seam applications
 Just because this chapter is in the final part of this book doesn’t mean you should
wait until the last minute to implement or test for security. A common misconception
is that security can be tacked onto the application when it’s ready to be sent off to QA,
or worse, production, as if it’s just polish. A complex application can’t be made secure
after the fact. Security must be present from the beginning and weaved into every
layer of the application, from the view down to the database. That’s why security is
such an integral part of Seam.

 Seam helps you secure your application without spending a lot of time on the
details. In this chapter, you’ll learn how to implement an authentication routine and
how to protect areas of the application from unauthorized access across all layers. The
foundation of Seam’s security model is a role-based system that ensures a quick start.
Obviously, some applications require a more granular approach. To meet these needs,
Seam builds on this foundation by leveraging the Drools rule engine to support con-
textual, rule-based permissions. The possibilities opened up by a rules system are lim-
itless. Seam 2.1 introduces an identity and permissions management module to make
administering security even easier. The best part of Seam’s security model is that you
don’t have to stomach a single line of XML, a breath of fresh air for those who have
used other Java security frameworks.

 Seeing is believing, so I want to start by showing you the quickest way to secure your
application after first defining some basic security terminology and how a user’s identity
is represented. As the chapter progresses, the security becomes more sophisticated.

11.1 Authentication jump-start
Why do you think security often gets the back seat in the design and development pro-
cess? My reasoning is that security frameworks, such as the Java Authentication and
Authorization Service (JAAS) and Spring Security (formally Acegi), are just too hard
to implement. The first is too cryptic and, let’s face it, primitive, and the second buries
you deep in XML Hell.

 The goal of a security layer is to prevent hackers, nonprivileged users, and rogue
client endpoints from accessing sensitive areas of the application, and not scare off
developers from implementing it. Given its importance, security should be easy to
configure and use, and it should be integrated into the core of the application frame-
work rather than split off as an extension. Both are true in Seam. What’s more impor-
tant is that this ease of use is accomplished without compromising the ability of
Seam’s security model to scale in accordance with security requirements. I start by pre-
senting authentication, the foundation of security, and show you how to tie it into a
Seam application in three simple steps.

11.1.1 Giving the user an identity

Authentication is just a fancy way of saying “login.” The login routine, which you are
about to implement, prefaces nearly every action we perform in today’s online world.
But it’s not just about making you ransack the piles of papers on your desk to find the

435Authentication jump-start
scribbled characters that get you past the
login challenge. Authentication is about
giving an anonymous user a face, as de-
picted in figure 11.1.
SHOW ME YOUR FACE

The transformation in figure 11.1 sym-
bolizes the user establishing an identity.
During authentication, Seam assembles
an instance of Subject from the JAAS API and associates it with the user’s session,
allowing the server to recognize the user until the session expires or the user explicitly
logs out.

 The Subject instance is a digital representation of the user. It consists of a collec-
tion of principals, filling in the user’s facial features. A principal implements the
Principal interface from the JAAS API. There can be an unbounded set of principals,
but Seam limits it to just two. The first principal holds the username of the authenti-
cated user and is called the user principal. The second principal, known as the roles
group, implements the Group interface and holds a collection of roles. Each role is a
Principal as well, though distinct from the user principal and roles group and appro-
priately referred to as a role principal.

 But the details about the structure of the Subject don’t really matter because Seam
provides a simple abstraction layer that you use to establish a user’s principals during
authentication and to access those principals when performing authorization checks.
JAAS A LA CARTE

Seam uses JAAS, but only select parts of it. Don’t panic when you see that four-letter
word because, by and large, Seam’s JAAS integration is completely transparent to you.
Behind the scenes, Seam relies on JAAS to handle the authentication handoff, which
delegates to one of your components to give the approval, and also uses the identity
portion of the API as mentioned above. The only time you even come in contact with
JAAS is to assert a user’s role using Servlet security (e.g., isUserInRole()). Seam
ignores the permission and policy piece of JAAS, instead offering its own multifaceted
authorization strategy. We cover authorization after we finish with authentication.
Let’s take it one A at a time.
LOCATING THE USER ACCOUNTS

To implement authentication, you need to decide where the user accounts for your
application are stored. Seam leaves this task entirely up to you. If you do want Seam to
help out, you have the option in Seam 2.1 of letting the identity manager consult your
database or LDAP to find an account, though it requires that you follow a standard, yet
flexible, model.

 In Open 18, the accounts are mapped to a table in the database through the Mem-
ber entity and retrieved using the EntityManager. The Member entity, introduced in
chapter 4, has fields to store the member’s username and hashed password, but
doesn’t have a field to hold the member’s roles. Though not mandatory, you may want

Figure 11.1 By authenticating (signing in), the
user is revealing his or her identity to the application.

436 CHAPTER 11 Securing Seam applications
to assign roles to the user during authentication, which are pulled from the database.
First, you need a Role entity:

@Entity
@Table(name = "ROLE", uniqueConstraints =
 @UniqueConstraint(columnNames = "name"))
public class Role implements Serializable {
 private Long id;
 private String name;

 @Id @GeneratedValue
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
}

Next, you add a Role collection to the Member entity, related through a join table:

private Set<Role> roles = new HashSet<Role>();

@ManyToMany(fetch = FetchType.LAZY)
@JoinTable(name = "MEMBER_ROLE",
 joinColumns = @JoinColumn(name = "member_id"),
 inverseJoinColumns = @JoinColumn(name = "role_id"))
public Set<Role> getRoles() { return this.roles; }
public void setRoles(Set<Role> roles) { this.roles = roles; }

While roles are optional for authentication, they are essential when it comes to imple-
menting authorization. In a sense, authentication is the binary part of security: The
user is either authenticated or the user is not authenticated. Only after establishing
the user’s identity can we begin talking about authorization. Let’s find out, in three
steps, how a 0 becomes a 1.

11.1.2 Implementing authentication in three steps

The three steps for setting up authentication in Seam are as follow:

1 Switch on authentication by configuring an authentication method.
2 Verify the user’s credentials in the authentication method.
3 Create a JSF login form.

When these steps are complete, your application will support form-based authentica-
tion. Later on, you’ll learn that in Seam 2.1, you can let Seam’s identity manager han-
dle the second step for you. If you would rather not bother with the login form, you
can plug in Seam’s support for HTTP authentication, in which case the credentials are
negotiated by the browser. Let’s put these alternatives aside for now and continue with
the steps laid out here.
STEP 0: ZERO PREREQUISITES

The first step isn’t a step at all but simply a fact. You don’t need any extra libraries to
implement authentication and role-based security in Seam. Only when you branch
out to Seam’s rule-based security, covered in section 11.4, are additional dependen-
cies needed.

437Authentication jump-start
 In fact, projects created using the seam-gen tool already have the authentication
routine configured. It just leaves out one critical detail. The default configuration
accepts any username and password. To heighten security (to put it lightly) and keep
out the imposters, the user’s login credentials need to be validated against the data-
base of registered members.
STEP 1: SWITCHING ON AUTHENTICATION

Enabling security in Seam is a bit of a misnomer. Security is enabled by default, unless
you purposely disable it (perhaps in a test). However, out of the box, there’s no way
for users to authenticate themselves. To make that possible, you first need to tell Seam
which method handles the authentication logic (i.e., the authentication delegate).
This method is provided by one of your components. Three requirements must be
met by the authentication method:

■ It must take no arguments.
■ It must return a boolean indicating whether the credentials could be verified.
■ It must be accessible via the EL (which isn’t much of a problem in Seam).

The authentication method can have any name, it can reside on any class, and that
class doesn’t have to implement any special security interfaces. Seam plugs your
authentication method into JAAS, but hides the complexity of JAAS in the SeamLogin-
Module. Internally, JAAS invokes your authentication method and adds the appropri-
ate principals to the security subject if the method returns true. This authentication
routine is activated through Seam’s identity component, freeing you from having to
interact with the colossus that lies beneath.

 The built-in Identity component, named identity, maintains a reference to the
authentication method as a method-binding expression. The identity component
lives in the component namespace http://jboss.com/products/seam/security,
declared in the component descriptor using the prefix identity. The authentication
method can be assigned to the identity component using component configuration:

<security:identity
 authenticate-method="#{authenticationManager.authenticate}"/>

Here, the authentication method is provided by the authenticationManager compo-
nent. The next step is to implement this method.
STEP 2: AUTHORING AN AUTHENTICATION METHOD

As I mentioned earlier, the authentication method can reside on any class. We use a
JavaBean component in this example. Here’s a naïve, but valid, implementation of the
method:

@Name("authenticationManager")
public class AuthenticationManager {
 public boolean authenticate() {
 return true;
 }
}

To get serious, we need credentials to validate. If the authenticate() method doesn’t
take any arguments, where do the credentials come from? One of the roles of the

438 CHAPTER 11 Securing Seam applications
identity component, which is scoped to the session context and instantiated when
the user’s session begins, is to capture the credentials being challenged. The creden-
tials are stored in the username and password properties on this component, and are
typically populated by a JSF form. Thus, you get to the credentials by obtaining a refer-
ence to the identity component.

NOTE If your authentication routine requires additional credentials, you can
extend Seam’s security infrastructure to capture them. In Seam 2.0, you
extend the Identity class and register it using the component name
org.jboss.seam.security.identity. In Seam 2.1, you extend the Cre-
dentials class and register it using the component name org.jboss.
seam.security.credentials. The credentials component was intro-
duced in Seam 2.1 to hold the credentials. Although the credentials can
still be accessed using the identity component, the credentials com-
ponent is the preferred means of access.

To pull the credentials into the authentication method, you simply inject identity
(or credentials in Seam 2.1) into the authentication component using @In:

@Name("authenticationManager")
public class AuthenticationManager {
 @Logger private Log log;
 @In private Identity identity;

 public boolean authenticate() {
 log.info("username: #0, password: #1",
 identity.getUsername(), identity.getPassword());
 identity.addRole("member");
 return true;
 }
}

As you see here, the role of the identity component in the authentication method is
twofold. It delivers the login credentials and it’s used to store a set of roles. In this
implementation, we assign all users the member role. JAAS transfers the roles to the
security subject during the post login routine. Let’s consider how that works.

 When the authentication method is called, the user principal and roles group
haven’t yet been established on the Subject instance (because the user hasn’t been
authenticated). That initialization takes place inside the JAAS login module after the
authentication method returns true. In the interim, the identity component pro-
vides temporary storage for roles—appended using the addRoles() method—that
need to be transferred to the user’s group identity. During the post-authentication
routine, Seam converts the role names into role principals and adds them to the roles
group on the Subject instance.

NOTE Seam doesn’t impose a naming convention for roles, so feel free to use
your own scheme.

The authentication routine produces a standard Java security principal, meaning Serv-
let security just works. You can use the HttpServletRequest#isUserInRole() method

439Authentication jump-start
to check if a user has been granted a role, and it enables transparent integration with
libraries that depend on this method. To get all of this, you only have to write a couple
lines of code (even counting the XML). That number grows when you add the authen-
tication logic.

 The authentication logic for Open 18 is presented in listing 11.1. The username
on the identity component is used to look up a matching Member entity in the data-
base using the EntityManager. If an instance is found, the password is validated by
comparing its hash to the hashed password from the database. If both checks succeed,
the roles are added and the method returns true, returning control to JAAS to estab-
lish the security principals. If either check fails, a return value of false sends the user
back to the login page with a failure message. We examine the details of the failure
scenario a bit later.

package org.open18.action;
import org.jboss.seam.security.Identity;
import ...;

@Name("authenticationManager")
public class AuthenticationManager {
 @In private EntityManager entityManager;
 @In private Identity identity;
 @In private PasswordManager passwordManager;
 @Out(required = false) Golfer currentGolfer;

 @Transactional public boolean authenticate() {
 try {
 Member member = (Member) entityManager.createQuery(
 "select m from Member m where m.username = :username")
 .setParameter("username", identity.getUsername())
 .getSingleResult();

 if (!validatePassword(identity.getPassword(), member)) {
 return false;
 }

 identity.addRole("member");
 if (member.getRoles() != null) {
 for (Role role : member.getRoles()) {
 identity.addRole(role.getName());
 }
 }

 if (member instanceof Golfer) {
 currentGolfer = (Golfer) member;
 identity.addRole("golfer");
 }
 return true;
 } catch (NoResultException e) {
 return false;
 }
 }

Listing 11.1 An authentication component that plugs into Seam’s JAAS login module

440 CHAPTER 11 Securing Seam applications
 public boolean validatePassword(String password, Member m) {
 return passwordManager.hash(password).equals(m.getPasswordHash());
 }
}

If the member is a golfer, currentGolfer is outjected for convenience. To ensure it
hangs around for the duration of the session, we define a role for it on the Golfer
class:

@Role(name = "currentGolfer", scope = ScopeType.SESSION)

All that’s left is to create a form for the user to enter credentials and attempt a login.
STEP 3: CREATING THE LOGIN FORM

You’ll be thrilled to discover that the j_username and j_password request parameters
and the /j_security_check servlet path, defined in the Servlet specification for imple-
menting form-based logins, have finally been retired under Seam. And for those of
you who have had to invent a custom handoff to get a JAAS login module to play nicely
with JSF, you’ll be happy to know that you can use a native JSF form on the login page.
The login form boils down to two value-binding expressions, #{identity.username}
and #{identity.password}, which capture the user’s login credentials (in Seam 2.1,
you use the credentials component for this purpose) and one method-binding
expression, #{identity.login}, which invokes the built-in action method that kicks
off the authentication routine. Here’s an example of a basic login form:

<h:form id="login">
 <h:panelGrid columns="2">
 <h:outputLabel for="username">Username</h:outputLabel>
 <h:inputText id="username" value="#{identity.username}"/>
 <h:outputLabel for="password">Password</h:outputLabel>
 <h:inputSecret id="password" value="#{identity.password}"/>
 </h:panelGrid>
 <div class="actionButtons">
 <h:commandButton value="Login" action="#{identity.login}"/>
 </div>
</h:form>

Each time an attempt is made to authenticate, the password is cleared before the
login() method returns. If the login fails, this method returns null, causing the login
page to be redisplayed. If the login succeeds, this method returns the value loggedIn,
which you can plug into a navigation rule to redirect the user somewhere besides the
login page:

<navigation from-action="#{identity.login}">
 <rule if-outcome="loggedIn">
 <redirect view-id="/home.xhtml"/>
 </rule>
</navigation>

This rule applies to when a user requests the login page directly. In section 11.2.2,
you’ll learn how to configure Seam to restore the user’s original request if it was inter-
rupted by a request to login.

441Authentication jump-start
 That’s all there is to it! You can finally wipe your hands clean of low-level JAAS
details, which Seam keeps hidden so the work you have to do is minimal. In fact, you
don’t even need the JSF form to perform authentication. Let’s say that you want to
authenticate the user automatically, perhaps following registration or in response to a
remote method invocation. You just register the credentials on identity and invoke
the login() method:

@In private Identity identity;

public String register() {
 ...
 identity.setUsername(newGolfer.getUsername());
 identity.setPassword(passwordBean.getPassword());
 identity.login();
 return "success";
}

Don’t fear that as your requirements become more complex, you’ll outgrow Seam’s
security model. Throughout this chapter, you’ll learn that Seam gives you all the
power you need without compromising simplicity or extensibility.
BONUS ROUND: LOGGING OUT

If authenticating the user is so easy, you probably expect the logout to be the same.
You guessed right. Just as the #{identity.login} method-binding expression is
attached to a UI command component to log in, the #{identity.logout} method-
binding expression is used to log out. To create a login/logout control, you can use
the value expression #{identity.loggedIn} to check whether the user is authenti-
cated and, if so, you can personalize the page by displaying the username credential,
which is retained by the session-scoped identity component:

<h:outputText value="You are signed in as: #{identity.username}"
 rendered="#{identity.loggedIn}"/>
<s:link view="/login.xhtml" value="Login"
 rendered="#{not identity.loggedIn}"/>
<s:link view="/home.xhtml" action="#{identity.logout}" value="Logout"
 rendered="#{identity.loggedIn}"/>

Before calling the authentication process a done deal, we need to address what hap-
pens when authentication fails. As I mentioned earlier, the user is returned to the
login page and presented with a failure message. As it turns out, a message is created
either way. There are also a plethora of events surrounding authentication. Let’s
explore this flurry of activity.
AUTHENTICATION MESSAGES AND EVENTS

While Seam assumes control of authentication, it doesn’t keep other parts of the
application in the dark. This transparency is accomplished through the use of events.
Table 11.1 lists the events that are most relevant. The first event listed signals when the
user is being directed to the login page to authenticate, a process that we discuss in
section 11.2.2.

 In addition to raising events, Seam adds a global FacesMessage to the response when-
ever the user is directed to the login page or the user makes an authentication attempt.

442 CHAPTER 11 Securing Seam applications
Following multilingual best practices, Seam resolves the authentication message from
a message key in the Seam resource bundle. Table 11.2 lists the message keys and sever-
ities for each event. The Seam resource bundle was covered in section 5.5.2 of chapter 5.
You render the authentication messages using the following component tag:

<h:messages globalOnly="true"/>

In order for the user to see the login success message, this tag must be included on any
page the user is taken to after login. In section 11.2.2, you’ll learn how to redirect the
user back to the intercepted request, widening this pool of target pages. If you don’t
want one of the messages to be used, just assign an empty value to the message key.

Table 11.1 A list of events related to authentication

Event name When it is raised

org.jboss.seam.security.notLoggedIn When a nonauthenticated user encoun-
ters a restriction

org.jboss.seam.security.preAuthenticate Prior to delegation to the JAAS login module

org.jboss.seam.security.postAuthenticate At the end of the authentication process,
when the security subject is fully initialized

org.jboss.seam.security.loginFailed Before the login() method on the
identity component returns and the
authentication failed

org.jboss.seam.security.loginSuccessful Before the login() method on the
identity component returns and the
authentication was successful

org.jboss.seam.security.loggedOut Before the logout() method on the
identity component returns, after the
session has been invalidated

org.jboss.seam.security.initCredentials The first time the getUsername()
method is called on the credentials compo-
nent for a given session (Seam 2.1 only)

org.jboss.seam.security.quietLogin Before a restriction is checked to give an
observer the opportunity to log in the user
automatically (Seam 2.1 only)

Table 11.2 The message keys that Seam uses following an authentication event

Message key FacesMessage severity When it is used

org.jboss.seam.loginFailed SEVERITY_INFO Authentication fails

org.jboss.seam.loginSuccessful SEVERITY_INFO Authentication succeeds

org.jboss.seam.NotLoggedIna SEVERITY_WARN Authentication is requested

a. The “N” in the org.jboss.seam.NotLoggedIn key is intentionally uppercase.

443Authentication jump-start
With the user being scolded or praised accordingly, the authentication routine is com-
plete. Looking back on the work you’ve done, the most complex part was implement-
ing the authentication method, which involved locating an account, validating the
password, and adding the roles. Granted, the authentication logic in your own appli-
cation may be different. But if you are simply retrieving the accounts from the data-
base using JPA or from LDAP, you can let Seam’s identity manager (introduced in
Seam 2.1) handle this work for you. While both JPA and LDAP providers exist, only the
JPA one is covered here. At the time of this writing, this feature was still under active
development, so I won’t go into too much detail. However, the next section should be
enough to get you started.

11.1.3 A glimpse at Seam’s identity management

Seam’s new identity management module, introduced in 2.1, stretches Seam’s declar-
ative services to cover authentication. The module consists of a handful of annota-
tions and a bunch of glue code that work collectively to authenticate the user and set
up the user’s roles. All you have to do is put the annotations where they belong and do
some component configuration. Once that is done, your authentication method
becomes history.

 The first step is creating entities to represent a user and a role. In Open 18, these
entities are Member and Role, respectively. The next step is to identify the fields that
store the user’s account information using the following annotations:

■ @UserPrincipal—Identifies the field on the user class that stores the username.
■ @UserPassword—Identifies the field on the user class that stores the password.

Both plain-text and hashed passwords are supported. The hashing algorithm is
specified in the hash attribute. The hashed password must be Base64 encoded.

■ @UserRoles—Identifies the collection field on the user class that stores the roles.
The collection must map to a class that has a field annotated with @RoleName.

■ @RoleName—Identifies the field on the role class that stores the name of the
role.

There are a couple additional annotations not listed here for tracking additional
information about the user. Abbreviated versions of Member and Role are shown here
with the identity management annotations applied:

@Entity
public class Member implements Serializable {
 @UserPrincipal
 public String getUsername() { return this.username; }
 @UserPassword(hash = "SHA")
 public String getPasswordHash() { return this.passwordHash; }
 @UserRoles
 public Set<Role> getRoles() { return this.roles; }
 ...
}
@Entity
public class Role implements Serializable {

444 CHAPTER 11 Securing Seam applications
 @RoleName
 public void String getName() { return this.name; }
 ...
}

Next, you need to configure an identity store in the component descriptor and indicate
which classes represent the user and role. The authentication method on identity is
no longer needed:

<security:identity/>
<security:jpa-identity-store
 user-class="org.open18.model.Member" role-class="org.open18.model.Role"/>

The identity manager uses the JPA identity store by default if it’s available. The JPA
identity store assumes that the name of the Seam-managed persistence context is
entityManager. If it’s not, you must assign it to the entityManager property using EL.

 Using the identity component to authenticate the user is no different in this
case. Behind the scenes, the SeamLoginModule delegates to the identity manager to
validate the credentials. If you need to execute custom logic during authentication,
you can use a method that observes the postauthentication event, listed in table 11.1.

 Although you never interact with the identity manager directly during authentica-
tion, you can use its API to manage accounts. It supports full CRUD capabilities for
users and roles and has additional methods for performing tasks such as changing a
user’s password, enabling an account, and granting and revoking roles. To comple-
ment the identity manager, Seam 2.1 provides a permission manager for maintaining
persistent user permissions, which is mentioned in section 11.4. Check out the seam-
space example from the Seam distribution to see both in action.

 Now that you know how to implement form-based authentication, let’s explore an
alternative that leverages the browser’s ability to negotiate credentials with the server.

11.1.4 Even more “Basic” authentication

You mean that what you’ve seen so far isn’t basic enough for you? Okay, I understand.
Sometimes you just want to block off an application from the public eye without mak-
ing any changes to the user interface. To accomplish that, HTTP Basic or HTTP Digest
(RFC 2617) authentication may be sufficient for your needs. Guess what? Seam has that
covered. However, it doesn’t get you totally off the hook. You still need to implement
and configure the authentication method as before. You just no longer need a login
page (and you don’t have to worry about navigation, a concern addressed later on).

 As you learned in chapter 3, the Seam filter uses a delegation model to wrap each
request in a chain of Seam-configured filters, each declared using the @Filter anno-
tation. One of Seam’s built-in filters, AuthenticationFilter, handles HTTP authenti-
cation. However, this filter isn’t installed by default (i.e., @Install(false)). To use it,
you must make sure it’s activated in the component descriptor. Seam’s built-in filters
reside in the component namespace http://jboss.com/products/seam/web, pre-
fixed as web. When activating the AuthenticationFilter, specify whether you want to

445Authentication jump-start
use Basic or Digest (digest) authentication, controlled by the auth-type attribute.
Let’s start with Basic:

<web:authentication-filter url-pattern="*.seam" auth-type="basic"/>

Now, any URL that matches the value of the url-pattern attribute is protected by
Basic authentication. To protect only JSF requests, the url-pattern attribute should
match the pattern configured for the JSF servlet in web.xml. If the url-pattern attri-
bute is excluded, the filter is applied to all requests captured by Seam’s main filter.
During authentication, Seam invokes the authentication method you configured in
steps 1 and 2 of section 11.1.2.

 If you’re content with Basic authentication, your work is done. However, HTTP Basic
authentication is extremely weak because the password is sent with each request only
slightly obfuscated using the well-known Base64 encoding (i.e., not encrypted or
hashed), making it easy to pick off by network sniffers. A better choice is Digest authen-
tication, in which the browser hashes the credentials before sending them to the server.
NEGOTIATING CREDENTIALS USING A MESSAGE DIGEST

Digest authentication is more secure than Basic authentication, but that security
comes at the cost of some additional setup. Start by changing the value of the auth-
type attribute on the <web:authentication-filter> element to digest. Then, add
two additional properties: key and realm. The value of the key property can be any
string. Its purpose is to reduce the predictability of the digest created (i.e., the salt).
The value of the realm property is used in the prompt that captures the user’s creden-
tials. A typical prompt reads something like this:

Enter username and password for "Open 18" at http://localhost:8080

The realm is the text in quotes, which in this case is the title of the application. You
can pull the realm from a message bundle using EL notation, making it i18n-friendly.
The result of these configuration changes is shown here:

<web:authentication-filter url-pattern="*.seam" auth-type="digest"
 key="g0!f15f#n" realm="#{messages['application.title']}"/>

Seam provides the DigestAuthentication base class to handle the digest computa-
tion and validation. Thus, the next step is to change the authentication component to
extend DigestAuthentication and delegate the work of validating the digest to the
inherited validatePassword() method. Listing 11.2 shows a simplified example.
Unfortunately, to use Digest authentication, you must store the passwords in the data-
base unhashed. This change is necessary because the authentication routine must
generate a digest from the original password to compare it against the digest sent by
the client.

package org.open18.action;
import org.jboss.seam.security.digest.DigestAuthenticator;
import ...;

Listing 11.2 An authentication component used for HTTP Digest authentication

446 CHAPTER 11 Securing Seam applications
@Name("authenticationManager")
public class AuthenticationManager extends DigestAuthenticator {
 @In private EntityManager entityManager;
 @In private Identity identity;

 @Transactional public boolean authenticate() {
 try {
 Member member = (Member) entityManager.createQuery(
 "select m from Member m where m.username = :username")
 .setParameter("username", identity.getUsername())
 .getSingleResult();
 return super.validatePassword(member.getPassword());
 } catch (NoResultException e) {
 return false;
 }
 }
}

Having seen the configuration for both form-based and HTTP authentication, you’ll
likely agree that the form-based approach is no more difficult to implement in Seam
than its HTTP counterpart. Given the fact that the gap in effort has been eliminated,
three limitations of HTTP authentication now make it a less desirable option:

■ The login prompt doesn’t appear to be part of the application.
■ The user isn’t given an alternative when the login prompt appears (it is modal).
■ There is no standard way for the user to log out.

Of the three, the lack of a standard logout mechanism is its most significant downfall.
This fact is acknowledged by the W3C in the User Agent Authentication Forms
specification:

HTTP Authentication has the additional problem that there is no mechanism available
to the server to cause the browser to “logout”; that is, to discard its stored credentials for
the user.

However, in HTTP authentication, the credentials are sent by the browser with each
request, so it’s really the browser’s responsibility to provide a logout button that lets
the user signal when to stop sending the credentials. Unfortunately, no major browser
supports this feature natively. One hack developers have discovered is that sending a
401 response causes some browsers to clear the authentication cache for the realm.
But this trick isn’t reliable.

 In light of all these complications, I strongly recommend using form-based authen-
tication. The only catch with form-based authentication is that you have to worry
about navigation (unless authentication is done using Ajax). In the next section,
you’ll learn how to implement basic page security and how navigation to the login
page gets tied into it.

11.2 Securing pages
The most common form of security in a web application is page-level security. Even
when we get into securing components later on, the web layer still needs to be
involved to direct the user to the login page or an error page when the user is denied

447Securing pages
access to a resource. In this section, you’ll learn why page-level security has tradition-
ally been so difficult to enforce in JSF and the solution that Seam offers. You’ll then
explore a couple of Seam’s page-level security features and how to use them to protect
pages and serve them securely.

11.2.1 The challenge with JSF security

The biggest challenge in dealing with security in JSF is that there isn’t any. JSF has
absolutely no notion of security anywhere in its design. Presumably, a decision was
made that security is the concern of another layer, such as the EJB container or a serv-
let filter. This stance has made the task of implementing security (specifically page-
level security) in a JSF application a real pain, again opening the door for Seam to step
in and provide a solution. Seam has both page- and component-level security covered.
In fact, you could even argue that security is Seam’s most significant and compelling
enhancement to Java EE.
WHY SERVLET FILTERS DON’T WORK

At first glance, a servlet filter appears to be perfect for implementing page-level secu-
rity. It can trap an incoming request and make a decision about whether to let the
request through or divert the user to another page. The main limitation with this
approach is that it operates at too high a level, unable to track what’s going on inside
the JSF life cycle. While the high-level view may work brilliantly for some applications,
others require more insight.

 When a URL is requested initially, the
default behavior in JSF is to render the
template for the corresponding view ID
(ignore page actions for right now). So
you set up the security filter to restrict
access to a URL based on some rule. That
restriction works as designed. Let’s say
that the page has a JSF form with a UI
command component that calls an
action method. When the user clicks the
button, the same URL is requested using
a postback and the same restriction is
evaluated. After the action method is
called, JSF invokes a navigation event,
which may result in a different view ID
being rendered. The security framework
has absolutely no knowledge of this
switch and therefore can’t verify whether
the user should be allowed access to the
destination page. Figure 11.2 illustrates
how the security filter is kept out of the
loop when the navigation occurs.

Client Browser

JSF Servlet

Restore
View

Invoke
Application

Render
Response

Update Model
Values

Apply Request
Values

Process
Validations

Security Filter

navigation

Figure 11.2 The security filter isn’t aware of a
navigation event that happens inside the JSF life
cycle.

448 CHAPTER 11 Securing Seam applications
 If you’re using JSP as the view handler, the navigation is performed using an inter-
nal forward handled by the servlet request dispatcher. It’s possible to get the filter
involved by wrapping the filter around internal forwards, configured in the web.xml
descriptor as follows:

<filter-mapping>
 <filter-name>Third-party security filter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>FORWARD</dispatcher>
</filter-mapping>

However, this mapping only applies to view handlers that use the servlet request dis-
patcher. Facelets, for instance, uses its own mechanism for selecting the next view to
render. Therefore, if your application uses Facelets, the security filter is once again
left in the dark.
A CONTEXTUAL SECURITY WRAPPER

Another limitation of a third-party security filter is that it’s not part of the JSF applica-
tion and thus doesn’t have insight into the application’s context. We talked about
this problem back in chapter 3 with regard to the stateless navigation model. The
same limitation exists here. Can you decide if users should be granted access to a
page based on the URL? Where did they come from, where are they going, and what
is the current state of their session? These are questions you need to know the
answers to in order to make a viable decision. The only way you’re going to get all of
this information is if the security framework is integrated into JSF. That’s exactly what
Seam offers.

 Instead of operating before and after each request, like a security filter, Seam
applies page-level security before and after the two page-oriented phases in the JSF life
cycle, Restore View and Render Response. Thus, Seam can apply restrictions directly to a
view ID (as opposed to a URL). When access to a resource is denied, Seam can route
the user to an error page, but not before giving the user the opportunity to authenti-
cate, a process we look at next.

11.2.2 Requiring authentication

If a nonauthenticated user tries to access a protected resource, Seam redirects the
user to the login page, giving the user a chance to reveal his or her identity. Once the
user authenticates, the authorization check is evaluated to determine if the user can
access the protected resource. That describes how the application will work once you
complete this section. For any of this to work, you first have to tell Seam where to
direct a nonauthenticated user when a login is required.
SINGLING OUT THE LOGIN PAGE

One way a user can initiate the authentication routine is by navigating directly to the
login page. While some users may navigate to this page willingly, most of the time you
have to give them a little push. In Seam, you can protect a page (i.e., view ID) by
requiring a nonauthenticated user to log in before accessing it, a security feature I like

449Securing pages
to call binary authorization. It’s like hanging signs throughout the application that
read “Members Only.” This prerequisite is declared by adding the login-required
attribute to the <page> node in the corresponding page descriptor:

<page login-required="true"/>

Only Seam isn’t going to know where to direct a nonauthenticated user when this
page is requested because you haven’t specified a login page. If a login page hasn’t
been set, Seam throws a NotLoggedInException. We get to this exception shortly. For
now, it can be avoided by simply configuring a login page. The view ID that hosts the
login form is designated using the login-view-id attribute on the root node of the
global page descriptor:

<pages login-view-id="/login.xhtml"/>

Some applications require the user to be authenticated before doing anything else, in
which case the login page is the home page. To accommodate this scenario, you can
blanket the application with the authentication prerequisite by using the login-
required attribute on a <page> node that matches all of the view IDs (though I don’t
recommend it):

<pages login-view-id="/login.xhtml">
 <page view-id="*" login-required="true"/>
</pages>

There’s at least one page you do want to serve to nonauthenticated users: the login
page, which you declare in the login-view-id attribute on the <pages> node. Seam
understands the function of a login page and automatically excludes it from the list of
restricted pages. It’s very important that you specify it to ensure the user always has a
way to log in.

 Even with the login page accessible, I don’t recommend declaring the site-wide
login requirement using a wildcard because it can break the delivery of resources
(e.g., JavaScript or CSS) sent through the JSF servlet. It’s far better to restrict only
what’s necessary, perhaps grouping views into directories and securing them as
needed (e.g., /admin/*).
PLEASE SHOW SOME IDENTIFICATION

Instead of requiring the user to start at the login page, applications can use deferred
authentication as a way to be more welcoming to new users and to avoid scaring them
off by throwing up the dreaded login page too soon. In this model, the user is
allowed to poke around the application anonymously until running into a protected
resource. When that happens, the user is escorted to the login page and asked to
show some identification before being allowed to proceed. This describes how the
native JAAS login routine works. Seam, on the other hand, supports both up-front
and deferred authentication.

 You’ve already learned how to configure Seam to protect a page from being
accessed by a nonauthenticated user, in which case Seam redirects the user to the
login page. However, there are other ways to restrict access to resources, which you’ll

450 CHAPTER 11 Securing Seam applications
learn about in the next two major sections. If a nonauthenticated user encounters any
of the following scenarios, Seam throws the NotLoggedInException as a way to
require the user to log in:

■ A view ID with a restriction is requested.
■ A method with a restriction is invoked.
■ A view ID that requires a login is requested (and the login view ID isn’t set).

As experience tells you, throwing an exception is certainly not going to bring up a
login page—that is, unless, you handle the exception. Deferred authentication relies
on the use of Seam’s exception-handling facility, covered in chapter 3, to route the
user to the appropriate view ID. The following exception handler catches the
NotLoggedInException and mimics the behavior of Seam when protecting pages that
require login:

<exception class="org.jboss.seam.security.NotLoggedInException">
 <redirect view-id="/login.xhtml">
 <message
 severity="warn">#{messages['org.jboss.seam.NotLoggedIn']}</message>
 </redirect>
</exception>

Now, any time a nonauthenticated user encounters a restricted resource, the user is
escorted to the login page. You can raise the NotLoggedInException in your own code
to require the user to authenticate.

When Facelets is running in development mode, it intercepts exceptions
thrown in the Render Response phase. In that case, Seam’s exception-based
routing will not kick in.

The only danger in all of this redirecting is that it risks losing the user’s spot in the
application. Whenever you design an application that uses deferred authentication,
you want to keep the disruption caused by asking the user to authenticate to a mini-
mum. One of the most obvious ways of ensuring minimal disruption is to redirect the
user back to the page that was originally requested once authentication is successful.
KEEPING THE INTERRUPTION TO A MINIMUM

To get the user back to the page that was originally requested, you have to capture
the current URL before the user is directed to the login page. After successful authen-
tication, you need to retrieve the saved URL and redirect the user back to it. Given
that Seam manages the authentication interlude, you may wonder how you’re going
to get in there and change the course of action. The key is observing the authentica-
tion events.

 Seam has a built-in component, named redirect, that is capable of capturing the
current view (as well as the request parameters) and redirecting back to that view. You
just need to connect this component to the event that’s raised when the user is being
directed to the login page and the event that’s raised when authentication is success-
ful. You can register the redirect component to observe these events in the compo-
nent descriptor:

WARNING

451Securing pages
<event type="org.jboss.seam.security.notLoggedIn">
 <action execute="#{redirect.captureCurrentView}"/>
</event>
<event type="org.jboss.seam.security.postAuthenticate">
 <action execute="#{redirect.returnToCapturedView}"/>
</event>

You may ask yourself how the redirect component manages to store the captured
view ID while the user is authenticating. The little-known secret is that redirect,
which is a conversation-scoped component, begins a long-running conversation when
the captureCurrentView() method is called, if one isn’t already active. That conversa-
tion is ended when the returnToCapturedView() method is called, if it was started by
the redirect component. Thus, the captured view is preserved in a long-running con-
versation that surrounds the login process. See the accompanying sidebar for another
important use of authentication events.

Another way to make the login page less of an annoyance is to remember the user on
subsequent visits. Authenticating is a chore, so you want to make it as pleasant as possible.
RECOGNIZING THE REGULARS WITH “REMEMBER ME”
If you visit the same coffee shop every morning on your commute to work, after a
while, the baristas start remembering you. The really good ones just say “Hi,” perhaps

Keeping memory consumption in check
One of the boldest claims that Seam makes is that it helps eliminate the problem of
HTTP sessions consuming excessive memory. However, this statement doesn’t
account for the fact that too many sessions, no matter how small, can cause leaks.
If your site receives a lot of anonymous traffic, you end up paying for each visit long
after the visitor has left.

Fortunately, there’s an elegant solution using events. Start by making the default ses-
sion timeout very short. This value is configured (in minutes) in the web.xml descriptor:

<session-config>
 <session-timeout>10</session-timeout>
</session-config>

Then, grant authenticated users a more comfortable timeout period in an action or
method that observes the postlogin event. To change the timeout, you explicitly
assign a new value (in seconds) to the active HTTP session object, shown here in an
event action:

<factory name="currentSession" scope="stateless"
 value="#{facesContext.externalContext.request.session}"/>
<event type="org.jboss.seam.security.loginSuccessful">
 <action execute="#{currentSession.setMaxInactiveInterval(3600)}"/>
</event>

Always restrict anonymous users from consuming system resources in excess. After
all, they may not even be valid guests.

452 CHAPTER 11 Securing Seam applications
calling you by your name, and start brewing your drink of choice. You can do the same
for the users of your application by using a feature known as Remember Me.

 Remember Me is the check box that often accompanies the username and pass-
word fields on login forms. Although the developer’s intention for putting it there is
to help the user, it often causes confusion. I’ll admit that it has confused me at times.
The source of this confusion is the fact that applications interpret this check box in
two very different ways:

■ Username only —Populate the username field with the value from the previous
visit.

■ Auto-login —Automatically authenticate the user with the credentials last used.

Both implementations work by storing a persistent cookie in the user’s browser. (A per-
sistent cookie is a cookie that isn’t removed when the browser closes.) The cookie is
assigned a value during the postauthentication routine, and that value is read in the
next time the user is sent to the login page. In the username only scenario, the username
is stored in the cookie and is used to populate the username field whenever the login
page is displayed. In the auto-login scenario, an authentication token is stored in the
cookie, which is used to log in the user quietly, thus bypassing the login page altogether.

 Seam 2.0 provides the username only implementation out of the box. You enable it
by setting the rememberMe property on the identity component to true, as shown
here:

<security:identity
 authenticate-method="#{authenticationManager.authenticate}"
 remember-me="true"/>

By default, the Remember Me cookie is set to expire after one year of inactivity. You can
assign an override value, in seconds, on the built-in facesSecurityEvents component:

<security:faces-security-events cookie-max-age="604800"/>

Seam 2.1 provides both Remember Me implementations and also makes it easy to
implement your own solution. The “Remember Me” switch was moved to the remem-
berMe component. This component has a property named mode that controls which
implementation is used. The possible values are usernameOnly and autoLogin, with
usernameOnly being the default. Here’s the same configuration as shown earlier for
Seam 2.1:

<security:rememberMe enabled="true" cookie-max-age="604800"/>

To implement your own solution, you observe the postauthentication event and the
org.jboss.seam.security.quietLogin event. The latter event is raised just before
the user is sent to the login page. If the security principal is established by a method
observing this event, the user won’t be taken to the login page (and hence won’t
be disrupted).

 Once the cookie has been created, regardless of implementation, the last username
that the user entered is always accessible from the username property on the identity

453Securing pages
component (and the credentials component in Seam 2.1). Since the username field
on the login form is bound to this property (e.g., #{identity.username}), this
explains how this field gets autopopulated. You may question how this helps the user,
since most browsers offer to fill in the credentials anyway. To see the benefit, you must
think outside the login page, so to speak. Knowing the last username entered lets you
pull nonsecure information out of the database, such as the user’s preferences. If the
user tries to perform a secure action, you can make them log in at that time.

 Regardless of which implementation you use, my advice is to choose a label that
fits. If you’re using username only, make the label “Remember my username” and if
you’re using auto-login, make the label “Don’t make me log in again.” That should
clear up the confusion.

 There’s another dimension of security to consider. In addition to protecting pages
from being accessed by nonauthenticated users, you may want to secure the commu-
nication channel to protect a request from network sniffers. In production applica-
tions, you almost always want to serve the login page securely, and perhaps other
pages as well. Seam can ensure the proper switch is made on a page-by-page basis or
across the whole application.

11.2.3 Serving pages securely

When a high-ranking official makes a top-secret call to the Pentagon, it’s not done
over a regular telephone line. Instead, the official makes a request to get a “secure
line.” The equivalent in web applications is an HTTPS request. The HTTPS protocol
encrypts the traffic sent to and from the server using the Secure Sockets Layer (SSL).

The danger of using auto-login
Although convenient for the user, auto-login using a persistence cookie is dangerous.
Any cross-site scripting (XSS) vulnerability in the application can be exploited by an
attacker to send the user’s authentication token outside of the application. The
attacker can then use this token to authenticate as the user. A bigger risk with auto-
login is cross-site request forgery (XSRF). In this case, the attacker knows that the
user is always logged in and can “remote control” the user’s session by getting the
user to request a URL that performs an action on the site. In neither case is the appli-
cation aware of the trickery.

Browser vendors recognized the danger of application-initiated logins and the motiva-
tion for using them, so they introduced a feature known as “Remember Passwords.”
In this case, the browser takes care of remembering the username and password cre-
dentials for a given website and fills out the login form for the user automatically. This
approach is almost as convenient as auto-login but it’s inherently much safer
because the browser’s keychain is not accessible to XSS or XSRF attacks, nor can it
be read by local users.

In general, auto-login is a bad practice and you should avoid the temptation of using
it. The username only Remember Me implementation doesn’t pose this risk.

454 CHAPTER 11 Securing Seam applications
 In development it’s easy to forget about SSL security. Developers tend to stick with
the HTTP protocol when testing locally since SSL is typically only configured in the
production environment (hopefully this section encourages you to make the effort).
However, just as the high-ranking official doesn’t want to risk leaking information over
a nonsecure telephone line, you don’t want the users of your application to expose
their sensitive data over an insecure web transmission. Failure to capture users’ cre-
dentials over the HTTPS protocol makes them vulnerable to sniffing and jeopardizes
the security of your application.
GETTING A SECURE LINE

In some infrastructures, the entire application is served over HTTPS and the protocol
is handled by the web server. If that’s the case, you can safely skip over this section.
However, if your application uses a mixed environment, and it’s up to the application
to decide when to switch between secure and nonsecure requests, you need to pay
attention here.

 The URL prefix, which determines whether the request is secure (https) or nonse-
cure (http), is known as the scheme. The scheme is configured at the page level by
specifying the scheme attribute on a <page> node in the page descriptor. The accept-
able values are http and https. You can configure Seam to serve the login page over
HTTPS as follows:

<page view-id="/login.xhtml" scheme="https"/>

Now, when authentication is necessary, Seam routes the user to the secure URL for
the login page. If the user requests the login page directly using the HTTP protocol,
Seam issues a redirect to the HTTPS equivalent URL. You can configure additional
pages this way. Note that Seam’s UI command components and the page descriptor’s
redirect rule are also aware of the scheme setting and will build the URL for the tar-
get view ID accordingly.
FINDING THE RIGHT PORT

If a scheme isn’t specified for a view ID, Seam sticks with the scheme from the previous
request. Therefore, if you mark the login page to be served securely, and no other
pages have a scheme set, the user becomes permanently stuck in HTTPS after a trip to
the login page. If your application doesn’t require SSL across the board, it’s better for
performance to revert back to HTTP to serve low-risk pages. Since Seam issues a redi-
rect to the scheme defined for a page if the wrong scheme is requested, this setting
can be used to switch back to a nonsecure line. Use the following configuration to
have all pages without a scheme defined served over HTTP:

<page view-id="*" scheme="http"/>

You may wonder how Seam knows how to modify the URL. In the default configura-
tion, it’s quite simple. Going from nonsecure to secure, Seam simply changes the
beginning of the URL from http to https, and vice versa. That works as long as the
server uses the standard scheme-to-port mapping (port 80 for HTTP and port 443 for
HTTPS). If you’re using different ports, then you need to let Seam know what the port

455Role-based authorization
numbers are. First, add the component namespace http://jboss.com/products/
seam/navigation, prefixed as navigation, to the component descriptor. Next, con-
figure the built-in component named pages to set the ports:

<navigation:pages http-port="8080" https-port="8443"/>

As one final measure, if the data in your application is particularly sensitive, you may
want to consider invalidating the HTTP session when the scheme changes. This fea-
ture is controlled by the built-in component named session in the web namespace
setup earlier. You configure this component to invalidate the session when the scheme
is changed as follows:

<web:session invalidate-on-scheme-change="true"/>

Keep in mind that if you destroy the session on a scheme change, you also terminate
any of the user’s conversations or session-scoped data. This setting is designed to be
used when the security requirements are stringent and loss of state is acceptable.

 You’ve seen how to implement authentication, how to keep nonauthenticated
users from accessing protected pages by requiring them to log in, and how to send
data over a secure channel. But there’s plenty more to learn about securing your
application. Next up, you’ll learn to enforce restrictions based on roles from the
user’s identity to determine where the user can go in the application and what actions
the user can perform. Restricting access according to role membership is known as
role-based authorization.

11.3 Role-based authorization
Authentication and authorization are easily confused with each other. Authentication
is about establishing the user’s identity. Authorization, the second A, is about check-
ing to see whether the user is permitted to access a restricted resource or perform a
restricted action. The restriction is based on a fact. In the previous section, you used
binary authorization, which separates the members from the guests. In that case, the
fact reads “the user is authenticated.” If that fact can be verified, the user is permitted
access. However, once the user is authenticated, you need more facts to check (other-
wise, everyone would be an administrator).

 If you recall, one of the user’s principals is a collection of roles. So you can create
facts that separate users that have a role from those that don’t, known as role-based
authorization. In this case, the fact reads “the user has role X.” Once again, if the fact
can be verified, the user is permitted access. For instance, you can require that a user
be a member of the admin role in order to enter the administration section of the
application. In section 11.4, you’ll learn about rule-based authorization, which con-
sists of fine-grained, contextual facts of arbitrary complexity. Rule-based authorization
can be used in cases where roles alone are too broad.

 In this section, you’ll learn how to express a restriction and add it to a page, com-
ponent, or method. Seam takes a declarative approach to security by using annota-
tions, and it relies heavily on the EL, a constant theme throughout this book and

456 CHAPTER 11 Securing Seam applications
throughout the framework. The focus of this section is on role-based authorization,
though the infrastructure presented here also applies to rule-based authorization.

11.3.1 Expressing restrictions

It should come as no surprise to you that the universal way of checking whether a user
has been granted a role in Seam is to use an EL value expression. What you may find puz-
zling, though, is how to perform such a check using EL notation. That’s because to check
if the user has a role, you have to pass in the role name as an argument. In standard EL
notation, a value expression can only access JavaBean properties of a context variable.
But you learned in chapter 4 that Seam incorporates the JBoss EL, which allows you to
invoke methods with parameters. Brilliant! So you can seek out the component in Seam
that performs security checks and invoke it using a parameterized value expression. Ah,
but Seam has yet another solution based on EL functions. Let’s start there first.
SEAM’S EL SECURITY FUNCTIONS

The Unified EL, introduced into Java EE
through the JSP 2.1 specification and the
foundation of Seam’s EL support, provides a
function mapper capable of linking an
EL function name to a static method on a Java
class. Seam registers two security-related EL
functions: s:hasRole and s:hasPermission.
The s:hasRole function is used to perform
role-based checks, and the s:hasPermission
function performs a rule-based check using
the Drools rule engine, as shown in fig-
ure 11.3. The prefix s is a hardcoded
namespace that prevents naming conflicts
with other EL functions. The syntax of EL
functions resembles that of JSP functions, but
there’s no dependency on JSP. You don’t even
have to do anything to enable them—Seam
takes care of that for you. In fact, these functions can be used anywhere in Seam that EL
is accepted. However, they merely delegate to equivalently named methods on the iden-
tity component, so you may want to consider just using the parameterized EL to invoke
this component directly to remain consistent with the rest of your codebase.

 You’ll learn how to use rule-based security in the next section. For now, we focus on
the role-based check, the left-hand path in figure 11.3. The mechanics of how these two
functions are treated from the security API is consistent.

NOTE In Seam 2.0, if you attempt to perform an authorization check using
s:hasPermission and the Drools library is not available on the class-
path, the check will return false. Even with Drools on the classpath, a
user won’t be granted permission if the corresponding rule is missing.
Seam 2.1 relaxes the coupling with Drools by making the permission
resolver pluggable.

@Restrict
or

<restrict>

#{s:hasPermission()}

Identity Component

#{s:hasRole()}

Figure 11.3 Seam supports two authorization
models. Role-based authorization compares role
names to the user’s role principals. Rule-based
authorization delegates the decision to Drools.

457Role-based authorization
The function s:hasRole maps to the static method defined here. This method uses
the identity component to verify whether the authenticated user is a member of the
given role:

public static boolean hasRole(String name) {
 return Identity.instance().hasRole(name);
}

The function s:hasPermission has a similar mapping. Given that the work is dele-
gated to the identity component, you could just invoke its hasRole() method
directly:

#{identity.hasRole('admin')}

But to save a couple of keystrokes, you can use the s:hasRole function instead:

#{s:hasRole('admin')}

Internally, both expressions invoke the hasRole() method on the identity compo-
nent, which returns a boolean indicating whether the supplied role is present in the
user’s group identity. You can use either form, but again, the first choice has the bene-
fit of being consistent with the rest of your codebase.

NOTE The delimiter in s:hasRole is a colon (:) not a dot (.), signaling a func-
tion call.

The s:hasRole function can be used multiple times in the same expression or com-
bined with other EL logic. This expression checks two roles to verify the administrator
is a golfer:

#{s:hasRole('admin') and s:hasRole('golfer')}

Unlike other security checks in Seam, the s:hasRole function doesn’t throw an excep-
tion, raise an event, or attempt to redirect the user when the verification fails. Thus,
it’s perfect for rendering UI elements or controlling navigation according to what
roles the user is granted.
ROLE-BASED DECISIONS

One way to use the s:hasRole function is to tie it to the rendered attribute of a UI
component as a way to hide page elements that unauthorized users should not see:

<s:link view="/admin/GolferList.xhtml" value="Administer Golfers"
 rendered="#{s:hasRole('admin')}"/>

It can also be used to redact sensitive data, using it as the condition in a ternary opera-
tion:

<h:outputText value="#{s:hasRole('admin') ? golfer.emailAddress : 'XXX'}"/>

You can also use it to route the user according to role, a form of contextual navigation:

<navigation from-action="home">
 <rule if="#{s:hasRole('admin')}">
 <redirect view-id="/admin/home.xhtml"/>
 </rule>

458 CHAPTER 11 Securing Seam applications
 <rule if="#{not s:hasRole('admin')}">
 <redirect view-id="/home.xhtml"/>
 </rule>
</navigation>

Optionally, you can move this navigation logic to the action method, injecting the
identity component and invoking it directly:

@In Identity identity;

public String action() {
 if (identity.hasRole('admin')) return "/admin/home.xhtml";
 else return "/home.xhtml";
}

That should stir up your thinking about how to use the security-related functions and
their counterparts on the identity component. But so far, we’ve only determined
whether or not the user has a role. To get the actual authorization part, you need to place
this check somewhere that Seam can use it to enforce the restriction and take appro-
priate action when the criteria isn’t met. For that, Seam provides declarative restrictions.

11.3.2 Declaring role-based restrictions

Restrict declarations are like having security guards at various places in your application.
To pass by, the user must be authenticated and must satisfy the restriction. If the user
is denied access, the user is either sent to the login page or an exception is thrown.

 Seam provides two restriction labels: one for securing JSF views and one for secur-
ing components. They are both capable of performing a role-based authorization
check as well as a rule-based one. While this section focuses on role-based security,
keep in mind that these labels are designed for any type of restriction.
SECURING JSF VIEWS
Hiding a link that leads to a restricted page keeps the user from wandering down the
wrong path, but we need to do more than hide links to secure pages. You learned earlier
that you can require a user to log in before accessing a page. To get page-level security
for authenticated users, you add the <restrict> element to a <page> node in the page
descriptor. Seam enforces the authorization criteria in the <restrict> element prior to
restoring (JSF postback) and prior to rendering (both an initial request and postback)
the view ID(s) defined in the <page> node. If a restriction fails, both an event and an
exception are raised. Table 11.3 lists the event and exceptions that are used, depending
on whether or not the user is authenticated at the time the restriction fails.

Table 11.3 The event and exception that Seam raises when an authorization restriction fails

Authenticated? Event raised
Exception raised

org.jboss.seam.security.*

No org.jboss.seam.security.notLoggedIn NotLoggedInException

Yes org.jboss.seam.security.notAuthorized AuthorizationException

459Role-based authorization
The AuthorizationException can be handled using a similar configuration as earlier
to direct the user to an error page. The following exception configuration catches
authorization errors and directs the user to a security error page:

<exception class="org.jboss.seam.security.AuthorizationException">
 <redirect view-id="/securityError.xhtml">
 <message
 severity="warn">You've been denied access to the resource.</message>
 </redirect>
</exception>

Let’s continue with the example of securing the administration section of the Open 18
application to demonstrate use of the <restrict> tag. To keep nonadministrators away
from pages in the /admin/ folder, you declare a <restrict> tag as follows:

<page view-id="/admin/*">
 <restrict>#{s:hasRole('admin')}</restrict>
</page>

Notice that the body of the <restrict> tag contains an EL expression. That EL expres-
sion must return a boolean value, but otherwise it can be as complex as you need it to
be, as explained in the previous section. If the body of the <restrict> tag is empty,
Seam performs a rule-based permission check following a convention covered in sec-
tion 11.4.4. The rule-based permission check has the benefit of being able to distin-
guish between the restore phase and the render phase. A rule is capable of checking
for a role, so you can use a rule as a way to get both flavors of security. Either way, to
have Seam apply authorization at the page level, whether it be role- or rule-based, you
have to use the <restrict> tag.

 Securing pages is only half the battle. If, by some chance, the user finds his or her
way through the page-level restrictions or accesses the component through some other
channel (i.e., web service), you want to be sure that your classes and methods are also
locked down. Seam allows for declarative restrictions on all Seam components.
SECURING COMPONENTS

Components are secured by adding the @Restrict annotation at the class or method
level. The restriction is expressed using an EL string in the value of the annotation,
which can accept the s:hasRole and s:hasPermission functions, or just check that the
user is authenticated using #{identity.loggedIn}. Once again, if the value is omitted,
Seam performs a rule-based check following the convention covered in section 11.4.4.
If the check fails, the same event and exception are thrown as with the <restrict> tag.

 Let’s assume that there is an action method that is called in the administration
area that grants pro status to a golfer. The @Restrict annotation can enforce that
only users with the admin role can invoke this method:

@Restrict("#{s:hasRole('admin')}")
public void grantProStatus() { ... }

Having to specify this restriction for every method of a class can be tedious, so you can
opt to blanket the component by specifying the restriction at the class level:

460 CHAPTER 11 Securing Seam applications
@Name("golferAdminAction")
@Restrict("#{s:hasRole('admin')}")
public class GolferAdminAction {
 public void grantProStatus() { ... }
 public void anotherAdminAction() { ... }
}

Any method that doesn’t have a @Restrict annotation will inherit the requirement
from the class-level annotation. You can override the class-level restriction by applying
the @Restrict annotation to an individual method. One way to restore anonymous
access is to use an EL expression that invariably returns true:

@Restrict("#{true}")
public void safeToExecute() { ... }

Table 11.4 gives an overview of the @Restrict annotation.

In addition to being used on Seam components, the @Restrict annotation can be
used on entity classes and enforced prior to persistence events, which is covered
later.
ASSERTING AN AUTHORIZATION

When Seam enforces a restriction, it does more than just give a thumbs up or thumbs
down. As I mentioned, Seam takes action if the check fails. The declarative restrictions
we just covered delegate to the checkRestriction() method on the identity compo-
nent. For example:

Identity.instance().checkRestriction("#{s:hasRole('admin')}");

This is one of several methods on the identity component that assert a condition,
rather than just check for it, where assert means to take action if the check fails. The
other two methods that assert are checkRole() and checkPermission(), which com-
plement the hasRole() and hasPermission() functions, respectively. You can assert
that the user has a role in Java as follows:

Identity.instance().checkRole("admin");

Table 11.4 The @Restrict annotation

Name: Restrict
Purpose: Used to define a security restriction that is enforced before a method or all methods on a

component can be invoked
Target: TYPE (class), METHOD

Attribute Type Function

value String (EL) An EL value expression that is evaluated to determine whether the user
has permission to execute the method. The EL functions s:hasRole
and s:hasPermission are typically used to build the restriction. If the
expression evaluates to false, Seam directs an anonymous user to the
login page or throws an authorization exception if the user is authenti-
cated. Default: an automatic rule-based permission check.

461Role-based authorization
Whether you decide to check or assert depends on whether you’re prepared to turn
over control to Seam if the condition fails. For instance, you might want a chance to
record the incident if the user isn’t authorized. In that case, you just want to check,
not assert:

if (!Identity.instance().hasRole("admin")) {
 AuthorizationViolation violation =
 new AuthorizationViolation(Golfer.class, currentGolfer.getId());
 entityManager.persist(violation);
 throw new AuthorizationException(
 "You must have the admin role to perform this action. " +
 "This incident has been reported.");
}

Even if you aren’t in control of the authorization, you can record a failed restriction in
a method that observes the org.jboss.seam.security.notAuthorized event. The
downside is that you lose the context in which it was raised.
KING FOR A THREAD

After defining a restriction on a method, you may have a scenario where that method
needs to be used even though the user doesn’t have the appropriate authorities. The
goal here is not to restrict the user, per se, but to secure a component so that it can only
be invoked by another component under a known set of circumstances (i.e., a use case).

 One way to solve this problem is to use contextual security rules, which are cov-
ered in the next section. But when role-based security is all you have, you can exe-
cute a method using elevated privileges. Seam supports this feature through the
RunAsOperation class. For those of you who know Unix, this is the equivalent of the
sudo command. You instantiate the class and override the execute() method, which
is where you put the privileged code that you want to run, then pass the instance to
Identity.runAs() to be executed. You can set a new Subject, Principal, or set of
roles to set the identity of the “current” user. If you don’t specify a subject or roles,
then the code executes as if the user isn’t authenticated. In Seam 2.1, you can set the
code to run as a system operation, which bypasses all restrictions. Here’s an example
that grants the admin role for the operation:

new RunAsOperation() {
 public String[] getRoles() {
 return new String[] { "admin" };
 }
 public void execute() {
 facilityAction.setOwner(golfer);
 }
}

As this section has demonstrated, role-based authorization is straightforward to imple-
ment in Seam. However, it’s also very coarse. That’s great for securing entire sections
of the site, such as the administration section, but it becomes difficult to meet all the
security requirements of a multiuser application. These requirements demand more
sophisticated authorizations based on contextual rules.

462 CHAPTER 11 Securing Seam applications
11.4 Rule-based authorization using Drools
This section covers authorization decisions made by the right-hand path in figure 11.3.
Following this path, a permission is fed into a rule to decide whether to grant access. A
permission consists of a target and the action to be performed on that target. In that
sense, permissions are like access control lists (ACLs). Unlike with role-based authori-
zation, Seam doesn’t just inspect the user’s identity to decide whether to allow access.
Instead, logic of arbitrary complexity “crunches the context” and out comes the verdict.
In this section, you’ll learn how to define a permission and how to implement the logic
to support it using Drools rules. Let’s first look at how rule-based authorization differs
from role-based authorization.

11.4.1 Rules vs. roles

Averting security is a common theme in action movies. Getting past the security
guards is never much of a problem for the assailants. A mere bump on the head is usu-
ally enough to thwart that obstruction. What hangs up the intruders is a dense net-
work of lasers crisscrossing the room that hosts the artifact they’re after. Maneuvering
through this web of barricades would require breaking the laws of physics.

 Role-based authorization can be equated to the defense provided by the feeble
security guards. It’s predictable and naïve. It performs its rounds, giving attention to
known weak spots, but it’s completely unaware of the threat that looms. Although this
line of defense has its uses, it can’t measure up to complex security requirements.
Rule-based authorization, on the other hand, provides much tighter security. It knows
exactly what it’s protecting and can activate itself under a certain set of conditions. It’s
also known as contextual security.

 Consider the security requirement that a record can only be modified by the user
that created it. Role-based authorization isn’t sufficient in this case since the best the
restriction can do is ensure that the current user has permissions to modify records
(e.g., the edit role). If the system holds records from different customers, and the role-
based authorization granted the user access, that user might be allowed to modify a
record owned by a different customer. Yikes! The role restriction can’t make a decision
based on the relationship between the user and the record. It’s blind to the context.

 Naturally, the first thing that comes to mind is to craft custom logic that verifies the
owner of the record is the current user before granting access. Although you may not
realize it, by doing so, you are implementing rule-based authorization (it’s just not
pretty). The problem with this custom approach is that the restrictions are no longer
declarative. They’re hardcoded into the business logic. You want to be able to assign
rule-based restrictions in the same way as you specify the role requirements. That’s
exactly what Seam’s rule-based authorization allows you to do.

11.4.2 Setting up Drools

In Seam, rule-based authorization checks are handled by Drools. Drools is a rule engine
that supports declarative programming. You define a set of rules that must be matched
in order for the user to have access to a resource. These rules allow for separation of
restriction logic and business logic. More importantly, the restrictions can be modified

463Rule-based authorization using Drools
without affecting the business logic. They can even be swapped out dynamically at run-
time if set up appropriately.

NOTE The name Drools is derived from the term “dynamic rules.” The rules are
dynamic because they’re compiled and interpreted at runtime.

Seam’s rule-based authorization is considered the advanced security mode in its secu-
rity model. The reason for this label is that it requires a few extra libraries and config-
uration. It also requires knowledge of how to author rules using the Drools rule
language. The fact that basic security mode can be implemented without any add-ons
or special knowledge is an important aspect of Seam’s security model. Regardless, the
power of rule-based authorization is worth the extra effort.

The good news is that if you used seam-gen to prepare your project, there’s no additional
work you must do to set up rule-based security using Drools. You’re all set! If you’re
going at it alone, you first need to get the required libraries, drools-core.jar, drools-
compiler.jar, core.jar (Eclipse JDT), antlr-runtime.jar, janino.jar, and mvel14.jar. The
second step is to activate the set of security rules. Don’t worry about the actual rules right
now. We get to them once the configuration is in place.

 Security rules are registered using the built-in RulesBase component, named
rulesBase, specified as one or more rules files. Typically, the rules are defined in a file
named security.drl at the root of the classpath. First, add the component namespace
for Drools to the component descriptor, http://jboss.com/products/seam/drools,
prefixed as drools. Then, declare the securityRules component:

<drools:rules-base name="securityRules" rules-file="/security.drl"/>

The identity component assumes that the RuleBase for security is named security-
Rules, so its best to use this name.

Permission management in Seam
The design of Seam’s authorization mechanism was improved considerably in Seam
2.1. While the rule-based authorization covered in this section remains, it’s not the
only way to implement permissions. Permission checks are now delegated to a chain
of resolvers, one of which is a new persistent permission resolver that reads permis-
sions from a database and another to support rule-based permissions. You can also
implement and register your own resolver.

Storing permissions in the database is convenient because they can easily be
granted and revoked from the user interface. To help manage these permissions,
Seam provides a permission manager, complementing the identity manager intro-
duced earlier. A permission is mapped to the database using annotations on entity
classes, allowing Seam to search them. The focus of this chapter is on rules, but feel
free to explore persistent permissions as an alternative to writing a rule.

Both the permission manager and identity manager require that you have the permis-
sions to invoke the methods in either API.

464 CHAPTER 11 Securing Seam applications
 You’re now ready to start adding rules! There’s only one problem, though. How do
you write rules? It’s time for your crash course in Drools. I promise that it’s a lot sim-
pler than it first appears, and you’ll be glad you invested the time to learn it because
it’s so powerful.

11.4.3 Creating rules with Drools

I don’t know about you, but I like crash courses. Who wants to go through a whole
semester when you can learn it all in one sitting? The good news is that rules are such
a simple concept that you can probably learn how to write them in the time it takes to
drink your coffee. Which cup are you on now?
THE MOTIVATION FOR CREATING RULES

Let’s start with the end in mind. That way, we’ll know when we’ve covered just enough
to get by. I alluded earlier to the fact that the complement to the s:hasRole EL func-
tion is s:hasPermission and that it’s capable of performing rule-based permission
checks. You can use s:hasPermission in lieu of s:hasRole in both the <restrict>
page descriptor tag and the @Restrict annotation. However, it’s more than just
changing the function name. The s:hasPermission function consults the security
rules to determine whether the executing thread should be granted permission to
perform the action on the given target.

 The s:hasPermission function takes three arguments. The first is a resource
name, the second is an action, and the third is a context variable that is inserted into
the working memory. (If you invoke the hasPermission() method on identity
directly, you can pass any number of additional arguments, which get added to the
working memory.) These values define the permission that needs to be verified. The
permission is sent off to the rule engine, which looks for a matching rule that will
grant the user access. If a match isn’t found, Seam presumes that the current user
doesn’t have access and takes the appropriate action.

 Let’s consider an example scenario, which can be used to understand the pur-
pose of a rule. Private golf facility owners are particular about the information that’s
made available about their facility. Therefore, they ask that only administrators
be able to modify private facilities (e.g., country clubs). The first thing we want to
do is place this restriction on the update method of FacilityHome using the
@Restrict annotation:

@Restrict(
 "#{s:hasPermission('facilityHome', 'update', facilityHome.instance}")
public String update() {
 return super.update();
}

The restriction is examined in figure 11.4. This permission check attempts to deter-
mine whether an instance of Facility can be modified by the current user.

 s:hasPermission accepts the conditions. The decision is handled by the rule
engine. That brings us to rule engines and how they process conditions to arrive at a
decision.

465Rule-based authorization using Drools
DROOLS 101
Drools is an inference engine. It matches conditions against facts. When a matching
condition is located, the rule is activated and action is taken. This type of rule process-
ing is known as a forward-chaining. Facts are checked to arrive at a conclusion. You
can think of it as a glorified if-then statement. The crucial distinction is that rules
aren’t executed sequentially. The order of the rule processing is optimized using the
Rete algorithm.1 That’s part of what makes evaluating them so efficient. As a general
rule, it’s a good idea not to count on the rules firing in any particular order and try
and author the rules without worrying about a particular “flow.” (But don’t be afraid
to have lots of rules because they are cheap.)

 Facts are the objects present in the working memory. You can think of the working
memory as similar to the persistence context. It holds data in a runtime cache. You
can query (match conditions) and perform operations (execute actions) on the
objects that it maintains. The working memory is also referred to as a session.

 As with EJB components, Drools supports both stateful and stateless sessions. A
stateful session is maintained over multiple invocations of the rules, whereas a stateless
session is discarded after the rules are done firing. An invocation ends when all of the
permutations of each rule have been tested.

 Seam uses a stateful session and populates it with the security principals, which are
the primary principal and the set of roles associated with the current user. Since the
primary principal and the principals that represent the roles are both instances of the
same class, Principal, Seam inserts the roles into the working memory as Role
objects to distinguish them. Seam also inserts objects into the working memory spe-
cific to the permission check, which it later cleans up when the check is complete.

 So far, you know that there’s a working memory that stores objects, that rules are
fired in some optimized order to match facts in the working memory, and that the
purpose of the rules is to execute actions as the result of drawing a conclusion. The
next step is to understand the anatomy of a rule.
CREATING A PERMISSION CHECK RULE

A rule consists of two parts: a premise and a conclusion. The premise is known as the
left-hand side (LHS) and the conclusion is known as the right-hand side (RHS). To
support these two sides, Drools uses a custom syntax for defining rules, known as the
Drools Rule Language (DRL). Its syntax is reminiscent of Java. In fact, the code in the
conclusion is Java. The premise uses a shorthand that’s focused on matching, though
it may look confusing the first time you see it.

1 The Rete algorithm was designed by Dr. Charles L. Forgy. See http://en.wikipedia.org/wiki/Rete_algorithm.

#{s:hasPermission('facilityHome', 'update', facilityHome.instance)}

Component Name

ActionRule-Based Authorization

Context Variable

Figure 11.4 The set of conditions
that are passed into a rule-based
authorization check

http://en.wikipedia.org/wiki/Rete_algorithm

466 CHAPTER 11 Securing Seam applications
 Each rule must be given a unique name (for a given session). The name you
choose is arbitrary and isn’t referenced anywhere in the code. Let’s begin creating a
rule by assigning it a name:

rule ModifyPrivateFacility
...

Next, we need to define a premise. Each line in the when statement consists of a condition.
All of the conditions must evaluate to true for the rule to fire. For this rule, we want to
ensure that if the golf facility is private, the current user has the admin role. However,
we don’t just want this rule to fire at any old time. We only want it to fire when the restric-
tion #{s:hasPermission('facilityHome', 'update', facilityHome.instance)} is
consulted. How do we know which restriction check kicked off the rules? Seam creates
an instance of the PermissionCheck class and stores it in the working memory prior to
executing the rules. The PermissionCheck holds the first two arguments to s:has-
Permission the target and the action. It also maintains a flag that determines whether
permission should be granted, which starts off as false. The purpose of the rules is to
determine whether permission should be granted. The final argument to s:has-
Permission, the context variable, is inserted directly into the working memory. Con-
tinuing to build out our rule incrementally, the condition clause can now be added:

rule ModifyPrivateFacility
when
 $perm: PermissionCheck(name == "facilityHome", action in ("update",

 ➥"remove"), granted == false)
 Role(name == "admin")
 Facility(type == "PRIVATE")
...

Before you reach to scratch your head, I’ll help you make sense of this syntax. Recall
that a rule is intended to match facts in the working memory. The class names in the
previous snippet are being used to locate objects of those types in the working mem-
ory. What looks like a constructor is actually shorthand for running the instanceof
operator against all objects in the session. The arguments used between the brackets is
another shorthand for checking property values against expected values. The name
on the left side of the operator is the name of the bean property. The value of the
property is being compared against the test value on the right-hand side of the opera-
tor. Unlike with Java, two objects are equal when compared with the == operator as
long as their equals() and hashCode() methods return the same value. The Java syn-
tax equivalent of Role(name == "admin") is as follows:

objectInWorkingMemory instanceof Role &&
 "admin".equals(((Role) objectInWorkingMemory).getName())

This check is performed against every object in the working memory. I’m sure you’ll
agree that the rule DRL syntax is simpler. You may be wondering what the prefix
$perm: at the start of the first condition is all about. Any time you see a name followed
by a colon, it’s a declaration. The purpose of a declaration is to create an alias. The

467Rule-based authorization using Drools
name of the alias can be any valid Java variable name. The dollar sign ($) is not spe-
cific to Drools—it’s a legal character. Beginning alias names with $ is a convention
used to help distinguish between aliases and bean property names.

 An alias establishes a back reference. It’s created either for use in subsequent con-
ditions or in the action of the rule. In the case of the PermissionCheck, an alias must
be created so that the grant() method can be called on it if the rule’s condition is
true. With that said, let’s conclude the rule:

...
then
 $perm.grant();
end

You can put any Java code you want in the conclusion (it gets compiled at runtime).
Here, it’s limited to granting permission. We aren’t done just yet. Any time you modify
an object in the working memory, rule execution stops and all the rules are fired
again. To prevent the rule from being evaluated more than once, you can add the no-
loop operator. The no-loop operator, highlighted in bold, is placed in the rule’s
options section:

rule ModifyPrivateFacility
 no-loop
when
...

Since all users are denied access until granted permission by a rule, only users with the
admin role can modify private facilities. However, at this point, nobody is allowed to
modify a nonprivate facility. Time to add some context!
CONTEXTUAL RULES

While the private facility owners have asked us to only allow administrators to modify
private facilities, we don’t want to lock facility owners out from their own facilities, and
we want to grant access to any member to modify nonprivate facilities. Thus, in one
case, the rule must be aware of the absence of an object in the working memory, and
in the other, it must be able to correlate objects in the working memory to the authen-
ticated user. The rules for these two cases are shown in listing 11.3:

rule ModifyNonPrivateFacility
 no-loop
when
 $perm: PermissionCheck(name == "facilityHome", action in ("update",

 ➥"remove"), granted == false)
 Role(name == "member")
 not Facility(type == "PRIVATE")
then
 $perm.grant();
end

rule OperateOnOwnFacility

Listing 11.3 Rules that allow a user to modify a facility under certain conditions

B
C

468 CHAPTER 11 Securing Seam applications
 no-loop
when
 $perm: PermissionCheck(name == "facilityHome", granted == false)
 Role(name == "member")
 Principal($username: name)
 Facility($golfer: owner)
 Golfer(username == $username) from $golfer
then
 $perm.grant();
end

There are a couple of things to point out in these two new rules. The ModifyNon-
PrivateFacility rule is almost identical to the ModifyPrivateFacility rule except
that the role is downgraded to member B and the check for the private facility type
is negated C.

 The second rule is more interesting. The PermissionCheck doesn’t look at the
action property D, so this condition applies to any permission triggered from the
facilityHome component. The relationship between Principal and Facility is inter-
esting. The Principal condition merely checks for the presence of Principal in the
working memory. If present, the value of its name property is aliased to $username E.
The Facility condition verifies that a Facility instance is present in the working
memory and creates the alias $golfer that references the owner of the facility F. In the
final statement, the $username alias is compared to the username of the owner using a
nested condition G. If all of the checks pass, the current user is assumed to be the
owner of the facility H.

 Now we just need to get the rules to compile. DRL files are just like Java source files
in that they can have a package declaration and import classes.

Be sure to import any class that’s referenced by a rule definition. Other-
wise, the rules won’t compile and therefore won’t be fired (and no error
will be displayed in the UI). You can get instant validation using the
Drools plug-in for Eclipse or by writing unit tests. This step prevents secu-
rity holes caused by syntax errors.

The complete DRL file for the example in this section is shown in listing 11.4.

package org.open18.permissions;

import java.security.Principal;
import org.jboss.seam.security.PermissionCheck;
import org.jboss.seam.security.Role;
import org.open18.model.Facility;
import org.open18.model.Golfer;

rule ModifyPrivateFacility
 no-loop
when
 $perm: PermissionCheck(name == "facilityHome", action in ("update",

 ➥"remove"), granted == false)

Listing 11.4 Security rule definitions for securing access to Facility entities

D

E
F

G

H

WARNING

469Rule-based authorization using Drools
 Role(name == "admin")
 Facility(type == "PRIVATE")
then
 $perm.grant();
end

rule ModifyNonPrivateFacility
 no-loop
when
 $perm: PermissionCheck(name == "facilityHome", action in ("update",

 ➥"remove"), granted == false)
 Role(name == "member")
 not Facility(type == "PRIVATE")
then
 $perm.grant();
end

rule OperateOnOwnFacility
 no-loop
when
 $perm: PermissionCheck(name == "facilityHome", granted == false)
 Role(name == "member")
 Principal($username: name)
 Facility($golfer: owner)
 Golfer(username == $username) from $golfer
then
 $perm.grant();
end

If your rules file becomes too large, you can break it up into multiple files. You register
the additional files to the <drools:rule-base> component declaration.

 Using rule-based authorization in Seam is simple because you don’t have to con-
cern yourself with managing the RuleBase or the working memory. You just author
the rules file, plug it into the securityRules component, and the laser beams light up
the room. For more examples of security rules, check out the seamspace example in
the Seam distribution.

 With your newfound ability to write and understand rules, let’s return to the
restrict clauses and learn how to cut out some of the work.

11.4.4 Automatic context detection

One of the reasons that Seam’s rule-based security is so powerful is that, through the
use of interceptors, Seam is able to automatically detect the context at the spot of the
permission check. Earlier, you defined the restriction using an explicit call to either
s:hasRole or s:hasPermission. However, all this manual work takes away the benefit
of using declarative security. Seam allows you to use these two declarations in their no-
arguments form and creates and evaluates an implicit s:hasPermission check.

 When the <restrict> tag or @Restrict annotation is used without a value, a
default permission is created. The format of the permission is always name:action.
When used with the @Restrict annotation, the name part is the component’s name
and the action part is the name of the method. When dealing with page-based secu-

470 CHAPTER 11 Securing Seam applications
rity, the name is the view ID and the action is the page-oriented JSF life cycle
phase—either render or restore. These mappings are shown in table 11.5.

The downside of using the restrict declarations without arguments is that they don’t
allow you to put a context variable into the working memory. As you saw in the example
rules, knowing which instance of Facility is in scope is critical for deciding whether to
let the user perform the action. But don’t be discouraged. There is a way to have this
information passed on. To have that happen, you need to use entity restrictions.
SECURING ENTITIES

When you want to restrict CRUD operations, you can generalize the restriction to
securing the entity that’s being persisted. Seam leverages the entity life-cycle annota-
tions to apply rule-based security at the spot of the operation. If the @Restrict anno-
tation is added at the class level, the restriction will be enforced on each CRUD
operation. If you want to secure an individual operation, you can use it alongside one
of the entity life-cycle annotations.

 The first argument to s:hasPermission is always the context variable name of the
entity class, if it has been assigned one, or the fully qualified class name. The name of
the action corresponds to the CRUD operation being performed. The names of the
actions that Seam uses as the second argument to the s:hasPermission call are
mapped to the entity life-cycle annotations in table 11.6.

The final argument is always the current entity instance that’s the subject of the CRUD
operation. What that means is that the entity instance will be available in the working
memory when the rule is fired.

 Let’s assume that we only want to allow users to update or delete their own rounds.
The first step is to secure the update and remove operations of the Round entity class:

@Entity
@Table(name = "ROUND")

Table 11.5 The mapping defining how a rule-based restriction is interpreted

Source Applies to Name part Action part

<restrict> JSF view IDs View ID JSF life cycle phase (restore or render)

@Restrict Methods Component name Method name

Table 11.6 The mapping between the entity life-cycle event and the permission action

Entity life cycle annotation Action When applied

@PostLoad read After the entity instance is loaded from the database

@PrePersist insert Before a transient instance is persisted to the database

@PreUpdate update Before a dirty instance is flushed to the database

@PreRemove delete Before a managed instance is deleted from the database.

471Rule-based authorization using Drools
@Name("round")
public class Round implements Serializable {
 ...

 @PreUpdate @PreRemove
 @Restrict
 public void restrict() {}
}

The name of the method on which the @PreUpdate, @PreRemove, and @Restrict
annotations are applied is arbitrary. It’s a means to an end. The next step is to put a
rule in place in the security.drl file:

rule ModifyOwnRound
 no-loop
when
 $check: PermissionCheck(name == "round", action in ("update",

 ➥"delete"), granted == false)
 Role(name == "member")
 Principal($username: name)
 Round($golfer: golfer)
 Golfer(username == $username) from $golfer
then
 $check.grant();
end

That’s all there is to enforcing the restriction! One last bit of configuration remains:
the security framework must be hooked into the life cycle of the entity.
REGISTERING THE SECURITY LISTENER

Like many other cross-cutting features provided by Seam, entity-level security is
applied using a life-cycle listener. However, Seam doesn’t have the same level of con-
trol over entities that it does over the other components in its container. The entities
call the persistence manager their master. To allow Seam to tap into the life-cycle
events of JPA entities, it’s necessary to register Seam’s entity security listener with the
persistence unit using the following META-INF/orm.xml descriptor:

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 version="1.0">
 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <entity-listeners>
 <entity-listener
 class="org.jboss.seam.security.EntitySecurityListener"/>
 </entity-listeners>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
</entity-mappings>

472 CHAPTER 11 Securing Seam applications
If you’re using Hibernate natively, you don’t have to reach for your text editor. Seam
automatically registers an equivalent listener with the Hibernate SessionFactory.

 You can now add either role-based or rule-based restrictions to pages (view IDs),
component methods, and entity operations. Your application is locked down. Or is it?
What about those public-facing pages? They should get some attention as well, not so
much from humans but from malicious computers. In the final section of this chapter,
you’ll learn how to protect your public-facing pages from abuse.

11.5 Separating the computers from the humans
Most of the time when we talk about security, the focus is on keeping intruders out of
the application. But public resources can also be abused. An evildoer could write a bot
that uses a public registration form on your site to register random users, filling up
your database with bogus records and potentially leading to denial of service for genu-
ine users. How do you tell computers apart from humans to keep out the bots? That’s
the purpose of CAPTCHA.

11.5.1 An overview of CAPTCHA

CAPTCHA stands for Completely Automated Public Turing Test to Tell Computers and
Humans Apart.2 It is a challenge-response system that attempts to determine whether
the user operating on the client side is a human or a computer. There are a variety of
ways this test can be conducted, but the general idea is as follows. The application
poses a challenge, typically rendered as an image. The user is then required to solve
the challenge and send the response back to the server. Only when the response is
correct is the remaining data in the form submitted. While the challenge only
requires basic comprehension for the human to solve, even the most sophisticated
computer algorithms get stopped dead in their tracks. Thus, a user who enters a cor-
rect response is assumed to be human.

 If you have never implemented CAPTCHA before, your first reaction might be to
say, “Forget it. This seems too hard. Image generation? Eek!” On the contrary, imple-
menting CAPTCHA using Seam is so easy, it’s just wrong not to use it.

11.5.2 Adding a CAPTCHA challenge to forms

Seam implements CAPTCHA by rendering a basic arithmetic problem using a Java 2D
image. The complete interaction is managed by Seam, so you don’t have to do any-
thing other than add it to your form. The image is served using the SeamResource-
Servlet, so be sure to have that installed. You can find information on how to set it up
in chapter 3, section 3.1.3.

 Let’s return to the registration form example from chapter 4 to protect it from
being abused. All you need to do to secure your form using CAPTCHA is render the
dynamically generated CAPTCHA image at /seam/resource/captcha and provide the

2 CAPTCHA is a trademark of Carnegie Mellon University.

473Summary
user with a text field, bound to the #{captcha.response} property, in which to enter
a response. The rest is up to Seam. Here’s an example of a CAPTCHA field:

<s:decorate id="verifyCaptchaField" template="layout/edit.xhtml">
 <ui:define name="label">Security check</ui:define>
 <h:graphicImage value="/seam/resource/captcha"/>
 <h:inputText value="#{captcha.response}" required="true"/>
</s:decorate>

Seam’s built-in component named captcha handles the logistics of the challenge. Val-
idation of the response is enforced by the Hibernate Validator annotation @CaptchaRe-
sponse, which is defined on this component’s response property. The
@CaptchaResponse validator uses the following message when the response is incorrect:

input characters did not match

Believe it or not, that’s all there is to it! No XML configuration files, custom components,
or custom servlets. You simply incorporate the captcha component into your JSF form.
If you want to customize the challenge, create a custom component named captcha that
extends org.jboss.seam.captcha.Captcha. Seam can still assume the responsibility of
proctoring the challenge. Consult the Seam reference documentation for details.

 CAPTCHA security helps to keep the abusers away today, but in general, the fight
against wrongdoers is a perpetual battle. But, at the time of this writing, CAPTCHA is
still holding the lines, so it’s worth adding to all of your public-facing forms—it pro-
vides the protection you need from bogus data and denial-of-service attacks.

11.6 Summary
The more accessible the security API is, the more likely you will be to use it—that’s
Seam’s stance. Security is critical to an application’s success, and implementing secu-
rity in Seam is easy. There’s no prize for putting a single restriction in place that covers
the security requirements for the entire application. You should put security in the
view, in your components, and in your entities. That way, when the front line comes
down, the next line can pick up the swords and maintain the guard.

 I used the word “easy” quite liberally in this chapter, but each time I backed it up with
proof. You started off by adding authentication to the application with little more than
a single method on a POJO. That method validates the credentials provided by the
identity component. Seam and JAAS work together to handle the low-level details of
establishing the user’s identity. You learned that the identity component can accept
roles that are transferred to the user’s identity. This gave you two forms of authoriza-
tion, binary and role-based, which brought you a long way toward locking down the
application. Where role-based authorization falls short is in enforcing contextual
restrictions. That led you to Seam’s rule-based authorization powered by Drools. I pro-
vided a crash course in Drools, then showed you how to create rules to make permission
decisions based on facts that Seam places in the working memory. Finally, you learned
that securing public-facing forms with CAPTCHA is just as important as protecting inter-
nal ones and implemented a CAPTCHA challenge in Seam in just one step.

474 CHAPTER 11 Securing Seam applications
 With security in place, it’s safe to move on to Ajax and JavaScript remoting, both of
which are exciting parts of the Web 2.0 movement and benefit from security as a pre-
requisite. In the next chapter, you’ll see the “easy” theme extend to Ajax, giving your
application a rich upgrade without the effort typically associated with this modern
approach to web interactions.

Ajax and
 JavaScript remoting
When applications are ported to the web environment, something is often lost in
translation: the user experience. Even nontechnical users understand the need to
wait for a page to load after each action, evidence of the lack of continuity that
plagues many web applications. Ajax provides a way to bring the rich, interactive
application (RIA) user experience to the web.

 In the previous chapter, you learned how the mission-critical and sometimes
daunting task of securing your application is dramatically simplified thanks to Seam.
By filling in a few blanks, you’re able to blanket your application with basic security
and then fine-tune it with contextual security rules. In this chapter, you’ll witness
another example of how Seam helps you transform your application with a handful
of keystrokes by leveraging its multifaceted Ajax support. This news is especially

This chapter covers
■ Combining Ajax and JSF
■ Validating form inputs instantly
■ Invoking components from JavaScript
■ Using Seam as a GWT service
475

476 CHAPTER 12 Ajax and JavaScript remoting
promising, since moving to Ajax has proven to be a more costly investment than many
product managers first anticipated. One reason is that cross-browser JavaScript is not
for the faint of heart, and its problems can put the brakes on your development sched-
ule. Another is that JavaScript code quickly becomes spaghetti, making it difficult to
comprehend and even harder to test.

 In this chapter, you’ll discover that Ajax-based JSF component libraries and Seam’s
JavaScript remoting API offer a refreshed approach to Ajax by putting separation
between the application and the low-level XMLHttpRequest object, significantly reduc-
ing the risk of letting Ajax through the door. The Ajax-enabled JSF component librar-
ies covered in this chapter, Ajax4jsf and ICEfaces, execute the JSF life cycle
asynchronously in response to user interactions, resulting in partial page updates that
don’t disrupt the user’s activity. Even better, this exchange is transparent to the devel-
oper, who doesn’t have to touch a line of JavaScript. Rather than wait for the user’s
next move, ICEfaces has a mechanism for pushing presentation changes to the
browser in response to changes in the application state. JavaScript remoting cracks
the door open to JavaScript slightly, while still managing to hide the interaction with
the server, by allowing server-side components to be executed through JavaScript
function calls. Seam’s remoting can also give alternate front ends like GWT access to
the Seam component model.

 Although simplicity remains the underlying theme in the final part of this book,
the key word in this chapter is transparency. The investment you have made in learn-
ing about the JSF life cycle, Seam components, and the EL throughout this book pays
off and helps you get your application rich quick. We begin by looking at how Ajax
is transparently weaved into the JSF component model and the types of interactions
this enables.

12.1 Using Ajax with JSF
JSF beat Ajax mania to the scene by nearly a year. The order of events was unfortunate
because Ajax would have fit perfectly with the design of JSF as an event-driven framework
backed by a server-centric model. Although Ajax wasn’t included in the JSF specification
(and still isn’t as of JSF 1.2), innovators recognized the potential of Ajax to close the gap
in the JSF vision and adapted it to JSF in an intelligent and efficient manner. This section
talks about the right and wrong ways of using Ajax with JSF, the two main component
libraries that brought Ajax to JSF, and Seam’s role in Ajax-based JSF requests.

12.1.1 Embracing a server-centric application model

JSF uses a server-side model to handle client-side events. The server then responds
with an updated view. Unfortunately, the standard mechanism in JSF for propagating
an event from the UI to the server is to use a regular form submit followed by a full-
page refresh. This makes for a disruptive and costly event notification, in stark con-
trast with the goal of Ajax and the rich web.

 JSF developers with Ajax-envy (myself being one of them) initially attempted to use
Ajax in their JSF applications by stepping outside the JSF component model. User

477Using Ajax with JSF
interactions would be trapped by custom JavaScript and the HTML in the rendered
page manipulated without JSF’s knowledge. To invoke the JSF life cycle from an Ajax
request, form data had to be fabricated to trick JSF into thinking the user had initiated
the event. When the response arrived, the rendered HTML would once again be
manipulated without JSF’s knowledge.

 The trouble you get into when attempting to use ad hoc Ajax in JSF is that the ren-
dered page gets out of sync with the server-side UI component model. The next
authentic JSF postback is utterly confused, often resulting in unexpected behavior.
Frustrated developers pointed the finger at JSF for being too rigid. The real problem,
though, is the developer not appreciating JSF’s server-centric application model and
the benefits it provides.

 The intent of JSF is to let you develop enterprise applications primarily in Java, with
a reasonable amount of declarative markup for connecting Java components to user
interface components (a linkage known as binding). Ajax, on the other hand, tempts
you to become involved in the low-level concerns of hand-coded Dynamic HTML
(DHTML) and JavaScript.

 Programming models aside, JSF was designed to manage the UI. When it gets left
out of the loop, an impedance mismatch develops. The proper way to use Ajax with
JSF is to put JSF in charge of the Ajax communication, thus embracing JSF’s server-
centric model. This approach extends the value proposition of JSF to cover the devel-
opment of rich Java-based applications without needing to introduce the complexity of
JavaScript to the process. Both Ajax4jsf and ICEfaces position Ajax so that it honors
the JSF model.

12.1.2 Ajax4jsf and ICEfaces open a communication channel to JSF

The main draw of Ajax is that it allows communication between the browser and the
server to proceed in the background without disrupting the user. In a JSF application,
it’s just as important to keep an open channel of communication between the ren-
dered page and the server-side UI component tree. That’s because, as soon as an Ajax
request is issued, the rendered page is at risk of becoming stale. It must be synchro-
nized with the server-side UI component tree as soon as possible to prevent its integ-
rity from being compromised.

 Although the outlook for the JSF and Ajax marriage may seem grim from this
description, Ajax4jsf and ICEfaces each provide a lightweight Ajax bridge that keeps
the lines of communication open. Even better, it’s mostly transparent to the devel-
oper. Although the first ICEfaces release (August 2005) came six months earlier than
Ajax4jsf (March 2006), I want to start by discussing Ajax4jsf because it enables you
introduce Ajax into JSF incrementally.
AJAX-ENABLING JSF WITH SUPPORT FROM AJAX4JSF

The challenge of introducing Ajax into JSF is that the standard UI components, and
plenty of third-party UI components, have no awareness of Ajax. Rather than mandat-
ing that you switch to an Ajax-based UI component set, RichFaces developer Alexan-
der Smirnov developed a way to weave Ajax into JSF transparently, a solution now

478 CHAPTER 12 Ajax and JavaScript remoting
known as Ajax4jsf. The mechanism he invented is so transparent, in fact, that it can be
used to “Ajax-enable” any JSF page without the UI components having any awareness
they’re participating in an Ajax request. This one library took JSF from being Ajax-
inept to being one of the most compelling approaches to Ajax.
While the Ajax4jsf component library contains a broad set of UI component tags, the
tag that gets the heaviest use, almost disproportionately so, is <a:support> (often writ-
ten as <a4j:support>). It’s used to bind a user-initiated JavaScript event to a server-
side action invoked via Ajax and to designate regions of the page that get rerendered
from the Ajax response, encompassing the essence of Ajax4jsf.
A PATCHWORK OF UPDATES

The Ajax4jsf process is depicted in figure 12.1. When a request is sent out by Ajax4jsf,
the JSF life cycle is invoked, just like with a standard JSF request. However, since the

Ajax4jsf or RichFaces—which is it?
RichFaces is a visual JSF component set that’s based on the Ajax4jsf concept and
APIs. Ajax4jsf was once its own project, but now it’s bundled with RichFaces. The
Ajax4jsf tags are geared specifically toward adding Ajax capabilities to non-Ajax com-
ponents, such as the standard JSF palette. RichFaces components natively support
the Ajax4jsf interaction. The rich in RichFaces credits both its support for Ajax and its
attractive look and feel.

 Browser Server

Restore
View

Process
 Validations

Update Model
 Values

Apply Request
 Values

Invoke
 Application

Render
 Response

Rendered
 Page Ajax Engine

Ajax4jsf RenderKit

Ajax4jsf Filter

AjaxViewRoot

JavaScript Event

JSF Life Cycle

RichFaces/Ajax4jsf

Page Updates

Submit Ajax Request

Send Response

Invoke life cycleEncode to XML

Filter Markup

Figure 12.1 The Ajax4jsf request
processing. Ajax4jsf filters the JSF
response and the Ajax engine that
receives the partial response stitches
those changes into the rendered page.

479Using Ajax with JSF
request occurs using Ajax, the page doesn’t change, at least not immediately. To
ensure that the rendered page doesn’t become stale, Ajax4jsf lets you declaratively
control which areas of the UI to synchronize. Prior to the rendered page being sent
back to the Ajax engine, Ajax4jsf extracts the corresponding markup and returns only
a set of “patches” (i.e., XHTML fragments) to the browser. The Ajax engine cuts out
the dead areas of the UI and stitches in the replacements. Since the state of these
areas remains consistent with the server-side UI component tree, any JSF-related
actions triggered in those areas behave as expected.

 Let’s put this process into practice on the golf course search screen. Right now, when
the user clicks the Search button to filter the results, it causes a full-page refresh. It would
be faster and less disruptive to simply replace the results table, the area of the page we
want to rerender. First, we need to assign an id to the results panel, giving it a “handle”:

<rich:panel id="searchResultsPanel">
 <f:facet name="header">Course search results</f:facet>
 <rich:dataTable var="course" value="#{courseList.resultList}" ...
</rich:panel>

Next, we nest the <a:support> tag within an input field in the search form, tying a
JavaScript event triggered by this field to an invocation of the JSF life cycle. To ensure
that the search runs as soon as possible but not before the user is done typing, we
choose to bind to the input field’s onblur event (i.e., when it loses focus). We also tell
Ajax4jsf which area of the page to rerender by declaring a component id in the
reRender attribute:

<h:input value="#{courseList.course.name}">
 <a:support event="onblur" reRender="searchResultsPanel"/>
</h:input>

When the user tabs or clicks away from the input field, an Ajax request is sent, invok-
ing the JSF life cycle just as though the user had clicked the Search button. But in this
case, the response is filtered by Ajax4jsf and only the results panel is sent back. The
page is then updated incrementally to reveal the new search results.

 The search is able to execute without an explicit action because the Query com-
ponent automatically detects when the search criteria has changed. You may have a
situation that requires an explicit action to be called in order for the search to
execute. Ajax4jsf lets you specify either an action or an action listener on the
<a:support> tag, using the action and actionListener attributes, respectively. This
turns the <a:support> tag into a UI command component, which isn’t triggered by a
click but rather a JavaScript event:

<a:support event="onblur" reRender="searchResultsPanel"
 action="#{hypotheticalSearchAction.search}"/>

If we were to continue Ajax-enabling every input field in the search form, the only
problem would be having to specify the reRender attribute each time. Fortunately,
Ajax4jsf supports a way to make certain branches of the tree support “autografting.”
By wrapping the <a:outputPanel ajaxRendered="true"> tag around a region of the

480 CHAPTER 12 Ajax and JavaScript remoting
page, it tells Ajax4jsf to automatically rerender that region whenever an Ajax request
passes through the Ajax engine. Let’s apply this to the search results panel:

<a:outputPanel ajaxRendered="true" layout="none">
 <rich:panel>
 <f:facet name="header">Course search results</f:facet>
 <rich:dataTable var="course" value="#{courseList.resultList}"...
 </rich:panel>
</a:outputPanel>

With the autografting output panel in place, the <a:support> tags no longer have to
specify the reRender attribute. If you’re doing other Ajax operations on the page, you
can localize the Ajax activity that triggers automatic rerendering by wrapping a por-
tion of the page in <a:region>. In this case, you might wrap the search form and
results panel.

 Although it may seem like a lot of work to merge the changes back into the UI, this
work is far outweighed by the benefits. It ensures the integrity of the page is main-
tained, it makes Ajax transparent to the developer, and, since the response contains
only necessary updates and not a full HTML document, JSF can behave like an efficient
event-driven framework and the user’s activity isn’t disrupted by a page refresh.

 Ajax4jsf lets you adopt Ajax without having to write JavaScript or replace your exist-
ing components, but it still requires that you do a fair amount of work to configure
the Ajax interactions. Depending on what you’re trying to accomplish, this can be
either a good or a bad thing. One of the limitations of Ajax4jsf is that the marked
regions of the page are synchronized even if the markup hasn’t changed. Regions that
aren’t specified are prone to falling out of date. What you are basically missing is intel-
ligent synchronization of the UI, a central concern in ICEfaces.
INTELLIGENT UI SYNCHRONIZATION WITH ICEFACES

ICEfaces is an Ajax extension for JavaServer Faces that regards Ajax as a framework
concern rather than a developer concern. Ajax-based JSF applications using ICEfaces
are virtually indistinguishable from non-Ajax JSF applications. The key lies with the
ICEfaces rendering process. Rather than rendering to a stream that’s sent directly to
the browser, each view is rendered into a Document Object Model (DOM) on the
server, another progression of the UI component tree. The changes to the DOM are
detected after each invocation of the JSF life cycle and only the corresponding
markup is sent to the browser. As with Ajax4jsf, an Ajax bridge resident in the browser
is responsible for merging these updates into the page, as illustrated in figure 12.2.

 There are two key benefits to the ICEfaces approach (which is known as Direct-to-
DOM [D2D] rendering). First, it reflects an efficient use of the network, making it
especially suitable for mobile applications. Second, the developer doesn’t need to
decide which areas of the page need to be rerendered when an event is trig-
gered—that’s something the framework decides at runtime. In fact, the developer
doesn’t have to do anything to Ajax-enable the UI components on the page. Ajax is
baked in at a much deeper level so that every interaction is channeled through an
Ajax request.

481Using Ajax with JSF
TIP If a long-running conversation isn’t active, the conversation id changes
during the Ajax request. Since Seam automatically appends the conver-
sation id to Seam UI command components, this confuses ICEfaces into
thinking that areas of the page have changed, resulting in a much
larger Ajax response than necessary. To remedy this problem, you
either need to ensure that the conversation id isn’t rendered some-
where in the HTML markup or operate within the context of a long-
running conversation.

Let’s look at the course search example again, this time augmenting it using ICE-
faces. Since it’s not necessary to declare which areas of the page are synchronized,
we’re only concerned with the search form. Here’s one of the input fields and the
submit button:

<h:inputText value="#{courseList.course.name}"/>
<h:commandButton value="Search"/>

Hmm. That’s interesting—no special Ajax tags. As I mentioned, ICEfaces transpar-
ently adds Ajax interactions to the page. It does so by replacing the standard JSF com-
ponent renderers with renderers cognizant of the D2D mechanism. In order for the
page to be updated in place, you simply forgo use of a JSF navigation event, guaran-
teed in this case since an action isn’t specified in the UI command button. That raises
an important point. Although requests are made over Ajax, JSF navigation rules are
still honored. The same goes for Ajax4jsf.

 There is a key improvement that can be made in the ICEfaces example. Currently,
the Ajax request only happens when the Search button is activated, whereas in the
Ajax4jsf example, the search occurs when the input field loses focus. This behavior is
accomplished in ICEfaces using a feature known as partial submit. While it’s possible to
trigger a partial submit using a built-in JavaScript function, in the spirit of transparency

Figure 12.2 An illustration of how changes in the UI component tree are channeled through the
ICEfaces Ajax bridge and merged back into the rendered page in the browser. The numbers indicate
the sequence of events

482 CHAPTER 12 Ajax and JavaScript remoting
we use the ICEfaces input component tag to hide this JavaScript behind declarative
markup. This tag also brings the benefit of component styling.

<ice:inputText value="#{courseList.course.name}" partialSubmit="true"/>

The partialSubmit attribute activates the same behavior as the <a:support event=
"onblur"> tag in Ajax4jsf. Partial submit is explored in more depth in section 12.2.

 Ajax4jsf and ICEfaces are about more than just Ajax. They are about letting you
perform incremental page updates synchronized from the state on the server. You no
longer have to design pages around the full-page refresh model. Instead, you can con-
sider fine-grained manipulation of the page to achieve rich effects in the application.
The patchwork of updates that are merged back into the rendered page behave as
though they’d been there all along (meaning when the page was initially rendered).
In addition to incremental page updates, RichFaces and ICEfaces offer styling of com-
ponents, rich widgets, drag and drop, visual effects, and many more features that set
your application apart from a classic web application.

 The big question at this point is, what’s Seam’s role in all of this Ajax stuff? That’s
the real beauty of it. Seam just keeps doing what it does best.

12.1.3 Seam’s role in Ajax-based JSF requests

While the Ajax requests allow the page to continuously interact with Seam, there’s noth-
ing that Seam has to do differently. The JSF life cycle is still invoked and therefore Seam
treats each request just as it would any other postback. That doesn’t mean Seam has
nothing to add, though. On the contrary, you find that Seam’s stateful design lends itself
perfectly to the Ajax-enabled JSF environment. Here are a few ways Seam adds value:

■ Maintain server-side state —Seam can connect the state from one Ajax request to
the next, avoiding the negative impact of pounding the server’s resources. Both
the page scope and a long-running conversation work well here. Seam can even
facilitate an application transaction performed entirely over Ajax.

■ Contribute outjected context variables —Any action invoked during an Ajax request
can trigger bijection. The outjected context variables are available to the regions
of the view being rerendered.

■ Dry-run the JSF life cycle —Ajax4jsf can ask JSF to run through the life cycle with-
out performing actions or navigations to verify that form data is acceptable.
Seam’s integration with Hibernate Validator is of most interest here.

■ Notify changes in application state —Seam’s event/observer model, its asynchro-
nous dispatcher, and its integration with JMS offer ways to notify components of
a change in the application’s state. When combined with ICEfaces’ Ajax Push,
presentation changes can be sent to browsers with having to wait for interaction
from the user.

Aside from the last point, covered in detail in section 12.3, the items in this list remain
consistent with points made throughout the book. The only difference now is that
everything is happening in closer to real time and the browser isn’t spinning its wheels

483Using Ajax with JSF
reloading the page. You do need to be aware that Ajax requests occur more fre-
quently, so there’s a greater chance that multiple requests in the same conversation
will arrive at the server simultaneously. See the accompanying sidebar on the topic of
conversation contention.

 No configuration is necessary to use RichFaces/Ajax4jsf with Seam. As long as the
RichFaces JAR files are present on the classpath and the SeamFilter is registered in
the web.xml descriptor, Seam automatically activates the Ajax4jsf filter. Seam doesn’t
automatically configure ICEfaces because it requires more than just a filter. Consult
the output of the ICEfaces version of seam-gen or the ICEfaces reference documenta-
tion for instructions.

I walk1you through more examples showing how the abstraction offered by Ajax4jsf and
ICEfaces can be leveraged to enhance the user experience. We first explore live form

1 http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/html/
index.html

Concurrent Ajax requests contending for ownership of the conversation
Seam serializes access to conversations, requiring requests to obtain a lock in order
to restore a long-running conversation. A common problem encountered when using
Ajax4jsf with Seam is contention for a conversation lock, reported by the error mes-
sage “The conversation ended, timed out or was processing another request.” This
problem can happen when multiple Ajax requests requesting the same conversation
arrive at the server simultaneously. If the amount of time that a request has to wait
exceeds the concurrent request timeout, Seam will abort the request.

One solution is to ensure that Ajax4jsf requests are serialized so that they never con-
tend for a conversation. Related requests are placed into a named sequence using
the eventsQueue attribute on RichFaces and Ajax4jsf component tags:

<a:support event="onblur" eventsQueue="nameOfSequence" .../>

For information about eventsQueue, see the RichFaces reference documentation.1

There is still the problem of Ajax and non-Ajax requests contending for the same con-
versation. To minimize the chance of a timeout occurring as the result of a lock con-
tention, you can increase the timeout period. The timeout value (in milliseconds) is
set by configuring the built-in component named manager in the component descriptor:

<core:manager concurrent-request-timeout="5000" .../>

You should try to eliminate concurrent requests for a conversation before increasing
this timeout since leaving threads waiting on the server can impact performance.

Contention for the conversation isn’t seen when using ICEfaces since the ICEfaces
framework automatically synchronizes requests from the same page to ensure that
the server-side DOM remains uncorrupted.

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/html/index.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/html/index.html

484 CHAPTER 12 Ajax and JavaScript remoting
validation using partial submit and then look at how ICEfaces can push changes in
application state to the client without having to wait for the user to perform an action.

12.2 Partial form submits
One of the most frequently requested features in JSF is client-side form validation.
Although there are certainly benefits to the performance and near real-time execu-
tion of client-side validation, there are equal benefits to having these validations per-
formed on the server instead. Even if the validation passes in the UI, it’s still necessary
to validate on the server since JavaScript validation can’t be trusted (execution of
JavaScript is voluntary). In addition, validations often need access to server-side
resources to arrive at a decision. Thus, client-side validation doesn’t provide that
much value. What developers are really asking for is instant, or “live,” validation. That
doesn’t mean it has to happen strictly on the client.

12.2.1 Live validation

Both Ajax4jsf and ICEfaces accommodate live form validation using a feature known
as partial submit. You have seen this feature used once already with ICEfaces as a way
to trigger an Ajax-based form submit from a JavaScript event. What you may not real-
ize is that this flag also enables intelligent form processing, resulting in only partial
validation of the form. Ajax4jsf separates the two concerns by letting you control
whether one or all of the inputs are validated when an Ajax form submit is triggered
from a user-initiated event.

 Before getting into the details of how live validation is set up, I want to briefly discuss
how server-centric validation, based primarily on Hibernate Validator constraints, cen-
tralizes validation concerns, reduces duplication of effort, and ensures that validations
are consistent across the application. This discussion sets the stage for the examples
that follow.
END-TO-END CONSTRAINTS USING HIBERNATE VALIDATOR

Using partial form submits, it’s possible to enforce Hibernate Validator constraints
instantly, as well as other JSF validators registered on a field, without having to dupli-
cate the effort of writing client-side validators. It’s pretty easy to branch out from there
and apply business validations as well. In the end, all the validation work is done in
one place, at one time.

 As a reminder, Hibernate Validator annotations define constraints on properties of
a model object. You first saw these annotations in chapter 2 when they were translated
by seam-gen from constraints on database fields and added to the properties of the
entity classes. A wealth of constraints are provided for you out of the box. For
instance, the @Email annotation on the emailAddress property of the Member entity
ensures that the syntax of the email address is valid:

@Column(name = "email_address", nullable = false)
@Email @NotNull
public String getEmailAddress() {
 return emailAddress;
}

485Partial form submits
You can also write your own constraint by defining a custom annotation, implement-
ing the Hibernate Validator interface, and declaring the implementation in the
@ValidatorClass meta-annotation on your custom annotation. For a list of built-in
constraints and information about how to author your own, see the Hibernate Valida-
tor reference documentation.2

 In chapter 3, you learned that it’s possible to stretch Hibernate Validator con-
straints all the way to the view by using a Seam model validator tag (<s:validate>
within an input component or <s:validateAll> around a set of input components).
To take it a step further, constraints can be enforced in response to a user-initiated
event using the partial submit feature in either Ajax4jsf or ICEfaces. Let’s first look at
the ICEfaces approach.
INTELLIGENT FORM PROCESSING USING ICEFACES

The partial submit in ICEfaces is more accurately described as intelligent form pro-
cessing and partial validation rather than an incomplete form post, as the name
implies. Before explaining how it works, let’s first consider the problem to be solved.

 If you submit a form while the user is still working on it, it’s likely that there are
required fields that the user hasn’t gotten to yet. When the Process Validations phase of
the JSF life cycle runs, it would normally flag these required fields as invalid and the
page would be sprinkled with validation errors. As a result, the application appears
impatient with the user’s progress. ICEfaces circumvents this issue by temporarily
marking required fields as optional during a partial submit. This allows the validation
process to focus on the fields the user has already filled out, for which the user will
welcome validation feedback.

 As you saw earlier, partial submit is enabled using the ICEfaces input component.
From there, getting the Hibernate Validator constraints to be enforced when the field
loses focus is just a matter of registering the Seam model validator on the input:

<ice:inputText id="emailAddress" value="#{newGolfer.emailAddress}"
 required="true" partialSubmit="true">
 <s:validate/>
</ice:inputText>

If you’re using a seam-gen application, you can decorate the input component with
the provided composition template to preclude the use of the model validator tag:

<s:decorate id="emailField" template="layout/edit.xhtml">
 <ui:define name="label">Email address</ui:define>
 <ice:inputText id="emailAddress" value="#{newGolfer.emailAddress}"
 required="true" partialSubmit="true"/>
</s:decorate>

That’s pretty much all there is to it. Let’s try this with Ajax4jsf.
SINGLING OUT A FIELD USING AJAX4JSF

The way that Ajax4jsf defines partial submit is more true to the name. You instruct
Ajax4jsf to process a single field by enabling the ajaxSingle attribute on <a:support>,

2 http://www.hibernate.org/hib_docs/validator/reference/en/html/validator-defineconstraints.html

http://www.hibernate.org/hib_docs/validator/reference/en/html/validator-defineconstraints.html

486 CHAPTER 12 Ajax and JavaScript remoting
overriding the default behavior of submitting the entire form. Once again, this pre-
vents overeager validation of form fields. However, instead of temporarily marking
fields as optional, like ICEfaces, Ajax4jsf pretends as though the form has only one field,
the one that triggered the event. The benefit is that the user only sees a validation error
for that field, no matter what state the other fields are in. The downside is that this fea-
ture cannot be used if you need to do interfield validation.

 To add instant validation of the email address using the Hibernate Validator con-
straint with Ajax4jsf, you nest both <a:support> and <s:validate> in the input
component:

<h:inputText id="emailAddress" value="#{newGolfer.emailAddress}"
 required="true">
 <a:support id="emailAddressCheck" event="onblur" reRender="emailAddress"
 ajaxSingle="true" bypassUpdates="true"/>
 <s:validate/>
</h:inputText>

You can use the component template included in the seam-gen project as before to
isolate the markup and incorporate the validation error message. Figure 12.3 shows
an email address validation error in the registration form.

Notice in this example I snuck in another new attribute, bypassUpdates. This attri-
bute tells Ajax4jsf to short-circuit the JSF life cycle as soon as the Process Validations JSF
life-cycle phase is complete. The motivation for doing this is to get the validation done
quicker and to prevent the partial form submit from making changes to the model. If
a managed entity is loaded in the editor, and you aren’t using manual flushing, updat-
ing the model would result in the database being updated at the end of the request.
You can leave off bypassUpdates if you do want the model to be updated, perhaps to
allow the user to switch between conversations without losing the values entered.

 In addition to applying conversion and model validations on the trip to the server,
you can weave in some business-savvy validations in an action or event listener
method.

12.2.2 Business-savvy validations

The Hibernate Validator annotations focus primarily on constraints. To perform vali-
dations that are driven by business rules or contextual state, you need to turn to an action
component, which is better equipped to handle these “business-savvy” validations.

 Once again, you’ll be using partial form submit, but this time you need to register
a method that executes custom validation logic (or delegates the work to another
component). You have a wide variety of options for associating a method with an

Figure 12.3 Live
validation in the UI
performed using
partial submit

487Partial form submits
input. My preference is to listen for the component’s value change event. Let’s con-
sider an example where a business-savvy validation is needed in the Open 18 registra-
tion form.

 Choosing a unique username can often be a challenge, especially on a popular site.
Therefore, we want to validate not only that the username is syntactically correct but
also that it isn’t already taken. The first step is to define a value change listener
method on the RegisterAction component that performs the check and warns the
user if it’s taken. When you’re writing a method that listens for a value change event,
it’s important to understand that the submitted value is in a transient state on the com-
ponent and hasn’t yet been transferred to the property bound to the input. You access
the submitted value by calling the getNewValue() method on the ValueChangeEvent
object passed as an argument to the method. From there, you can check for a dupli-
cate username:

public void verifyUsernameAvailable(ValueChangeEvent e) {
 String username = (String) e.getNewValue();
 if (!isUsernameAvailable(username)) {
 facesMessages.addToControl(e.getComponent().getId(),
 "Sorry, username already taken");
 }
}

public boolean isUsernameAvailable(String username) {
 return entityManager.createQuery(
 "select m from Member m where m.username = ?1")
 .setParameter(1, username).getResultList().size() == 0;
 }
}

The next step is to register this method as a value change listener on the username
field:

<h:inputText value="#{newGolfer.username}"
 valueChangeListener="#{registerAction.verifyUsernameAvailable}"...>

Let’s now shift the focus from slapping the user’s wrist to playing the role of a helping
hand.

12.2.3 Working alongside the user to fill out a form

Since Ajax4jsf and ICEfaces have the ability to rerender areas of the page, it’s possible
to assign values to form inputs or alter the composition of the form (i.e., add, remove,
or modify elements). These changes become visible when the presentation changes
are delivered to the browser. Let’s consider a simple example.

 Each U.S. zip code maps to a city and state. We can save the user time by automatically
populating the city and state fields when the user enters a zip code. To accomplish this
task, a value change listener is registered on the zip code field. Any time the value of that
field changes and the value is considered valid, a value change event is fired and the lis-
tener called. Within the listener, the zip code is used to look up the city and state, and
those values are assigned to the values of the city and state input components.

488 CHAPTER 12 Ajax and JavaScript remoting
 Before implementing the logic, we need to determine how to get a handle on the
city and state input components from within an event listener method. A UI compo-
nent is located by passing its key to the findComponent() method on any other UI
component. Seam provides a map named uiComponent that’s used for the same pur-
pose, except it searches from the root of the UI tree. That brings us to the key that’s
used as the lookup value.

 JSF stores each component in the tree under a client id, which is a qualified path to
the component. This path is built by combining the component’s ID with the ID of
each ancestor component that is a NamingContainer, delimited by colons. For
instance, the client id of the city component is facility:cityField:city, where
facility is the ID of the form, cityField is the ID of the field decorator, and city is
the ID of the input. To start the search from the root of the UI component tree, you
add a leading colon to the path.

 You can also get a reference to a UI component by binding it to a property of a
Seam component using the binding attribute on the component tag. This works just
like binding an input value to a property, only in this case, you’re binding the UI com-
ponent itself.

 Let’s get back to work. For the purpose of this demonstration, the value change
method uses a canned response, but you can just as easily consult a database, web
service, or service layer to get real values. This code also shows two ways to locate a
UI component:

@In Map<String, UIComponent> uiComponent;
public void updateCityAndState(ValueChangeEvent e) {
 String zipCode = (String) e.getNewValue();
 UIComponent city = e.getComponent()
 .findComponent(":facility:cityField:city");
 UIComponent state = uiComponent.get("facility:stateField:state");
 if ("20724".equals(zipCode)) {
 ((EditableValueHolder) city).setSubmittedValue("Laurel");
 ((EditableValueHolder) state).setSubmittedValue("MD");
 }
}

The final step is to register this method to listen for the value change event on the zip
field. The Ajax4jsf version, shown here, marks the fields to be rerendered, which isn’t
necessary when using ICEfaces:

 <h:inputText id="zip" size="5" value="#{facilityHome.instance.zip}"
 valueChangeListener="#{facilityHome.updateCityAndState}">
 <a:support event="onblur" bypassUpdates="true" ajaxSingle="true"
 reRender="zipField,cityField,stateField"/>
 </h:inputText>

Most of this section has focused on features that are supported in both Ajax4jsf and
ICEfaces, highlighting the slightly different approach taken by the two frameworks. In
the next section, we look at Ajax Push, a feature pioneered by ICEfaces that allows
server-initiated asynchronous presentation updates.

489Ajax Push with ICEfaces
12.3 Ajax Push with ICEfaces
The other distinguishing feature of ICEfaces is its Ajax Push (aka “Comet”) capability.
The A in Ajax stands for asynchronous, and ICEfaces is truly asynchronous. Not only is the
page updated in the background in response to user events, but the page can also be
updated from the server at any time, independently of user events. One use for this is
to send users notifications (for instance, to notify a user when it’s his or her tee time),
but what is really interesting is to use Ajax Push for collaboration between multiple users.

 Adding Push features to your ICEfaces application is straightforward: first, update
the model with the current state; then, notify those users interested in the current
state. Updating the model is a basic function of a JSF application; how do we update
the users? Let’s jump into an example to find out.

 In chapter 10, you developed a module that allows golfers to enter their score for a
round of golf. One of the driving factors for a golfer to publish a round is to get
ranked on the leaderboard (i.e., best scores per tee set). For simplicity of demonstra-
tion, let’s assume that the leaderboard is managed “in-memory” in an application-
scoped component, shown in listing 12.1. Each time a round is entered by a golfer, an
event named roundEntered is raised, which broadcasts the Round instance. The lead-
erboard manager observes this event and attempts to rank the round. This is where
Ajax Push comes in. If the round gets ranked, ICEfaces is instructed to immediately
rerender the pages associated with the corresponding leaderboard group as a result of
a call to the SessionRenderer.render() method. The page changes are calculated by
ICEfaces and are pushed to the user’s browsers.

package org.open18.action;
import ...;
import org.icefaces.x.core.push.SessionRenderer;

@Name("leaderboardManager")
@Scope(ScopeType.APPLICATION)
public class LeaderboardManager {
 private Map<Long, List<Round>> topRoundsByTeeSet =
 new ConcurrentHashMap<Long, List<Round>>();

 public List<Round> getTopRoundsForTeeSet(Long id) {
 return Collections.unmodifiableMap(topRoundsByTeeSet.get(id));
 }

 @Observer("roundEntered")
 public synchronized void checkRank(Round rnd) {
 Long teeSetId = rnd.getTeeSet().getId();
 String leaderboard = "leaderboard-" + teeSetId;
 if (!topRoundsByTeeSet.containsKey(teeSetId)) {
 topRoundsByTeeSet.put(teeSetId, new ArrayList<Round>());
 }
 List<Round> topRounds = topRoundsByTeeSet.get(teeSetId);
 for (int i = 0, len = topRounds.size(); i < len; i++) {
 if (rnd.getTotalScore() <= topRounds.get(i).getTotalScore()) {
 topRounds.set(i, rnd);

Listing 12.1 A component that manages and renders the leaderboards

Observes insertion
of new round

490 CHAPTER 12 Ajax and JavaScript remoting
 SessionRenderer.render(leaderboard);
 return;
 }
 }
 if (topRounds.size() < 10) {
 topRounds.add(rnd);
 SessionRenderer.render(leaderboard);
 }
 }
}

So how does a user become a member of the group for a leaderboard? First, the user is
presented with a select menu of tee sets. After making a selection, the user clicks a UI
command button, which binds the tee set selection to the teeSet property of an action
component and invokes the followLeaderboard() method on that same component:

public void followLeaderboard() {
 SessionRenderer.addCurrentSession("leaderboard-" + teeSet.getId());
}

Once the user is a member of a leaderboard group, whichever page the user is cur-
rently viewing will be updated incrementally as soon as that group is rendered. For
instance, if a user is viewing a leaderboard for a tee set when a new round becomes
ranked, the score appears immediately in the list.

 Using just two methods on SessionRenderer, we’ve transformed our application
into a new communication tool that lets users keep up with their favorite golfers in
real time. The development methodology is also natural: build a conventional JSF
application with Seam; turn it into an Ajax application by including the ICEfaces JAR
files; then make it into a multiuser application by invoking server-side rendering in
response to a specific application event.

 The possibilities of what you can do with an Ajax-based JSF component palette are
virtually endless. Unfortunately, this chapter is not, so the story must end here. To get
the most out of these libraries, I recommend consulting a dedicated resource on the
topic. Max Katz, one of the developers of RichFaces, provides in-depth coverage of
RichFaces in his book Using RichFaces (Apress, 2008). For more information on ICE-
faces, check out icefaces.org3 or Ajax in Practice (Manning, 2007), featuring Ted God-
dard from the ICEfaces project. You may be tempted to mix Ajax4jsf and ICEfaces, or
any Ajax-enabled component set for that matter, but it’s not recommended. The Ajax
engines collide with each other while attempting to manipulate the rendered page.
Expect this situation to improve once JSF 2.0 is finalized, which will define a standard
Ajax mechanism for JSF components. There’s no such restriction for incorporating
additional non-Ajax component sets.

 As cool as declarative Ajax using JSF sounds, you may be looking for a way to do
Ajax in Seam without JSF, perhaps using a high-level JavaScript library such as Dojo or
jQuery. The Seam developers recognized that there is value in being able to talk to a

3 The developer guides for ICEfaces are located at http://www.icefaces.org/main/resources/documentation.
iface.

Forces
leaderboard
to refresh

http://www.icefaces.org/main/resources/documentation.iface
http://www.icefaces.org/main/resources/documentation.iface

491JavaScript remoting to Seam
Seam component directly from JavaScript and therefore introduced the JavaScript
remoting module.

12.4 JavaScript remoting to Seam
JavaScript remoting is an alternative to Ajax-based JSF requests for establishing a chan-
nel of communication between the browser and the server. It supports using
JavaScript to invoke a method on a server-side object as if it were local to the browser.
Seam’s JavaScript remoting library is inspired by the Direct Web Remoting (DWR)
project,4 but designed specifically for accessing Seam components. The interaction
with the server-side object is performed using Ajax requests, but the requests are
encapsulated within dynamically generated JavaScript proxy objects, so you never
have to interface with the XMLHttpRequest object directly.

 In JavaScript remoting, the client (browser) and the server (Seam container) are
fused together as one, establishing a continuity between local and remote operations.
The interchange between the client and server during a remoting request resembles a
conventional remote procedure call (RPC) over Java RMI or SOAP, except that
JavaScript remoting is far more lightweight and mostly transparent to the developer.

 Here’s a sampling of tasks that are well suited as JavaScript remoting tasks:

■ Facilitating a user interaction that’s tangential to the rendered page
■ Persisting entities that don’t have a visual representation
■ Starting and completing tasks in a business process
■ Sending an email in response to a user-triggered event
■ Transmitting a user interface error or statistic to the server to be logged
■ Monitoring or polling for a value maintained on the server

This section provides an overview of the JavaScript remoting technique, explains how
to expose your Seam components as endpoints, and presents examples that use this
style of browser-to-server communication.

12.4.1 Transparent Ajax

Throughout this book, I’ve demonstrated the ability of Seam’s component model to
manage state and provide access to a wide range of technologies. By incorporating
Seam’s remoting library into your application, you enable JavaScript to tap into that
server-side model and reap its benefits. In the same way that the @Name annotation on
a component makes that component accessible to JSF and the EL, the @WebRemote
annotation on a component method makes that method accessible to JavaScript,
effectively binding JavaScript code to server-side components with little effort.
COMMUNICATING THROUGH STUBS

In order for this transparency to be possible, Seam dynamically generates JavaScript
classes5 that represent the server-side components. These classes are known as stubs.
As far as JavaScript is concerned, the stub object is the remote object.

4 http://getahead.org/dwr
5 A JavaScript class is a misnomer since JavaScript is technically a prototype-based language. However, it’s pos-

sible to pretend that the prototype construct is an actual class if you treat it as one.

http://getahead.org/dwr

492 CHAPTER 12 Ajax and JavaScript remoting
 The stub is responsible for carrying out method execution on the server-side com-
ponent instance. When a method is invoked on the stub, a new Ajax request is pre-
pared and sent across the wire to the server. The request communicates the method to
execute and carries with it parameters that need to be passed to the remote method.
If the method has a return value, that value is encoded into the response of the Ajax
request. As the response comes back across the wire, it’s received by the remoting
framework, which converts the return value, if present, into a JavaScript object. This
process is illustrated in figure 12.4.

What it comes down to is that JavaScript remoting enables the browser to speak the
native tongue of the server. Although it may seem like the execution is happening in
the local lingo—JavaScript—in reality the server is executing the code and the stub
objects are marshaling the data back and forth.
CUTTING COSTS BY SIDESTEPPING JSF
JavaScript remoting is about cutting out the middleman and giving JavaScript access
to Seam components without the overhead of restoring the JSF component tree and
venturing through the JSF life cycle. The product is a much smaller request. It also
gives the browser direct access to the return value of the method invoked, which is not
straightforward in JSF.

 Seam remoting requests target the SeamResourceServlet rather than the JSF serv-
let, effectively sidestepping the JSF life cycle. Of course, you never interface with this
servlet directly since the negation with the servlet is handled by the stub. When the
method is invoked, it has full access to components and context variables. What’s not
present, though, is the JSF component tree. That means you can’t access page-scoped
or UI components during a remoting request.

componentA
Stub

componentA

public String method() {
 ...
}

@WebRemote

JavaScript Execution Context

Seam Container

JavaScript Execution Context

componentA.method(callback);

m
ar

sh
al

un
m

ar
sh

al
m

ar
sh

al

callback(returnValue);

un
m

ar
sh

al

HTTP

HTTPHTTP

HTTP

Figure 12.4 The translation of a method call on a
stub to a method call on a server-side component

493JavaScript remoting to Seam
 Let’s see how to get Seam to generate the stubs, how they’re used to perform
remote method invocations, and how the return value can be captured in your
JavaScript code.

12.4.2 Giving the browser access to Seam components

The reason acronyms like RPC and SOAP give developers the chills is because they
require a lot of commitment. Surely, Seam remoting would suffer the same fate if it
were difficult to set up. The good news is that it’s not. In fact, it’s shockingly easy. Only
two steps are involved in making your server-side component accessible to your
JavaScript code:

■ Declare one or more methods on the component as accessible via remoting.
■ Import the JavaScript remoting framework and stub objects into the browser.

The first step is a necessary formality. Seam could allow remote access to methods across
all components, but there is an element of security to be concerned about. Therefore,
remoting is disabled for a method unless made exempt from this constraint. If this dis-
cussion worries you, realize that remoting just adds a new path to the method, not a
more insecure one. You can use the restrictions you learned about in chapter 11 to lock
down methods from unauthorized users, regardless of how they’re called.

 The second step is what builds the JavaScript stubs and other auxiliary types. Fortu-
nately, Seam makes this a one-liner. Let’s consider how each step is accomplished.
DECLARING A REMOTING METHOD

You declare methods that you want to be involved in remoting requests using the
@WebRemote annotation, summarized in table 12.1. The @WebRemote annotation is
placed differently depending on whether you’re exposing a method on an EJB compo-
nent or a JavaBean. To provide access to a method on an EJB component, you add the
@WebRemote annotation to the method declaration on the local interface annotated
with @Local. The remote EJB interface isn’t supported. To provide access to a Java-
Bean, you simply add the annotation to a method on the JavaBean class.

 There’s nothing special about a remoting method. It can accept any number
of parameters of any type and can have a return value. For the most part, the type con-
versions are handled as you’d expect. The main difference is how the call to the

Table 12.1 The @WebRemote annotation

Name: WebRemote

Purpose: Declares that the method is allowed to be invoked through the JavaScript remoting library.
The JavaScript stub object that Seam generates for this component will include this method.

Target: METHOD

Attribute Type Function

exclude String[] A list of dot-notation paths that dictate which properties of the return object
should be filtered out. Only relevant if a value is returned. Default: none.

494 CHAPTER 12 Ajax and JavaScript remoting
method is handled. If the method returns a value, it’s received by the browser asyn-
chronously. The @WebRemote annotation can declare certain properties on the return
object, using dot notation, that should be filtered out (nullified) before the object is
returned to the browser.

 Once the return object is transferred into the JavaScript context, it’s accessed
using the same methods that you’d use in Java. That includes maps, collections, and
built-in Java types like java.util.Date. Transparency is the key here.

NOTE If you add a @WebRemote method to a hot deployable class, you need to
restart the application for the change to be picked up. The stub genera-
tor caches the available methods and is not aware of the hot deploy-
able activity.

Let’s consider an example. Members of the Open 18 community can keep their golf
trivia skills sharp by quizzing themselves. The Trivia component, shown in list-
ing 12.2, manages a set of golf trivia questions, which are retrieved when the compo-
nent is instantiated. It has two remoting calls: one to draw a question from the list
and one to verify the response.

 Each trivia question is represented by an instance of the TriviaQuestion class,
which is a simple JPA entity class with three properties: id, question, and answer.
Here’s where things get interesting. When the trivia question is sent to the browser,
you only want to send the question and the id, not the answer. Otherwise, those tech-
savvy members could use Firebug6 to inspect the Ajax request and steal the answer.
This filtering is accomplished by declaring answer in the exclude attribute in the
@WebRemote annotation. You can also use the exclude attribute to nullify large text or
binary fields on the return object that make the response unnecessarily large. You can
reach nested properties using dot notation just as you would with the EL. It’s also pos-
sible to exclude a property from a type regardless of where it is in the hierarchy using
the syntax [type].property. In this expression, type can be a component name or
the qualified class name of a noncomponent.

package org.open18.action;
import ...;
import org.jboss.seam.annotations.remoting.WebRemote;

@Name("trivia")
@Scope(ScopeType.SESSION)
public class Trivia implements Serializable {
 @In private EntityManager entityManager;
 private List<TriviaQuestion> questions;

 @Create public void init() {
 questions = entityManager.createQuery(
 "select q from TriviaQuestion q").getResultList();

6 A web development add-on for Firefox, Firebug is available at http://www.getfirebug.com.

Listing 12.2 A JavaScript remoting-capable JavaBean component

http://www.getfirebug.com

495JavaScript remoting to Seam
 }

 @WebRemote
 public boolean answerQuestion(Long id, String response) {
 TriviaQuestion questionInstance = findQuestion(id);
 if (questionInstance == null){
 return false;
 }
 return questionInstance.getAnswer().equals(response);
 }

 @WebRemote(exclude = "answer")
 public TriviaQuestion drawQuestion() {
 if (questions.size() == 0) {
 return null;
 }
 return questions.get(new Random().nextInt(questions.size()));
 }

 public TriviaQuestion findQuestion(Long id) {
 return entityManager.find(TriviaQuestion.class, id);
 }
}

Once the server-side component is prepared, it needs to be forged into JavaScript.
IMPORTING COMPONENT STUBS

Upon importing the JavaScript remoting framework, Seam doesn’t automatically gen-
erate stubs for every Seam component that has a @WebRemote annotation. Instead, you
instruct Seam to prepare a fixed set of component stubs that you need access to on a
given page.

 You can use the <s:remote> component tag to import the remoting framework
and the component stubs. This tag produces HTML <script> tags, which request the
remoting framework and stubs from the SeamResourceServlet. This tag’s include
attribute accepts a comma-separated list of component names to import. To import
the components named trivia and componentA, you add the following declaration to
your JSF view:

<s:remote include="trivia,componentA"/>

This declaration produces the following HTML markup, which you’d need to declare
manually if you aren’t using JSF:

<script type="text/javascript"
 src="seam/resource/remoting/resource/remote.js"></script>
<script type="text/javascript"
 src="seam/resource/remoting/interface.js?trivia&componentA"></script>

The first <script> tag imports the remoting framework, a static JavaScript file. The
remoting framework amounts to a handful of JavaScript objects, such as Seam.
Component and Seam.Remoting, that are used to access and create instances of stubs.
The second <script> tag imports the executable stubs that Seam generates as well as
type stubs for any Java type used as a parameter or return value by a @WebRemote

Makes
method
accessible
to
JavaScript

Applies filtering to
object returned

496 CHAPTER 12 Ajax and JavaScript remoting
method. Seam creates these additional stubs to marshal and unmarshal parameters
and return values from the XML payload. There are three stub varieties.
THE THREE STUB VARIETIES

Not all stubs are created equal. There are stubs responsible for communicating with
the server, and there are stubs that act as the payload exchanged with the server. A
stub can’t serve both roles. There is further distinction between nonexecutable stubs,
or local stubs, depending on whether the Java class is a Seam component. The three
stub varieties are

■ Executable stub
■ Local component stub
■ Local type stub

When the remoting interface generator prepares the stub, it determines which stub to
create based on the characteristics of the server-side component. Executable stubs are
created for any component that has a @WebRemote method. Recall that for EJB session
bean components, the @WebRemote annotation must be applied to methods on the
local interface. As far as JavaScript knows, the server-side component represented by
the executable stub has no other methods aside from the ones marked as @WebRemote.
JavaScript can’t distinguish what type of Seam component it is, either. Local stubs are
covered in section 12.4.4. Right now, let’s look at how to get a handle on an execut-
able stub to invoke it.

12.4.3 Making calls to a server-side component

The Seam.Component JavaScript object acts as a mini-client-side version of the Seam
container. The relationship between a component and a component instance, dis-
cussed in chapter 4, still applies. However, in the JavaScript remoting environment,
the instance is an instance of a stub, not the instance from the server. You state your
intent to execute a method on a component instance by invoking the equivalently
named method on the stub. Only after the request is shipped off to the server is the
actual instance retrieved from the Seam container and invoked.
GETTING A HANDLE ON AN EXECUTABLE STUB

You retrieve an instance of a stub using the Seam.Component.getInstance() method,
which takes the component name as an argument. For example, you can get an
instance of the stub for the component named trivia by executing

var trivia = Seam.Component.getInstance("trivia");

NOTE The newInstance() method would also return an instance of an execut-
able stub, but that method is intended for creating new local stub
instances. The getInstance() method returns a singleton JavaScript
object, which is sufficient for executable stubs.

The next step is to invoke a method on the executable stub and capture the return value.
The only thing you have to wrap your head around is that the Ajax call is asynchronous.

497JavaScript remoting to Seam
EXECUTING A REMOTE METHOD ASYNCHRONOUSLY

You execute methods on an executable stub just as you would on a server-side instance
of the component—well, not quite. There are two important differences. You already
know that the stub only contains the methods that are marked as @WebRemote. The
stub for the Trivia component only has the methods drawQuestion() and answer-
Question(), but not findQuestion(). The other difference is that the method on the
stub doesn’t return a value, at least not right away. Let’s find out why.

 Every method call made to the server-side component is done asynchronously,
which means that it is nonblocking. After all, freezing the browser would defeat the
purpose of Ajax. What that means, though, is that the result of the remote method
call isn’t available immediately to the executing thread. As such, the method on the
stub doesn’t have a value to return, even if the matching server-side method has one.
When a method on the remote stub is executed, it is effectively saying, “I’ll get back to
you on that. Do you have a number where I can reach you?” The number you provide
is a “callback” JavaScript function.

 The callback function is a standard construct in asynchronous APIs. It’s executed
by the remoting framework when a response from an Ajax request arrives back at the
browser. If the method on the server-side component has a nonvoid return value, that
value is passed into the callback function as its only argument. If the method on the
server-side component has a void return type, the callback function takes no argu-
ments. (Actually, the final argument is always the Seam remoting context, which is
covered in section 12.5.2.)

 Let’s begin with the quizzing. We add a link on the page that encourages members
to challenge themselves with a trivia question:

Quiz me!

The askQuestion() JavaScript function captures a question from the Trivia
component:

function askQuestion() {
 var trivia = Seam.Component.getInstance("trivia");
 trivia.drawQuestion(poseQuestion);
}

As you can see, the call to drawQuestion() only starts the process. A callback
JavaScript function, poseQuestion(), is used to capture the TriviaQuestion instance
when it arrives and to prompt the user with the question:

function poseQuestion(triviaQuestion) {
 if (triviaQuestion == null) {
 alert("Sorry, there are no trivia questions.");
 }
 else if (triviaQuestion.getAnswer() != undefined) {
 alert("This quiz has been compromised!");
 }
 else {
 var response = window.prompt(triviaQuestion.question);

498 CHAPTER 12 Ajax and JavaScript remoting
 if (response) {
 var trivia = Seam.Component.getInstance("trivia");
 trivia.answerQuestion(
 triviaQuestion.getId(), response, reportResult);
 }
 }
}

After receiving the TriviaQuestion instance, we
verify that the answer property has been nullified,
which was declared in the @WebRemote annotation
as an excluded property. Without this exclusion,
the integrity of the quiz is drawn into question. If
all goes well, the member is prompted with the
question using a JavaScript prompt, shown in fig-
ure 12.5.

 If the member responds, we initiate another method invocation, this time to verify
whether the response is correct. In the call to the answerQuestion() method, the call-
back function is moved to the third slot. The callback function is always the n+1
parameter, where n is the number of parameters in the remote method. The report-
Result() callback JavaScript function handles the verdict (in a crude fashion):

function reportResult(result) {
 alert(result ? "Correct!" : "Sorry, wrong answer. Keep studying!");
}

The only major architectural change brought about by using JavaScript remoting over
executing calls in Java is that you have to shift to thinking about every interaction in
terms of asynchronous communication. This takes some getting used to, both for the
developer and the user. Let’s see what the impact is on the user.
WHAT’S THE STATUS?
The browser uses a spinner, typically appearing in the upper-right corner of the win-
dow, that notifies the user when a page is loading. However, an Ajax-based application
“breaks” this feedback mechanism because the browser interacts with the server with-
out a page being formally requested. To reinstate the feedback, Ajax frameworks typi-
cally render a spinner in the page while an asynchronous request is in progress. Seam
follows this pattern.

 Seam’s JavaScript remoting library renders a loading message in the upper-right
corner of the page during a remoting call. The message is defined in the property
Seam.Remoting.loadingMessage. You can override it like this:

Seam.Remoting.loadingMessage = "Request in progress";

If you’re using Ajax because you don’t want to bother the user, you can disable the
message by overriding the methods that toggle the message with empty functions:

Seam.Remoting.displayLoadingMessage = function() {};
Seam.Remoting.hideLoadingMessage = function() {};

Figure 12.5 The trivia question prompt
in which the member enters a response

499JavaScript remoting to Seam
Rather than disabling the feedback mechanism, you can use these two functions to
customize it.

 As a developer, you may want to track the remoting call. Seam remoting includes a
debug window that shows the status of the Ajax request. You can call Seam.Remot-
ing.setDebug(true) to enable the window for a given page or activate it for all pages
in the component descriptor. First, import the component namespace http://
jboss.com/products/seam/remoting, prefixed as remoting. Then, enable debug
mode on the built-in remoting component:

<remoting:remoting debug="true"/>

The debug window appears whenever an Ajax request goes out and you can follow its
progress. Despite having this debug window, I strongly urge you to use Firebug instead.

 Let’s get back to remoting. As you know, the EL notation plays an important role in
every Seam module. No module would be complete without it. JavaScript remoting is
no exception.
EVALUATING EL FROM THE CLIENT

JavaScript remoting can tap into the Seam container via EL, whether it is to access val-
ues (value expressions) or execute methods (method expressions). You use the
Seam.Remoting.eval() function to execute an EL expression, giving you a way to per-
form a remote operation without a @WebRemote method. Keep in mind that the
resolved value is sent to a callback function asynchronously.

 The eval() method (don’t confuse this with JavaScript’s eval() function) is ideal
for fetching objects stored in the Seam container. This differs from executable stubs,
which ask a component to perform work and return the result.
The only thing you have to be aware of when using eval() is that if the value expres-
sion resolves to an object of a custom type, you need to explicitly import that type
using the <s:remote> tag. This problem doesn’t come up when using executable stubs

Escaping the EL
If you intend to use the Seam remoting eval() function from within a JSF page, you
have to escape the EL notation. The JSF view handler gets a first pass at the template
and will resolve any value expressions it finds. You must escape the EL to delay the
evaluation.

You make an expression unrecognizable to the view handler by either escaping the
pound sign (#) with a leading backslash (\):

"\#{contextVariable}"

or by assembling the expression using string concatenation:

"#" + "{contextVariable}"

Personally, I prefer the backslash syntax.

500 CHAPTER 12 Ajax and JavaScript remoting
since Seam automatically generates the necessary type stubs. Because the EL can
resolve any type, it would be difficult for Seam to know what type stubs to prepare. If
you’re only using the EL to resolve primitive values or built-in types (strings, dates, col-
lections), you don’t need any extra imports.

 Let’s try an example to get a feel for using the EL with remoting. In the Java world,
we care a great deal about language support, but as soon as we move to JavaScript we
seem to forget about this lofty goal. Having the ability to evaluate EL from JavaScript
opens up the possibility of pulling down the message bundle map so that it can be ref-
erenced from JavaScript. In this case, we don’t want to execute a method but instead
just retrieve the map:

var messages = null;
Seam.Remoting.eval("\#{messages}", function(value) {
 messages = value;
});

Keep in mind that the call is asynchronous, so there’s a brief period of time before the
messages arrive, but it’s likely to execute fast enough so that you don’t have to worry
about the lapse.

 With access to the locale-specific message bundle, we can reward or shame mem-
bers in their language of choice in the reportResult() callback function:

alert(result ? messages.get("response.correct") :
 messages.get("response.incorrect"));

As you can see, evaluating EL is a great way to pull down reference data needed in the
UI. Next up, you’ll learn how to push data the other way by creating instances of local
stubs and sending them off to the server through methods on executable stubs.

12.4.4 Local stubs

A local stub is a JavaScript version of a JavaBean class. It shares all of the same proper-
ties as its server-side counterpart. The properties on the local stub are addressed using
JavaBean-style accessor methods or direct field access, as shown here:

triviaQuestion.setAnswer("The Masters");
triviaQuestion.answer = "The Masters";
"The Masters" == triviaQuestion.getAnswer();

The fundamental difference between a local stub and an executable stub is that when
a method on a local stub is called, it doesn’t trigger a remote execution (an Ajax
request).
SORTING OUT THE LOCAL STUBS

There are two categories of local stubs: component and type. A Seam component with
no @WebRemote methods becomes a local component stub when imported through
the remoting framework. (The Seam component must be declared using @Name. It’s
not enough to declare it in the component descriptor.) All other classes become local
type stubs.

 A local component stub is instantiated by passing its component name to the
Seam.Component.newInstance() JavaScript method from the remoting framework,

501JavaScript remoting to Seam
whereas a local type stub is instantiated by passing its qualified class name to the
Seam.Remoting.createType() method:

var favorite = Seam.Component.newInstance("newFavorite");
var golfer = Seam.Remoting.createType("org.open18.model.Golfer");

Apart from how they’re instantiated, the two local stub varieties are identical. The
benefit a component stub has over a type stub is that the component stub gets
addressed by its component name, which is typically shorter than the class name and
doesn’t tightly couple the qualified class name to the client (the JavaScript).

 A local stub is intended to be used as a data structure that’s passed as a parameter
to a method on an executable stub or mapped to the method’s return value. When an
instance of a local stub reaches the server, it’s translated into a real Java object. Local
stubs aren’t needed to create primitives and strings since there’s an implied mapping
between JavaScript and Java for simple types.

 So why do these objects need to be passed to the server? Well, the primary reason
for using JavaScript remoting is to get the server to perform work that JavaScript can’t
do. One example is persisting an object to the database. Local stubs are a perfect com-
plement for this operation. The client can seed a transient entity instance from a local
stub, which is then shipped off to the server to be persisted.
PERSISTING ENTITIES FROM JAVASCRIPT

Let’s work through an example to see how a transient entity instance can be persisted
via remoting. In this example, the entity class named Favorite is introduced to cap-
ture an item that the user has selected to be in his or her list of favorites. The essential
parts of this entity are shown here:

@Entity
@Table(name = "FAVORITE")
@Name("newFavorite")
public class Favorite implements Serializable {
 private Long id;
 private Long entityId;
 private String entityName;
 private Golfer golfer;
 // getters and setters hidden
}

Since the entity class is annotated with @Name, it becomes a local component stub and
can be referenced by its component name, newFavorite. The FavoritesAction com-
ponent, shown in listing 12.3, is responsible for persisting instances of the Favorite
entity. It also has a method to check for a duplicate entry.

package org.open18.action;
import ...;

@Name("favoritesAction")
@Transactional
public class FavoritesAction {
 @In private EntityManager entityManager;

Listing 12.3 A remoting-capable component for working with Favorite entities

Declares methods
as transactional

502 CHAPTER 12 Ajax and JavaScript remoting
 @WebRemote
 public Favorite addFavorite(Favorite favorite) {
 try {
 entityManager.persist(favorite);
 return favorite;
 } catch (Exception e) {
 return null;
 }
 }

 @WebRemote
 public boolean isFavorite(Long entityId, String entityName) {
 try {
 entityManager.createQuery("select f from Favorite f " +
 "where f.entityId = :id and f.entityName = :name")
 .setParameter("id", entityId)
 .setParameter("name", entityName)
 .getSingleResult();
 return true;
 } catch (Exception e) {
 return false;
 }
 }
}

Notice the @Transactional annotation on the class. Since remoting requests operate
outside the JSF life cycle, they aren’t wrapped in Seam’s global transaction. There-
fore, @WebRemote methods must declare transaction boundaries.

 If an exception is thrown during the execution of a @WebRemote method, no result
is returned. Thus, it’s important to catch any exceptions and handle them gracefully.
To expose the status of the exception, you can either return it or save it, then access it
on a subsequent remoting call.

 The next step is to create a JavaScript function that invokes the method to add the
current entity to the golfer’s favorites, shown in listing 12.4. You place this JavaScript
function on any entity detail page (since this design is agnostic to entity type).

function addToFavorites(entityId, entityName, golferId) {
 var favoritesAction =
 Seam.Component.getInstance("favoritesAction");
 favoritesAction.isFavorite(
 entityId, entityName, function(exists) {
 if (exists) {
 alert("This " + entityName + " is already a favorite");
 }
 else {
 var favorite = Seam.Component.newInstance("newFavorite");
 favorite.setEntityId(entityId);
 favorite.setEntityName(entityName);
 var golfer =
 Seam.Remoting.createType("org.open18.model.Golfer");
 golfer.setId(golferId);
 favorite.setGolfer(golfer);

Listing 12.4 Remoting logic used to add an entity as a favorite

Catches exceptions
for a clean response

B

C

D

E

503Conversational remoting calls
 favoritesAction.addFavorite(favorite, notify);
 }
 });
}

function notify(favoriteInstance) {
 if (favoriteInstance == null) {
 alert(messages.get("favorite.addFailed"));
 }
 var message = messages.get("favorite.addSucceeded");
 message = message.replace("{0}", favoriteInstance.getEntityName());
 message = message.replace("{1}", favoriteInstance.getId());
 alert(message);
}

The addToFavorites() method accepts the information to create and persist an
instance of Favorite. The first step is to get a handle on the stub for Favorites-
Action B. Rather than jumping right into the call, we verify that the favorite doesn’t yet
exist by invoking the isFavorite() method. This deals with a race condition to the
server. Like all remoting methods, the isFavorite() method runs asynchronously, so
it’s necessary to jump into a callback method to continue with the operation C.

 If the favorite doesn’t already exist, a transient instance of Favorite is constructed
by passing its component name to newInstance() D. The Golfer entity is not a Seam
component. Therefore, it’s necessary to use createType() to create a transient
instance E. Here’s where things get interesting. To satisfy the foreign key relationship
from Favorite to Golfer, an identifier is assigned to the transient instance of Golfer.
The persistence manager understands how to link the records in the database. Once
the transient instance of Favorite is built, it’s sent off to the server F to be persisted.

 All that’s left is to add a link to the entity detail page that invokes the JavaScript
method:

<a href="javascript: void(0);" onclick=
 "addToFavorites(#{facilityHome.id}, 'Facility', #{currentGolfer.id});">
 Add to favorites

The EL value expressions in the link definition is interpreted when the page is rendered,
resolving to the numeric identifiers of the current golfer and facility, respectively.

 This example uses the persistence manager to perform a duty in response to a
user-triggered event. As you may recall from chapter 7, Ajax requests occur with a
much greater frequency than traditional page requests and it’s a good idea to leverage
conversations to avoid unnecessary load from being placed on vital resources such as
the database. Let’s explore how you give JavaScript remoting requests access to state-
ful components in a long-running conversation.

12.5 Conversational remoting calls
There are two ways for JavaScript remoting requests to partake in conversations. They
can join the conversation associated with the current page, or they can go off and
establish their own conversation, isolated from and transparent to the rendered page.
Let’s consider these two scenarios for using conversations with JavaScript remoting.

F

504 CHAPTER 12 Ajax and JavaScript remoting
12.5.1 Joining the conversation in progress

Remoting requests maintain a special context for holding the “active” conversation id.
You can access this context using the JavaScript method Seam.Remoting.getContext().
The context has two methods: getConversationId() and setConversationId().
Once the conversation id is established on this context, it remains set until it’s explic-
itly changed.

 If a long-running conversation is active at the time the page is rendered, the remot-
ing context can join it. The technique is to use an EL value expression to resolve the cur-
rent conversation id and pass it as an argument to the setConversationId() method:

Seam.Remoting.setConversationId(#{conversation.id});

The expression is resolved when the page is rendered, leaving behind the numeric
conversation id. This call should be placed in the window’s onload handler. Once the
conversation id is established, remoting requests are able to “see” all objects in the
long-running conversation in progress (objects related to the rendered page). You can
pull references to these objects using Seam.Component.getInstance() or Seam.
Remoting.eval(). For instance, if a list of data were retrieved and stored in the conver-
sation, the remoting request could talk to the server and ask it to hand over that data
set rather than asking the database to retrieve it again. You could also invoke a method
on a conversation-scoped component, manipulating the state of the data held in the
conversation. Seam offers parallel support for conversations in web service calls.

 Remoting requests can also work in their own conversation context. Let’s consider
how this differs from participating in the page’s conversation.

12.5.2 Striking up a conversation

A remote method call can start a new long-running conversation and then participate
in that conversation on subsequent calls. When it’s time to say goodbye, another
remoting method can end the conversation. This style of conversational Ajax is great
for single-page applications where the page flow concept doesn’t apply. It’s even possi-
ble to get multiple conversations going at the same time. You swap between them by
changing the active conversation id on the remoting context prior to issuing a call.

 Let’s return to the trivia example and make it a cohesive quiz. We also give the user
a choice of category and three chances to get each answer right. The member is first
presented with a list of topics. Once a topic is selected, the quiz is started, which in
turn begins a long-running conversation. Each time a question is answered correctly
or the user fails all three attempts, it’s removed from the pool. When members reach
the last question, they get their score and the conversation ends. We stick to pseudo-
code since the method implementations aren’t important to understanding the con-
cept. The following shows the conversation component with the method stubs:

@Name("trivia")
@Scope(ScopeType.CONVERSATION)
public Trivia implements Serializable {
 @In private EntityManager entityManager;
 private Double score;

505Conversational remoting calls
 private List<TriviaQuestion> questions;

 @WebRemote
 public List<String> getCategories() { ... }

 @Begin @WebRemote
 public boolean selectQuiz(String category) { ... }

 @WebRemote(exclude = "answer")
 public TriviaQuestion drawNextQuestion() { ... }

 @WebRemote
 public boolean answerQuestion(Long id, String response) { ... }

 public TriviaQuestion findQuestion(Long id) { ... }

 @End @WebRemote
 public Double endQuiz() { ... }
}

Things kick off with a call to the getCategories() method:

Seam.Component.getInstance("trivia").getCategories(showCategories);

This call happens outside a long-running conversation. When the response comes
back from the server, it contains the conversation id of the temporary conversation.
The next remoting call, which is to the selectQuiz() method, sends this conversation
id along with the request:

Seam.Component.getInstance("trivia").selectQuiz(startQuiz);

The selectQuiz() method queries the database for the questions associated with the
category and stashes them in the questions property of the component. When the
response comes back from the selectQuiz() call, it contains the conversation id of the
long-running conversation that was started as a result of executing this method. How-
ever, it will not overwrite the conversation id on the remoting context since one has
already been established. There are two ways to force the conversation id to be updated:

■ Clear the conversation id before executing the method on the stub.
■ Explicitly overwrite the conversation id with the value returned from the server.

The second option is typically the best approach to take. I mentioned earlier that the
callback function accepts a remoting context as the last argument. This context contains
the conversation id that was assigned by the server. By accepting this parameter in your
callback function, you can transfer the conversation id to the page’s remoting context:

function startQuiz(ready, context) {
 Seam.Remoting.setConversationId(context.getConversationId());
 askQuestion();
}

The remoting context is now participating in the long-running conversation. Ques-
tions are drawn and answered until no more questions remain. When the questions
are exhausted, the endQuiz() method is called to end the conversation and report the
member’s score:

Seam.Component.getInstance("trivia").endQuiz(reportScore);

506 CHAPTER 12 Ajax and JavaScript remoting
The setConversationId() method can also be used to switch between parallel con-
versations. In some ways, JavaScript remoting is more capable of dealing with conver-
sations than regular JSF navigation because you have fine-grained control over the
active conversation.

 There’s one final form of conversation I want to mention before closing this chap-
ter. This one has to do with batching communication between the browser and the
server.

12.5.3 Storing up requests for a shipment

Ajax is chatty. While it may be a lot of little requests, they can take their toll on the
server. Studies have shown that the metric that matters most in server load is not the
size of the request, but rather the quantity of requests.7 Therefore, if possible, it’s a
good idea to try to stockpile the requests and send them all at once. By doing so you’ll
see a significant performance boost by reducing both server load and network traffic.
A good way to know if you have such a use case is to use Firebug to monitor the Ajax
requests being fired. If they’re occurring in rapid succession, you could benefit from
bundling them together.

 To begin queuing requests—executable stub method invocations and EL evalua-
tions—you call Seam.Remoting.startBatch(). You still use callback functions just as
you always would, only there is going to be a longer delay before those functions are
executed by the response. When you’re ready to have the pending requests sent off,
you call Seam.Remoting.executeBatch(). The requests are fired off in the order that
they were queued. Rest assured that the callback functions are also executed in this
order. If you decide at some point after opening the queue that you want to discard
the pending requests, simply call Seam.Remoting.cancelBatch() and exit batch
mode. The cancel batch feature is useful for letting the user discard pending changes
in the UI.

 Having Ajax requests participate in conversations minimizes the load that Ajax
requests would otherwise impose on the server. Conversely, remoting requests add a new
dimension to how conversations are able to serve the application, enabling you to take
advantage of Seam’s conversation model for single-page applications. If you’re commit-
ted to single-page applications, you may even want to consider switching to GWT.

12.6 Responding to GWT remoting calls
As you lean more toward the single-page application, you may reach a point where JSF
just doesn’t fit any longer. If that’s the case, you are probably better off moving to a UI
framework that’s designed around the use of remoting calls. One such library is the
Google Web Toolkit (GWT). A move from JSF to GWT doesn’t mean that you have to
leave Seam behind. GWT is intended for creating the user interface, which means it
must delegate work to transactional components on the back end. Seam remoting can
establish that bridge.

7 For “Best Practices for Speeding Up Your Web Site,” see http://developer.yahoo.com/performance/
rules.html.

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html

507Responding to GWT remoting calls
 This section is focused on the integration of Seam and GWT, not on GWT funda-
mentals. If you are a novice to GWT and are seeking in-depth information on the sub-
ject, I encourage you to pick up a copy of GWT in Action (Manning, 2007). Once
you’re comfortable with GWT, or if you’re just interested in finding out how the inte-
gration works, forge ahead.

12.6.1 A quick introduction to GWT integration

GWT is an Ajax-based framework that allows you to develop your web application
purely in Java, without having to write HTML or JavaScript. It offers a similar value
proposition as Ajax-based JSF libraries, but replaces the declarative UI with Java con-
structs. The toolkit compiles your Java code down to JavaScript, which means that you
don’t have to go through the pain of coding JavaScript and you can be confident that
the JavaScript is delivered to the browser in the most efficient manner possible.

 GWT’s remote procedure call (RPC) mechanism is designed to allow a GWT client
application to access server-side business components via Ajax. In the GWT tutorials, you
are told to use a Java servlet to handle the request. However, in this section, I show you
how to hook one of these RPC calls to a @WebRemote method on a Seam component. We
refactor the Trivia component so that it can act as a remote service to GWT, giving GWT
access to the trivia questions in the database. Seam’s GWT integration uses Seam remot-
ing, so be sure to have the Seam resource servlet installed when using this integration.

12.6.2 Preparing the remoting service

To make a Seam component accessible to GWT, you first have to convert it to a GWT
service. This step involves implementing GWT’s RemotingService interface. You will
end up with three Java classes. First, you define a synchronous interface that declares
the public methods of the Seam component. Trivia is now an interface:

public interface Trivia extends RemotingService {
 public TriviaQuestion drawQuestion();
 public void answerQuestion(Long id, String response);
}

All return values and parameters in a GWT service must be primitive or serializable.
That means the TriviaQuestion class must be declared as serializable using the
IsSerializable interface from GWT:

public class TriviaQuestion implements IsSerializable {...}

NOTE Although GWT 1.4 and above supports the java.io.Serializable inter-
face, at the time of this writing, Seam’s GWT integration doesn’t support
it. Also, to make a collection serializable, you need to specify the type it
contains using the special JavaDoc annotation @gwt.typeArgs. See the
GWT reference documentation for details.

GWT makes asynchronous calls to the remote service. But, as you learned earlier, asyn-
chronous methods can’t have return types. Instead, when an asynchronous call is made,
the status code and return value are directed to a callback object. The Trivia interface

508 CHAPTER 12 Ajax and JavaScript remoting
can’t accommodate such a call. That means it’s necessary to define an asynchronous ver-
sion of the service interface that can be called on by the GWT application. You must use
the following list of conventions when developing the asynchronous interface:

■ It must be in the same Java package as the synchronous interface.
■ Its name must be the name of the synchronous interface plus the suffix Async.
■ It must have the same methods as the synchronous interface, except the return

types must be void and each method must accept AsyncCallback as the final
argument.

Here’s the asynchronous interface for the trivia service that satisfies these requirements:

public TriviaAsync implements RemotingService {
 public void drawQuestion(AsyncCallback callback);
 public void answerQuestion(Long id, String response,
 AsyncCallback callback);
}

Although you have a pair of interfaces for the GWT service, you only have to provide
an implementation class for the synchronous interface. The asynchronous interface is
implemented at runtime by GWT and its method calls delegate to the implementation
of the synchronous interface. The AsyncCallback is an interface that defines two
methods: onSuccess() and onFailure(). The first accepts the return value of the syn-
chronous method, and the second accepts the Throwable object that reports the
nature of the failure.

 To complete the contract, the Trivia class from the earlier example is renamed to
TriviaImpl and now implements the synchronous interface. In addition, the name of
the component must match the qualified name of this interface. The component is
scoped to the session because conversations aren’t supported in the GWT integration
at the time of this writing:

@Name("org.open18.action.Trivia")
@Scope(ScopeType.SESSION)
public class TriviaImpl implements Trivia, Serializable { ... }

If you need to access a conversation, pass the conversation id as an argument to a
@WebRemote method. Within the method, manually restore the conversation using the
switchConversation() method on the built-in manager component. After switching
to (or restoring) the conversation, you can retrieve a conversation-scoped component
using the Seam API (i.e., Component.getInstance()).

 With the implementation of the Trivia service interface, you now have a bona fide
GWT service. Let’s see how it is called from GWT.

12.6.3 Making a GWT service call through Seam remoting

After looking up the GWT service in a GWT client application, you set the service entry
point to a URL that’s handled by the Seam resource servlet and subsequently the Seam
remoting library. The lookup for the trivia service is handled in the getTrivia-
Service() method on the GWT application class (shown here):

509Summary
private TriviaAsync getTriviaService() {
 String endpointURL = GWT.getModuleBaseURL() + "seam/resource/gwt";
 TriviaAsync service = (TriviaAsync) GWT.create(Trivia.class);
 ((ServiceDefTarget) service).setServiceEntryPoint(endpointURL);
}

Notice that this lookup casts to the asynchronous interface, which lets you provide a
callback to handle the response from the server. To use the Seam integration while
debugging a GWT application in hosted mode, start the application server that hosts
the Seam application as usual and then hardcode the absolute URL in the Java GWT
client code. You can use GWT.isScript(), which returns true in deployment mode
and false in hosted mode, thus making the code portable.

 Let’s use the endpoint in the GWT application that presents the trivia challenge.
Since the focus of this section is not on creating a full GWT application, only a small
excerpt is shown here. The method that sends the user’s response to be validated is
bound to a button named Guess:

final Button guess = new Button("Guess");
guess.addClickListener(new ClickListener() {
 public void onClick(Widget w) {
 getTriviaService().answerQuestion(question.getId(),
 answerInput.getText(), new AsyncCallback() {
 public void onFailure(Throwable t) {
 Window.alert("The call didn't go through");
 }
 public void onSuccess(Object data) {
 boolean result = ((Boolean) data).booleanValue();
 Window.alert(result ? "Correct!", "Wrong, try again.");
 }
 });
 }
});

This example demonstrates that using a Seam component as a GWT RPC service is rel-
atively straightforward. The best part is that you can back GWT with the power of Seam
rather than a clunky servlet. Seam remoting is very powerful because not only does it
allow you to call server-side methods from JavaScript, it also serves as the foundation
to integrate with other rich-client frameworks. This section presents GWT, but parallel
integrations are available for Laszlo, Flex, and Java FX. To assist with this integration,
Exadel has developed a seam-gen clone called Flamingo,8 which uses Maven 2 to gen-
erate projects that use either Flex or Java FX as a front end to Seam. Also check out
Granite Data Services’ GraniteDS,9 another framework that bridges Flex to Seam.

12.7 Summary
In this chapter, you learned to use two types of Ajax without having to get your hands
dirty with the XMLHttpRequest object. You began by using Ajax4jsf and ICEfaces to
execute Ajax requests that honor the JSF life cycle and perform partial rerendering of

8 http://exadel.com/web/portal/flamingo
9 http://graniteds.org

http://exadel.com/web/portal/flamingo
http://graniteds.org

510 CHAPTER 12 Ajax and JavaScript remoting
the page by grafting on updated branches of the JSF component tree. ICEfaces intelli-
gently calculates the portions of the UI component tree that need to be rerendered,
whereas Ajax4jsf relies on declarative hints. To give credit to Ajax4jsf, it’s capable of
creating Ajax interactions between components not designed with Ajax in mind.

 Although Ajax-based JSF components are powerful, there are times when you need
something leaner. As an alternative, you learned to bypass the JSF life cycle and let
JavaScript invoke server-side components as if they were local to the browser. The only
challenge is that you have to think in terms of asynchronous return values. You discov-
ered that Seam remoting allows JavaScript to speak the language of EL notation and
tap into conversations, two paramount features of Seam that are particularly useful for
single-page applications. Finally, you used Seam remoting to connect GWT to a Seam
component acting as a GWT RPC service.

 The two styles of Ajax presented in this chapter each have their own purpose. Ajax-
based JSF component libraries are critical when you want to alter areas of the page
under JSF’s control, such as a form or data table, while keeping in sync with the
server’s view of the page. JavaScript remoting is for lightweight calls that don’t involve
UI components. Both styles get you thinking in terms of incremental pages updates
rather than full-page refreshes.

 In the next chapter, you’ll escape the well-worn groove of HTML and JavaScript
and explore file uploading, dynamic graphic generation, PDF creation, multipart
emails, and themes. After taking in the lessons from the next chapter, you’ll find that
the applications you create become far more 3D, to play on the name of one of the
topics that await.

File, rich rendering,
 and email support
Many people playing their first round of golf question why anyone would want to
torture themselves with such a maddening game, concluding that those who play it
are simply masochistic. But anyone who has experienced the triumph of sinking
the ball in the hole from the tee box, clearing a large water hazard, or just taking a
great swing understands that there’s something extremely gratifying about golf
once you get the hang of it. The same can be said about an application framework.
There’s a lot to learn at first and it can seem overwhelming. Then things click. Your
newfound ability makes the experience enjoyable and you get to do things you’ve
never experienced before.

 You saw in the last chapter how Seam and JSF component libraries take the pain
out of using Ajax, making Ajax more accessible than ever. That’s just one example

This chapter covers
■ Handling file uploads
■ Creating PDF documents and charts
■ Sending emails with attachments
■ Customizing the UI with resource bundles
511

512 CHAPTER 13 File, rich rendering, and email support
of how Seam provides features that are both rewarding to develop and rewarding for
your customers and clients to use. In this chapter, you’ll learn how to do more fun and
enjoyable tasks in Seam, including handling file uploads, creating PDF documents,
rendering dynamic image data and charts, sending emails that include attachments,
and adding themes to your application. This sampling represents the set of features
that are quite often tossed out in the name of budget and time constraints. With
Seam, you discover that performing these tasks is a breeze. They’re all just variations
on what you have done so many times throughout this book.

 Because several of the examples covered in this chapter work with raw file and
image data, you’ll begin by learning how to accept file uploads and how to serve them
back to the browser.

13.1 Uploading files and rendering dynamic images
How many times have you cringed at the requirement of processing an image upload
and having it rendered on a page in the application? The problem isn’t that the task is
impossible, but that it isn’t as straightforward as dealing with plain form data. In fact,
accepting file uploads in Java has a well-founded reputation for being notoriously dif-
ficult. With Seam, it’s almost too easy. In this section, you’ll learn how to bind an
upload form element to a Seam component to accept an image and persist it to the
database. Then you’ll use Seam’s enhanced graphic component to turn that raw data
back into a dynamically rendered image.

13.1.1 Accepting file uploads

Seam practically sacrifices itself to protect you from the nastiness of file uploads in Java,
reducing the task to a simple EL value binding expression—it’s that dramatic. There are
no buffers, stream reading, or multipart boundaries to worry about. All of that is han-
dled for you transparently by the MultipartFilter and the MultipartRequest it wraps
around the incoming servlet request. If you already have the SeamFilter configured,
you don’t have to do anything else to enable Seam’s file upload support.
SEAM’S FILE UPLOAD UI COMPONENT

Seam provides a UI input component, <s:fileUpload>, for receiving file uploads
from a JSF form. The file data is passed through an EL value binding that references a
byte[] or InputStream property on a Seam component. The upload component can
also capture the content type of the file, the filename, and the file size and apply that
information to a Seam component along with the file data.

 To demonstrate a file upload, we augment the registration form to allow members
to upload a profile image, or avatar. Two properties have to be added to the Golfer
entity, image and imageContentType, to capture the image data and content type,
respectively. The relevant parts of the Golfer entity class are shown here:

@Entity
@PrimaryKeyJoinColumn(name = "MEMBER_ID")
@Table(name = "GOLFER")
public class Golfer extends Member {

513Uploading files and rendering dynamic images
 ...
 private byte[] image;
 private String imageContentType;

 @Column(name = "image_data")
 @Lob @Basic(fetch = FetchType.LAZY)
 public byte[] getImage() { return image; }
 public void setImage(byte[] image) { this.image = image; }

 @Column(name = "image_content_type")
 public String getImageContentType() { return imageContentType; }
 public void setImageContentType(String imageContentType) {
 this.imageContentType = imageContentType;
 }
}

I’ve decided to accept the file data as a byte[]. The lazy-fetch strategy prevents the
data from being loaded until the image data is requested, slightly reducing the mem-
ory footprint.

 The only remaining step is to add the upload field to the registration form and wire
it to the image and imageContentType properties on the Golfer entity. You also need
to set the enctype attribute on the <h:form> component tag to multipart/form-data.1

This setting tells the browser to send the form data using multipart data streams. Failure
to make this adjustment will prevent the browser from sending the file data. An excerpt
of the registration form with these changes applied is shown here:

<h:form id="registerActionForm" enctype="multipart/form-data">
 ...
 <s:decorate id="imageField" template="layout/edit.xhtml">
 <ui:define name="label">Profile image / avatar</ui:define>
 <s:fileUpload id="image"
 accept="image/png,image/gif,image/jpeg"
 data="#{newGolfer.image}"
 contentType="#{newGolfer.imageContentType}"/>
 </s:decorate>
 ...
</h:form>

You don’t have to make any changes to the RegisterAction class to accept the
uploaded image and have it stored in the database. The image data is bound to the
entity instance named newGolfer and automatically persisted to the database along
with the other fields on this entity. If you’re content with the image as it’s uploaded,
your work is done. However, it’s likely that you’ll want to put some limits on what the
user can upload.
CONTROLLING WHAT GETS UPLOADED

The accept attribute on <s:fileUpload> is used to specify a comma-separated list of
standard Multipurpose Internet Mail Extensions (MIME) types that can be uploaded.
The upload field in the registration form limits the acceptable file types to graphic
formats that Seam is capable of rendering dynamically. The use of wildcards is also

1 See http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.2 for information about this setting.

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.2

514 CHAPTER 13 File, rich rendering, and email support
permissible. You could accept all image MIME types, for instance, using the pattern
image/*. Even with this restriction in place, though, you should still validate the file
type in the action method.

 Seam exposes two global settings on the built-in component named multipart-
Filter to control file uploads. The maxUploadSize property allows you to cap the size
(in bytes) of the file being uploaded. There’s no limit in the default configuration. You
use the createTempFiles property to control whether Seam uses a temporary file to
store the uploaded file data or whether the file data is held in memory, which is the
default. These two properties can be adjusted using component configuration as follows:

<web:multipart-request max-upload-size="5242880" create-temp-files="true"/>

While the maxUploadSize property puts a limit on file size of the uploaded profile
image, it doesn’t put restrictions on its dimensions. Once the profile image has
uploaded, it’s a good idea to scale it so that it doesn’t steal too much space on the
page when rendered.
PROCESSING AN UPLOADED IMAGE

The uploaded image can be resized in the action method before the newGolfer
instance is persisted. The class org.jboss.seam.ui.graphicImage.Image, which is
bundled with the jboss-seam-ui.jar file, makes resizing and scaling images a cinch. List-
ing 13.1 shows the code added to the register() action method that manipulates the
uploaded image. This code is just a starting point. If you use it in your application,
you’ll likely want to make it more configurable by eliminating the hardcoded values
you see used here.

if (newGolfer.getImage() != null) {
 try {
 Image image = new Image();
 image.setInput(newGolfer.getImage());
 if (image.getBufferedImage() == null) {
 throw new IOException("The profile image data is empty.");
 }

 if (!image.getContentType().getMimeType()
 .matches("image/(png|gif|jpeg)")) {
 facesMessages.addToControl("image",
 "Invalid image type: " + image.getContentType());
 }
 if (image.getHeight() > 64 || image.getWidth() > 64) {
 if (image.getHeight() > image.getWidth()) {
 image.scaleToHeight(64);
 }
 else {
 image.scaleToWidth(64);
 }
 newGolfer.setImage(image.getImage());
 }
 } catch (IOException e) {

Listing 13.1 Resizing the profile image

Reads in
image data

Validates
MIME type

Restores
resized image

515Uploading files and rendering dynamic images
 log.error("An error occurred reading the profile image", e);
 facesMessages.addToControl("image", FacesMessage.SEVERITY_ERROR,
 "An error occurred reading the profile image.");
 newGolfer.setImage(null);
 newGolfer.setImageContentType(null);
 return null;
 }
}

Once you’ve accepted the raw file data into the database, you need to render it. After
all, what good would it be? Seam can render raw file data in addition to static files
read from the classpath and input streams, in any of the following ways:

■ As an image in a web page
■ As an image in a PDF document
■ Pushed to the browser to be downloaded
■ As an inline image in an email or as an email attachment

Let’s begin by exploring how to render the raw image data in a web page using Seam’s
enhanced graphic UI component. As the chapter progresses, you’ll learn about the
other ways to use the raw file data listed here. These additional options build on this
initial lesson in that they’re merely variations on the graphic UI component.

13.1.2 Rendering images from raw data

The Seam UI component set includes an enhanced graphic component capable of oper-
ating on a dynamically generated image. Seam’s graphic component, <s:graphic-
Image>, is an extension of the standard JSF graphic component, <h:graphicImage>. In
addition to the features supported by the standard component, Seam’s version has sup-
port for rendering raw image data and performing image transformations.
RENDERING DYNAMIC IMAGES WITH SEAM’S ENHANCED GRAPHIC UI COMPONENT

The standard <h:graphicImage> tag only accepts a string value or an EL value expres-
sion that resolves to a string value. This value is used to serve a static graphic resource
from the web application context (e.g., /img/golfer.png). The <s:graphicImage> tag
supports a much broader range of Java types resolved from an EL value expression.
Table 13.1 lists the supported dynamic Java types from which the <s:graphicImage>
can read image data and the image MIME types that the component can handle.

 Like the <h:graphicImage> component, the <s:graphicImage> produces a stan-
dard HTML element. The difference is that Seam generates a random filename
for the image, which is used in the src attribute of the tag and served by the

Supported Java types Supported MIME types

String (any classpath resource)
byte[]
java.io.File
java.io.InputStream
java.net.URL

image/png
image/jpeg (or image/jpg)
image/gif

Table 13.1 The Java types
and MIME types supported by
<s:graphicImage>

516 CHAPTER 13 File, rich rendering, and email support
SeamResourceServlet. If you don’t want the filename to be random, you can specify
a fixed filename in the fileName attribute. You don’t need to put the extension of
the image in the filename; Seam appends the extension automatically according to
image type.

 You should recognize that one of the supported Java types listed in table 13.1 is
byte[], which is the property type that holds the golfer’s profile image. Let’s use the
<s:graphicImage> component tag to display the profile image uploaded during the
registration process on the golfer’s profile page. The image data is specified in the
value attribute. A fallback image is used if the golfer doesn’t have a profile image.
The golfer’s username is used as the filename of the image to produce a URL that
remains stable and thus allows the browser to cache the image. Finally, alternate text is
provided for browsers that can’t render images:

<s:graphicImage value="#{selectedGolfer.image ne null ?
 selectedGolfer.image : '/img/golfer.png'}"
 fileName="#{selectedGolfer.username}"
 alt="[profile image]"/>

In this example, we display image data retrieved from the database. However, you can
also use a Seam component to create an image using Java 2D. The image can be prepared
in a Seam component, converted to one of the accepted Java types listed in table 13.1,
and then bound to the <s:graphicImage> tag. But before you venture into Java 2D, you
may be able to leverage one of the basic image transformations that Seam provides.
IMAGE TRANSFORMATIONS

Given that the <s:graphicImage> component loads image data into memory, it stands
to reason that the image can be transformed prior to being rendered. One of three
transformation component tags can be nested within <s:graphicImage> to apply
transformations to the image using Java 2D, which are listed in table 13.2. Each com-
ponent tag accepts one or more parameters that control how the transformation is
applied. These transformations are the same as those provided by the Image class
from the Seam API introduced in section 13.1.

 The golfer’s profile image is reduced to a reasonable size when it’s initially uploaded.
But it may be necessary to scale it even further to create a thumbnail for personalizing
a review or comment that the golfer posts somewhere on the site, as shown here:

Table 13.1 Transformation components that can be used with <s:graphicImage>

Component tag What it does... Parameters

<s:transformImageSize> Resizes the image to a specific height, width,
or both. The aspect ratio can be fixed if scaling
is performed on a single dimension.

width
height
maintainRatio
factor

<s:transformImageType> Converts the image to either PNG or JPEG. contentType

<s:transformImageBlur> Performs a blur on the image. radius

517PDF generation with iText
<s:graphicImage value="#{_review.reviewer.image ne null ?
 _review.reviewer.image ? '/img/golfer.png'}"
 fileName="#{_review.reviewer.username}-36-thumbnail"
 alt="[thumbnail of profile image]">
 <s:transformImageSize width="36" maintainRatio="true"/>
</s:graphicImage>

You can easily create your own transformation component by implementing the
interface org.jboss.seam.ui.graphicImage.ImageTransform. This interface has
one method, applyTransform(), which accepts the Image type from the Seam API
that you worked with in section 13.1. To make your component available to JSF, you
have to go through the song and dance of setting up a JSF component. If you’re
going to do so, check out the source code in the Seam UI module and have a good
JSF reference close by such as JavaServer Faces in Action (Manning, 2004) or Pro JSF and
Ajax (Apress, 2006). To save yourself time, take advantage of the Ajax4jsf Component
Development Kit (CDK).

 You’ll have the opportunity to visit the <s:graphicImage> tag again when you learn
how to send emails with Seam in section 13.4. There’s an equivalent graphic compo-
nent for embedding dynamic images in a PDF document. Speaking of PDF, it’s time to
move away from HTML and explore how to create PDF documents dynamically.

13.2 PDF generation with iText
You may be wondering, “What can an application framework do to help me create PDF
documents?” After all, most other frameworks provide a halfhearted integration
attempt by only helping you serve the PDF to the browser, leaving the work of creating
the PDF up to you. Well, with Seam, the answer to this question is plenty.

 You see, Seam goes well beyond just playing matchmaker between the browser and
the PDF renderer. In Seam, creating and serving a PDF is handled just like any other JSF
view. Seam provides a set of UI component tags that generate PDF content. When the
template is processed, the view handler serves a PDF document to the browser, generated
by the open source (LGPL/MPL) iText Java-PDF library, rather than an HTML document.

 The PDF component tags extend from the tag handler in the Facelets API, so you
must use Facelets to generate PDF documents in this way. To enable PDF support in your
application, you need to add two files to the application classpath: itext.jar and jboss-
seam-pdf.jar (both of which you’ll find in the lib folder of projects generated with seam-
gen). You can then begin using the PDF component tags in your Facelets templates.

13.2.1 Laying out a PDF with UI components

A Facelets template that renders a PDF document uses <p:document> as the root tag.
Aside from the new root tag and the accompanying palette of PDF tags, there’s no dif-
ference in how you develop it compared to any other Facelets template. You can use
Facelets and Seam composition tags (e.g., <ui:composition>, <s:decorate>), non-
rendering JSF component tags (e.g., <h:panelGroup>, <s:fragment>), and JSF compo-
nent tags that produce HTML to build the JSF UI component tree. Since the PDF

518 CHAPTER 13 File, rich rendering, and email support
template is rendered by JSF just like any other JSF view, you can front-load the request
with Seam’s page-oriented controls (page actions, page parameters, and page restric-
tions). That’s a pretty powerful combination. Notice that nowhere in that description
did I mention Java. In this scenario, we want to avoid the use of Java to reuse our Face-
lets knowledge to create dynamic views. There’s no need to step into a Java API to per-
form this work.

 For the most part, the PDF component tags map one to one with the functionality
provided by iText. An iText PDF document rendered through Seam consists of para-
graphs, images, headers, footers, chapters, sections, tables, lists, bar codes, and even
Swing components. You can customize the font size, font color, and background color
on most elements. Some limitations exist, but the PDF component tags should be suffi-
cient for all but the most complex requirements.

 Rather than itemize each and every tag in the PDF component palette, I provide a
comprehensive example that puts many of the tags to use. This approach will give you
real-world experience with the PDF tags, which you can supplement by consulting the
reference documentation for the specifics of each tag. In this example, we generate a
scorecard in PDF format for a golf course. The scorecard is the grid of holes and tee
sets that you use to record the number of strokes you took on each hole. It’s fairly
complex to render, but also aesthetically pleasing. Thus, I guarantee that this will be a
rewarding experience.
SETTING UP FOR THE SCORECARD

To display the full scorecard for a course, it’s necessary to use all the entities in the
golf course model: Facility, Course, Hole, TeeSet, and Tee. The associations
between these entities are configured to be lazy loaded. However, as you’ve learned,
it’s best to avoid lazy loading in cases when using it wouldn’t be efficient. For instance,
rendering the scorecard would cause a large number of lazy associations to be
crossed, in turn causing a lot of queries. To optimize, we want to use a page action to
eagerly fetch all the necessary data in a single query and then make that data available
to the Facelets template. The Scorecard component, shown in listing 13.2, handles
this preload logic in the load() method. The abundance of join fetch clauses in the
JPQL that’s executed in this method represents the eager fetching of the associations.

 The Scorecard component also provides a handful of utility methods needed to
render portions of the scorecard. The implementation details aren’t important to this
discussion, so the method bodies are hidden (you can see them in the book’s source
code). The use of the terms out and in represent the two halves of the golf course. Out
is the first nine holes, leading away from the clubhouse. In is the back nine holes,
returning to the clubhouse. The methods getTeesOut() and getTeesIn() are
invoked from the Facelets template using a parameterized value expression.

@Name("scorecard")
public class Scorecard extends EntityController {
 private static final String JPQL =

Listing 13.2 The component that eagerly fetches the scorecard data

519PDF generation with iText
 "select distinct c from Course c " +
 "join fetch c.facility join fetch c.holes " +
 "join fetch c.teeSets ts join fetch ts.tees " +
 "where c.id = #{scorecard.courseId}";

 @RequestParameter private Long courseId;

 @Out private Course course;

 public void load() {
 course = (Course) createQuery(JPQL).getSingleResult();
 }

 public List<TeeSet> getTeeSets() { ... };
 public List<TeeSet> getMensTeeSets() { ... };
 public List<TeeSet> getLadiesTeeSets() { ... };
 public List<Integer> getHoleNumbersOut() { ... };
 public List<Integer> getHoleNumbersIn() { ... };
 public List<Hole> getHolesOut() { ... };
 public List<Hole> getHolesIn() { ... };
 public List<Tee> getTeesOut(TeeSet teeSet) { ... };
 public List<Tee> getTeesIn(TeeSet teeSet) { ... };
}

A scorecard is complex and so is the Facelets template needed to generate it. We get
there in two phases. In the first phase, we get our feet wet with a simple PDF report.
A BASIC PDF REPORT

The first step is to create the Facelets template exportCourseInfo.xhtml, shown in list-
ing 13.3. This template renders basic information about a course and the facility logo.
Notice that the root of the template is <p:document> and that the template declares
the following namespace, which imports the PDF UI component tags:

p:xmlns="http://jboss.com/products/seam/pdf"

Next, we connect a page action to this view ID to preload the scorecard data, defined
in the exportCourseInfo.page.xml descriptor:

<page action="#{scorecard.load}"/>

The page action isn’t a prerequisite for rendering a PDF, but it’s relevant in this scenario.

<p:document xmlns="http://www.w3.org/1999/xhtml"
 xmlns:p="http://jboss.com/products/seam/pdf"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:s="http://jboss.com/products/seam/taglib"
 title="#{course.name}"
 creator="Open 18"
 pageSize="LETTER"
 type="#{not empty param.type ? param.type : 'pdf'}">
 <p:image value="#{course.facility.logo}"
 rendered="#{course.facility.logo != null}">
 <s:transformImageSize height="96" maintainRatio="true"/>
 </p:image>
 <p:font size="18">

Listing 13.3 A simple PDF template that renders text, an image, and a list

B

C
D

E

520 CHAPTER 13 File, rich rendering, and email support
 <p:paragraph>#{course.name}</p:paragraph>
 </p:font>
 <p:font size="8" color="darkgray">
 <p:paragraph>Designed by #{course.designer}</p:paragraph>
 <p:paragraph spacingAfter="4">
 <p:font style="bold">#{course.numHoles}</p:font> HOLES #{' - '}

 ➥<p:font style="bold">PAR</p:font> #{course.totalMensPar}
 </p:paragraph>
 <p:list listSymbol="-">
 <ui:repeat var="ts" value="#{scorecard.teeSets}">
 <p:listItem>#{ts.name} (#{ts.totalDistance} yds)</p:listItem>
 </ui:repeat>
 </p:list>
 </p:font>
</p:document>

As you can see in listing 13.3, it doesn’t take much to create a PDF document. The
<p:document> tag B notifies the view handler to initialize a new iText PDF document.
If used alone, this tag will produce an empty document and push it to the browser. A
wide range of optional attributes are available on the <p:document> tag that you can
use to adjust the properties of the PDF document, such as title, subject, author,
keywords, and creator. You can also change the orientation and size of the page. The
default page size is A4, but here it has been changed to LETTER C.

 iText documents are optimized to be rendered as PDF, the default, but can also
produce RTF or HTML. You can set the output format using the type attribute D,
which accepts three values: pdf, rtf, and html. Here, the output format is controlled
by the request parameter type, if present.

NOTE The RTF and HTML output formats support the same features as PDF
with the exception of tables, images, and inline HTML. If any of these
features are present in the template, they’re ignored when the docu-
ment is rendered.

Moving on to the content of the document, the template includes one image E, three
paragraphs F, and one bulleted list G. The <p:image> tag works just like the <s:graph-
icImage> tag. It can read images from the Java types in table 13.1 and can apply image
transformations. The <p:image> tag is used here with <s:transformImageSize> to
reduce the height of the image to 96 pixels, but the tag also has built-in scaling func-
tionality. The <p:font> tag applies font settings to all descendent tags until another
<p:font> tag is encountered that alters those settings. All inline text must be enclosed
in a <p:paragraph> tag or strange things occur (exceptions include <p:header>,
<p:footer>, and <p:listItem>). You can also use a <p:font> tag within a span of para-
graph text to change the font characteristics for a single word or phrase.

NOTE There are some cases when the font settings aren’t inherited by a nested
<p:font> tag. For instance, if you use a <p:font> around a <p:list> and
then use the <p:font> to customize the contents of a <p:listItem>, the
font settings from the outer tag—such as font size—aren’t inherited,
forcing you to have to apply them again on the nested tag. Expect this to
be fixed in the future.

F

G
H

521PDF generation with iText
It’s possible to use the Facelets iteration component
tag H to generate branches of the component tree
dynamically. In this case, we iterate over the tee sets on
the course and display the tee set name and total dis-
tance in yards of each set as list items. The final result
is shown in figure 13.1.

 As you can see, creating a report in PDF format is no
more difficult than creating a web page. But you aren’t
done yet. Most reports that you have to build probably
require some sort of tabular data. Seam offers a set of
component tags for creating PDF tables that make it no
more difficult than using the JSF panel grid component
for rendering HTML tables. We put these PDF table tags
to the test by rendering a complete course scorecard,
which shows the tee sets as well as the distances for each
hole in a tee set.

13.2.2 Working with tables and cells

PDF tables are created in Seam using the <p:table> and <p:cell> component tags.
The <p:table> tag works in precisely the same way as the <h:panelGrid> tag from the
standard JSF component palette, except that the child components must be wrapped
in a <p:cell> tag. You explicitly state how many columns the table has by using the
columns attribute. Once an equivalent number of <p:cell> tags have been encoun-
tered, a new row is started. The contents of a <p:cell> tag can be another table, giv-
ing rise to nested tables. A single cell can be made to span multiple columns using the
colspan attribute on <p:cell>. It’s not possible, however, for a cell to span more than
one row (i.e., rowspan).

TIP As an alternative to PDF tables, you can use HTML tables. You can use
other HTML elements as well, including JSF component tags that produce
HTML. To add HTML to the PDF, you nest it within a <p:html> element.
Keep in mind that the HTML is converted to iText objects internally, so
you are limited to what iText can produce. You can also use <p:swing>
for rendering a Swing component and <p:barcode> to create a bar code.
The <p:barcode> tag can also be used in an HTML page.

To demonstrate the table component tag in action, we use it to help render the score-
card for a golf course. This use case offers enough complexity to show off many of the
advanced capabilities of the table tag, rather than having me list them in a table.
Before jumping into the template, though, I briefly explain the goal.

 The scorecard consists of a single table that’s logically partitioned into two halves.
The left side of the card has information about the course’s front nine holes (Out),
and the right side of the card has information about the course’s back nine holes (In).
The first row displays the hole numbers. Following that row are rows for each tee set.

Figure 13.1 A PDF document
showing basic course and tee
set information

522 CHAPTER 13 File, rich rendering, and email support
The tee set rows consist of distance values that correspond with each hole number.
Finally, there’s a row that displays the par for each hole. The template that produces
this markup, exportScorecard.xhtml, is shown in listing 13.4.

<p:document xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:p="http://jboss.com/products/seam/pdf"
 title="#{course.name} Scorecard"
 orientation="landscape">
 <p:font size="8">
 <p:table columns="22" widthPercentage="100" headerRows="1"
 widths="3 1">
 <f:facet name="defaultCell">
 <p:cell padding="5" noWrap="true"
 horizontalAlignment="center" verticalAlignment="middle"/>
 </f:facet>
 <p:font size="8" color="white" style="bold">
 <p:cell horizontalAlignment="left" grayFill=".25">
 <p:paragraph>Hole</p:paragraph>
 </p:cell>
 <ui:repeat var="_holeNum" value="#{scorecard.holeNumbersOut}">
 <p:cell grayFill=".25">
 <p:paragraph>#{_holeNum}</p:paragraph>
 </p:cell>
 </ui:repeat>
 <p:cell grayFill=".25"><p:paragraph>Out</p:paragraph></p:cell>
 <ui:repeat var="_holeNum" value="#{scorecard.holeNumbersIn}">
 <p:cell grayFill=".25">
 <p:paragraph>#{_holeNum}</p:paragraph>
 </p:cell>
 </ui:repeat>
 <p:cell grayFill=".25"><p:paragraph>In</p:paragraph></p:cell>
 <p:cell grayFill=".25"><p:paragraph>Total</p:paragraph></p:cell>
 </p:font>
 <ui:repeat var="_ts" value="#{scorecard.mensAndUnisexTeeSets}">
 <p:font size="8">
 <p:cell horizontalAlignment="left"
 backgroundColor="#{_ts.color}">
 <p:paragraph>#{_ts.name}</p:paragraph>
 </p:cell>
 <ui:repeat var="_tee" value="#{scorecard.getTeesOut(_ts)}">
 <p:cell backgroundColor="#{_ts.color}">
 <p:paragraph>#{_tee.distance}</p:paragraph>
 </p:cell>
 </ui:repeat>
 <p:cell backgroundColor="#{_ts.color}">
 <p:paragraph>#{_ts.distanceOut}</p:paragraph>
 </p:cell>
 <ui:repeat var="_tee" value="#{scorecard.getTeesIn(_ts)}">
 <p:cell backgroundColor="#{_ts.color}">
 <p:paragraph>#{_tee.distance}</p:paragraph>
 </p:cell>

Listing 13.4 The PDF template that renders the course scorecard

B

C

D

E
F

G

H

523PDF generation with iText
 </ui:repeat>
 <p:cell backgroundColor="#{_ts.color}">
 <p:paragraph>#{_ts.distanceIn}</p:paragraph>
 </p:cell>
 <p:cell backgroundColor="#{_ts.color}">
 <p:paragraph>#{_ts.totalDistance}</p:paragraph>
 </p:cell>
 </p:font>
 </ui:repeat>
 <p:font size="8" style="bold">
 <p:cell horizontalAlignment="left" grayFill=".9">
 <p:paragraph>Par</p:paragraph>
 </p:cell>
 <ui:repeat var="_hole" value="#{scorecard.holesOut}">
 <p:cell grayFill=".9">
 <p:paragraph>#{_hole.mensPar}</p:paragraph>
 </p:cell>
 </ui:repeat>
 <p:cell grayFill=".9">
 <p:paragraph>#{course.mensParOut}</p:paragraph>
 </p:cell>
 <ui:repeat var="_hole" value="#{scorecard.holesIn}">
 <p:cell grayFill=".9">
 <p:paragraph>#{_hole.mensPar}</p:paragraph>
 </p:cell>
 </ui:repeat>
 <p:cell grayFill=".9">
 <p:paragraph>#{course.mensParIn}</p:paragraph>
 </p:cell>
 <p:cell grayFill=".9">
 <p:paragraph>#{course.totalMensPar}</p:paragraph>
 </p:cell>
 </p:font>
 </p:table>
 </p:font>
</p:document>

The default layout for a document is portrait, but the layout of this document is set to
landscape B to make room for the scorecard. If a table is wider than the document,
the text in each cell is forced to wrap. If wrapping is required but the noWrap attribute
on <p:cell> is false, the text in the cell may overrun the cell borders (and look ugly).

 The table is declared using the <p:table> tag. The scorecard table has 22 columns
and is configured to span the width of the page C. The first row is treated as a header,
as defined by the headerRows attribute. This row is repeated if the table is divided
across a page boundary. The widths attribute dictates the width ratios of the cells. In
this example, the first column is three times as wide as the other columns in the table.
If the widths attribute isn’t specified, the cells are evenly distributed. As an alternative
to using the widths attribute, we could have used 24 columns and added colspan="3"
to the first <p:cell> tag in each row to achieve the same effect.

 The content of the table is created by repeating the <p:cell> across columns and
rows, either explicitly F or indirectly using an iteration component G. To help with
the task of defining cells, the <p:table> tag supports “Don’t Repeat Yourself” (DRY)

524 CHAPTER 13 File, rich rendering, and email support
semantics by offering a cell prototype, declared in the defaultCell facet D. You can
place all of the attributes you would like to have applied to each <p:cell> in this pro-
totype cell. You can, of course, override these settings as needed in the <p:cell> tag.
Here we establish the default padding, wrap behavior, and alignments. You can also
surround the whole table, or a series of cells, in a <p:font> tag to have font settings
applied to descendent cells.

NOTE The <p:cell> must have a <p:paragraph> tag as its first and only ele-
ment. Although the text will still render without being wrapped in
<p:paragraph>, the font settings will not be applied to it.

The final result of the scorecard is shown in figure 13.2.

The scorecard makes liberal use of color and grayscale shading. To apply a grayscale
background to a cell, you set the grayFill attribute on <p:cell> F to a value
between 0 and 1 (lower is darker). You can also apply colors to text, cell backgrounds,
tables, sections, and image borders. The scorecard example makes use of color for
the header row text E and most of the cell backgrounds H. Color is important for
making an attractive document, so let’s take a closer look at what types of color values
are accepted.

13.2.3 Adding a splash of color

The iText library uses the AWT Color object for applying color to a PDF document or
a chart, covered later. Given that you are working in a Facelets template, you need a
translation layer. Fortunately, Seam provides one. Seam lets you choose from several
color code sets that you can use to specify a color value in a component tag attribute.
That value is then translated into a Color object and passed to the iText API. The pos-
sible value types you can enter are shown in table 13.3. If you enter an invalid color
value, an exception will be thrown when the document is rendered.

 The AWT color constant names are the most convenient approach and should be
sufficient if basic colors will do. If you’ve spent a lot of time with Cascading Style
Sheets (CSS), you may be fluent in hexadecimal color codes and may choose to use

Figure 13.2 A PDF document showing a golf course scorecard

525PDF generation with iText
those instead. For those of you who can even comprehend octal numbers, you’ll be
glad to know they’re supported too.

 You’ve seen many of the features offered by Seam’s PDF component palette in this
section. You’ll be excited to hear that equivalent support for creating Microsoft Excel
documents is coming your way soon, as part of Seam 2.1. Although the Excel tags
aren’t covered in this book, you have the background knowledge you need to be able
to use them.

 There are some limitations with the template-based approach, but remember that
if you find yourself pushing the envelope of what these tags can handle, you can
always switch to using the iText API directly. If you do make that switch, you’ll be glad
to know that, in addition to the component tags, Seam’s PDF module includes an API
for serving PDF documents to the browser. We first look at customizing the document
store servlet to handle missing documents and serve friendly file extensions, and then
dig deeper into how to use it to serve your own documents.

13.2.4 Graceful failures and friendly file extensions

Seam serves PDF documents from the JSF phase listener DocumentStorePhaseLis-
tener. After a document is created from a Facelets template, it’s stored in the built-in
component named documentStore under a unique id. Seam redirects to a servlet path
that begins with /seam-doc, passing the id in the request parameter docId. The phase
listener traps requests matching this path, reads the id from the request parameter,
and pushes the document with this id to the browser. Here’s an example of the servlet
path for a document:

/seam-doc.seam?docId=10&cid=3

Notice the conversation token in the URL. The documentStore component is scoped to
the conversation. Thus, documents exist for the lifetime of the conversation that cre-
ated them. If a long-running conversation isn’t active, the document lasts for a logical
request (i.e., a temporary conversation). It’s likely that if the user bookmarks the URL
of the PDF document, he or she will encounter an error when trying to retrieve the doc-
ument again because the URL is stale and the document no longer exists. To help
the user understand why the request doesn’t work, you can configure a custom error
page. First, add the component namespace http://jboss.com/products/seam/pdf,

Table 13.2 Possible color values used in the PDF or chart components

Type Identified by Examples

java.awt.Color constant Lowercase constant name red, green, blue

Hexadecimal number Leading #, 0x, or 0X #FF0000, 0x00FF00, 0X0000FF

Octal number Leading 0 077600000, 0177400, 0377

UIColor JSF client identifier <p:color id="maroon"
color="#8B0000"/>

526 CHAPTER 13 File, rich rendering, and email support
prefixed with pdf, to the component descriptor. Then, configure the documentStore
component as follows:

<pdf:document-store error-page="/missingDoc.seam"/>

It’s also possible to configure this built-in component to switch from using a JSF phase
listener to a servlet to serve the PDF document. The benefit of using a servlet is that
users won’t see a cryptic /seam-doc.seam?docId=4, but rather a friendly one that ends
in the .pdf file extension. There are two steps to making this change. First, add the
org.jboss.seam.pdf.DocumentStoreServlet to the web.xml descriptor to trap serv-
let paths that end in .pdf or .rtf:

<servlet>
 <servlet-name>Document Store Servlet</servlet-name>
 <servlet-class>org.jboss.seam.pdf.DocumentStoreServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Document Store Servlet</servlet-name>
 <url-pattern>*.pdf</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Document Store Servlet</servlet-name>
 <url-pattern>*.rtf</url-pattern>
</servlet-mapping>

Then let the document store component know that this servlet is available and can be
used by adding the use-extensions attribute to the component configuration:

<pdf:document-store use-extensions="true" error-page="/missingDoc.seam"/>

When extensions are enabled, Seam prepares the document URL by removing the
default suffix from the view ID and replacing it with the file extension of the docu-
ment. A redirect is then issued to the new path. Here’s an example of the servlet path
for the scorecard:

exportScorecard.pdf?docId=10&cid=3

The filename in the path is completely irrelevant to Seam. The only piece of informa-
tion that matters is the docId request parameter. However, the friendly URL is
extremely relevant to an end user because the document id doesn’t carry any seman-
tic value. For this reason, I highly recommend that you use the file extension feature.

 Although the document store component was designed to serve documents gener-
ated using the <p:document> tag, you can also use it to serve your own binary docu-
ments (e.g., PDF, Word, Excel), either served from a database or that you generate
using a document builder API such as iText or Apache POI. On the other hand, if
you’re happy using Seam’s PDF support to create documents using Facelets templates,
you can skip this next section.

13.2.5 Serving dynamic documents

I promised earlier that you would see other ways to serve a binary document. One option
is to create a custom servlet. Seam makes this easy by allowing any Seam component that

527PDF generation with iText
extends AbstractResource to be used as a servlet. You override the method get-
ResourcePath(), which is appended to /seam/resource, to indicate the URL that your
servlet handles. You then override the getResource() method to serve the resource. But
that still puts a lot of burden on you to prepare the file. There’s an easier way.

 In addition to the template-based approach to creating PDF documents, Seam has
support for managing a file download, which is tricky to do on your own, especially in
a JSF application. The built-in documentStore component handles the dirty work of
preparing and serving a file to the browser. You simply inject documentStore into your
component, use it to store the file data under a unique id, and then redirect the user
to a URL that is processed by the DocumentStorePhaseListener (or DocumentStore-
Servlet). Seam takes over from there. Listing 13.5 shows an example of this process
using raw PDF data. Note that Seam doesn’t import the context variable prefix
org.jboss.seam.pdf by default, so you must import it in order to use the unqualified
component name documentStore.

package org.jboss.seam.report;
import ...;

@Name("reportGenerator")
@Import("org.jboss.seam.pdf")
public class ReportGenerator() {
 @In private Manager manager;
 @In private DocumentStore documentStore;
 @In private FacesContext facesContext;

 public void generate() {
 byte[] binaryData = ...;
 DocumentData data = new DocumentData("report"
 new DocumentData.DocumentType("pdf", "application/pdf"),
 binaryData);
 String docId = documentStore.newId();
 documentStore.saveData(docId, data);
 String documentUrl =
 documentStore.preferredUrlForContent(
 data.getBaseName(),
 data.getDocumentType().getExtension(),
 docId);
 redirect(documentUrl);

 }

 protected void redirect(String url) {
 try {
 facesContext.getExternalContext().redirect(
 manager.encodeConversationId(url));
 }
 catch (IOException ioe) { throw new RedirectException(ioe); }
 }
}

As you can see, Seam provides a convenient way to push binary documents to the
browser, comparable to what other frameworks offer. In most cases, though, you won’t

Listing 13.5 A component that pushes a dynamic document to the browser

Wraps binary
data as Seam
document

Stores document
using unique id

Builds URL to
serve document

Adds
conversation
token to URL

528 CHAPTER 13 File, rich rendering, and email support
use this approach unless you absolutely need the extra power of creating documents
in Java. Instead, you’ll take advantage of Seam’s template-based approach, which goes
well beyond where other frameworks leave off.

 So far you have learned to render dynamic images and PDF documents. Next up is
charts, another type of dynamic image. Charts can be rendered in both an HTML page
and a PDF document. Not to spoil the excitement, but after the next section, you’ll
learn to include images, PDFs, and charts in an email with almost no additional work.

13.3 Quick and easy charting with JFreeChart
Creating charts in Seam is, you guessed it, just another Facelets template—only this
time, it’s just a fragment of a template. Learning to use Seam’s charting module is sim-
ply a matter of learning how to use the chart-related UI component tags.

 Charts provide a visual representation of data sets. In technical terms, that means
dynamic graphic generation. Seam’s charting module is based on the open source
(GNU General Public License, or GPL) JFreeChart chart library. JFreeChart offers a
wide variety of chart types and can render them in several image formats. At the time
of this writing, Seam only offers a subset of the JFreeChart functionality, but the idea is
to eventually bring most of the chart types under the wings of Seam’s Facelets-based
infrastructure. Seam currently supports bar charts, pie charts, and line plots, all of
which are rendered in JPEG format.

 To enable charting support in your application, you add jfreechart.jar and jcom-
mon.jar to the application’s classpath. Then, it’s just a matter of hooking the UI
component tags up to data. Seam’s charting support is bundled in Seam’s PDF mod-
ule, and the component tags share the same UI component set. That doesn’t mean
you can only use charts in PDF documents, though. They can be rendered in HTML
pages too!

13.3.1 Chart basics

To add a chart to your Facelets template, you first register the UI component library in
the root element of the template using the same namespace as for the PDF compo-
nent tags:

xmlns:p="http://jboss.com/products/seam/pdf"

The charts that Seam supports, along with the corresponding component tag, are as
follow:

■ Bar chart—<p:barchart>

■ Pie chart—<p:piechart>

■ Line chart—<p:linechart>

Each chart consists of several common configuration elements, including title, leg-
end, orientation, width, height, and a wide variety of paint, stroke, gridline, and bor-
der display options. If you’re a fan of cool graphics, your favorite display option might
be the 3D feature, which gives the chart visual depth. Appearances aside, the most
important aspect of every chart is the data.

529Quick and easy charting with JFreeChart
 A chart consists of one or more sets of data, represented by the <p:series> tag, and
one or more nested data points in each series, represented by the <p:data> tag. The
tags can map one to one with the data displayed, or you can nest either of them in a
repeating component, such as <ui:repeat>, to render a dynamic collection of data.

 The crowning feature of charts is that they are eye-catching. Otherwise, tabular data
would do just fine. That means adding a splash of color. There are attributes on each
component tag that allow you to specify the color for various regions of the chart. These
attributes all end in Paint. The JFreeChart library also uses the AWT Color object for
defining colors. Thus, Seam offers the same translation for color values in charts as it
does for PDF documents. Refer back to table 13.3 for the possible color values.

 I now take you through each chart type, demonstrating how to use the <p:series>
and <p:data> tags, as well as several of the aesthetic configurations. The examples
shown pertain to golf rounds, which were added to the application in chapter 10. Let’s
start with bar charts.

13.3.2 Bar charts

A bar chart can be viewed as a series of buckets. Each bucket is filled proportionally to
the value being represented. The purpose of a bar chart is to compare one or more
values. A complete set of the different buckets is referred to as a series. There can be
more than one series on the same chart, each representing some data variation. For
instance, if the buckets represented golf pro shop sales, there would be buckets for
balls, shirts, and shoes. The series could represent a single day’s sales.

 In Seam’s charting component palette, each bucket is represented by a <p:data>
tag. The key attribute on this tag represents the name of the bucket (the sale item),
and the value specifies how much it is filled (how many sold). The <p:data> tags are
grouped in a series as children of the <p:series> tag. The key attribute on the
<p:series> tag is the data variation (the date of sale). The <p:series> tag is the child
of the chart tag, in this case <p:barchart>.

 Taking an example from the Open 18 application, we look at the average score
(average number of strokes taken) versus par (the number of expected strokes for a
given hole) for a round. We group all of the holes with the same par together and
look at what the golfer scored on average. The title of the chart is “Average Score vs.
Par.” In this case, the bucket is the par value and how much the bucket is filled is the
average score. A very basic version of this chart is shown here:

<p:barchart title="Average Score vs. Par" rangeAxisLabel="Avg Score">
 <p:series key="#{round.date}">
 <p:data key="Par 3" value="#{roundHome.getAverageScore(3)}"/>
 <p:data key="Par 4" value="#{roundHome.getAverageScore(4)}"/>
 <p:data key="Par 5" value="#{roundHome.getAverageScore(5)}"/>
 </p:series>
</p:barchart>

The default size of the chart in pixels is 400x300, which can be overridden using
the width and height attributes. Don’t worry right now how the average scores are
calculated because that’s tangential to how the bar chart works. This chart has one

530 CHAPTER 13 File, rich rendering, and email support
series, named after the date that the round was played. You must always provide at
least one series. If you have only one series, and the name isn’t relevant, you can
hide its presence by keeping the legend disabled. If you have more than one series,
the legend is used for the purpose of identifying each series according to its color.

 Let’s add another series by comparing the golfer’s round with the average of all of
that golfer’s rounds to date. In this case, there are two series, so the legend is needed
to distinguish them from one another.

<p:barchart title="Average Score vs. Par" rangeAxisLabel="Avg Score"
 legend="true" is3D="true" plotForegroundAlpha=".9">
 <p:series key="#{round.date}" seriesPaint="series1">
 <p:data key="Par 3" value="#{roundHome.getAverageScore(3)}"/>
 <p:data key="Par 4" value="#{roundHome.getAverageScore(4)}"/>
 <p:data key="Par 5" value="#{roundHome.getAverageScore(5)}"/>
 </p:series>
 <p:series key="#{round.golfer.username}'s rounds" seriesPaint="series2">
 <p:data key="Par 3" value="#{golferRounds.getAverageScore(3)}"/>
 <p:data key="Par 4" value="#{golferRounds.getAverageScore(4)}"/>
 <p:data key="Par 5" value="#{golferRounds.getAverageScore(5)}"/>
 </p:series>
 <p:color id="series1" color="#FFBF4F"/>
 <p:color id="series2" color="#A6C78E"/>
</p:barchart>

The rendered output of the Average Score vs. Par
chart is shown in figure 13.3.

 There are now two series in this chart, a legend,
and some flare, the later provided by the 3D flag,
the alpha transparency, and the custom bar colors.
Although not shown in these examples, I tend to
use the following options as a starting point to clear
the default canvas (border and background) that’s
applied to the charts:

borderVisible="false"
borderBackgroundPaint="white"
plotOutlinePaint="white"
legendOutlinePaint="white"

(legendOutlinePaint applies to bar and line charts only.)
 Many other properties are available for customizing the look of a chart. At this

point, you have enough to run with. In fact, with bar charts under your belt, we can
cruise through the next two chart types because they are much the same, starting with
line charts.

13.3.3 Line charts

Line charts are similar to bar charts except that the points in a series are connected
together rather than filled from the base. If you’ve ever had to work on a spreadsheet
assignment in a subject like economics, you’ve probably created at least one if not a

Figure 13.3 A bar chart with two
series generated using the Seam
chart component tags

531Quick and easy charting with JFreeChart
hundred line charts. Fortunately, creating them in Seam is no more difficult than cre-
ating them in a spreadsheet.

 Line charts are ideal for showing trends. In the Open 18 application, trends can be
used to show a golfer’s progress from one round to the next, such as putting average
and strokes over par. First, we need to retrieve the golfer’s rounds. Assuming the con-
text variable selectedGolfer is available on the current page, we can use it in a
restriction clause of a Query component, defined in the component descriptor, that
fetches the golfer’s rounds:

<framework:entity-query name="golferRounds"
 ejbql="select r from Round r join fetch r.scores" order="r.date asc">
 <framework:restrictions>
 <value>r.golfer = #{selectedGolfer}</value>
 </framework:restrictions>
</framework:entity-query>

The statistics for each round are represented as a series (a line) on the chart. The
individual data points are taken from each round and plotted progressively over time
according to the date the round was played. To plot the points for each round, we use
an iteration component to loop through the rounds for a golfer and read the data
points from each Round instance:

<p:linechart title="Game Analysis" domainAxisLabel="Date of round"
 legend="true">
 <p:series key="Putting average">
 <ui:repeat var="_round" value="#{golferRounds.resultList}">
 <p:data key="#{_round.date}" value="#{_round.averagePutts}"/>
 </ui:repeat>
 </p:series>
 <p:series key="Strokes over par">
 <ui:repeat var="_round" value="#{golferRounds.resultList}">
 <p:data key="#{_round.date}" value="#{_round.strokesOverPar}"/>
 </ui:repeat>
 </p:series>
</p:linechart>

The rendered output of the game analysis chart is shown in figure 13.4. In this exam-
ple, the labeling of the chart is reversed from what it was in the bar chart. The range
axis is unlabeled since the purpose of the values varies according to the series, making

Figure 13.4 A line chart
with two series generated
using the Seam chart
component tags

532 CHAPTER 13 File, rich rendering, and email support
the legend very important. If you’re plotting series that represent the same type of
data, it makes sense to label the range axis. The domain axis is labeled to indicate that
the dates represent the date the round was played. As the range of data changes, the
chart automatically scales itself accordingly. While automatic scaling is sometimes
desirable, there may be times when you need to fix the range. Unfortunately, the com-
ponent tags don’t provide a way to customize the default behavior.

 All that’s left is the simplest and most universal of all the charts: the pie chart.

13.3.4 Pie charts

No matter how you divide it up, a pie chart adds up to 100 percent. Each slice repre-
sents the percentage of the whole an item accounts for. The slices are each assigned a
unique color and identified by a label. You can have as many wedges as you want, but
over a certain point you start to get diminishing returns because the chart becomes
too difficult to read.

 Pie charts, by nature of design, only represent a single series of data. Therefore,
you only need to use <p:data> tags. (If a <p:series> tag is present, it’s ignored.) Each
<p:data> tag represents one slice of the pie. The value of each slice is treated as a
weight, not a percentage. The percentage is assigned to each slice automatically, cal-
culated by dividing the slice’s value by the total value of all of the slices. (It’s impossi-
ble to exceed 100%.)

 In the Open 18 application, we provide users with a pie chart to help them analyze
their putting. Each wedge in the pie chart represents the number of strokes it took the
user to get the ball in the hole, and the size of the wedge is how often that number of
strokes was taken. The value expression #{roundHome.puttFrequencies} returns a
collection of PuttFrequency objects. The PuttFrequency class has two properties,
numPutts and count, which are used as the key and value of the data point, respec-
tively. Since the user can take any number of putts, and some numbers may not be
used, we use an iteration component to render the data points:

<p:piechart title="Putt Analysis" legend="false"
 circular="true" is3D="true" plotForegroundAlpha="0.9">
 <ui:repeat var="_freq"
 value="#{roundHome.puttFrequencies}">
 <p:data key="#{_freq.numPutts} putt" value="#{_freq.count}"/>
 </ui:repeat>
</p:piechart>

The rendered output of the putt analysis chart is
shown in figure 13.5. Because a pie chart uses labels
for each of the slices, there’s no need for a legend,
so it’s disabled.

 You’ve seen several examples of how you can cre-
ate dynamic graphics and documents simply by
using JSF component tags. You can make the graph-
ics even more dynamic by using the Ajax-driven par-
tial page rendering covered in the previous chapter.

Figure 13.5 A pie chart generated
using the Seam chart component tags

533Composing email the Seam way
Then you can manipulate the settings in one part of the page and see the image, such
as a chart, update instantly. That’s one of the main benefits of using JSF component tags
to create graphics.

 Up to this point, everything in this chapter has catered to the browser, either to
upload a file, render a graphic, or to serve a file to the browser as a download. But guess
what? You can generate and send emails following this philosophy. In fact, you can even
send dynamic graphics and documents along with the email as attachments. You are
practically there already. There’s just a little bit of additional knowledge to fill in.

13.4 Composing email the Seam way
To send an email in Seam, you can use a Facelets template just as you do to create a
PDF document. Once again, it’s just like any other JSF view; however, once the tem-
plate is processed, the view handler sends an email using a JavaMail Session rather
than serving an HTML response to the browser. To support this feature, there’s
another set of UI component tags oriented toward email composition. These tags
extend from the tag handler from the Facelets API, so you must be using Facelets to
send email this way. Let’s try it out.

13.4.1 Sending your first message

An email template differs slightly from its PDF counterpart—it doesn’t send any
response to the browser. Instead, the root email component tag, <m:message>, is
treated like a utility tag in that it performs an action. Although it does render its chil-
dren, that result is buffered into an email message.

 When the start tag is encountered during the rendering process, a new email mes-
sage object, MimeMessage, is instantiated. The tags nested within <m:message> contrib-
ute to the MimeMessage object. When the end tag is encountered, the object is passed
to the JavaMail Transport object, which sends the message off to the recipients.

 It’s possible to embed the <m:message> tag in any Facelets template, which would
result in an email message being sent when that page is rendered. In practice, how-
ever, you typically create a stand-alone template reserved for composing an email and
then call on that template from Java when the message needs to be sent. We’ll get to
that in a moment.

 Let’s consider an example to demonstrate how the process of composing and
sending an email works. After new golfers register, we want to send them an email wel-
coming them to the community and encouraging them to participate. Listing 13.6
shows a plain-text email containing the welcome message and authentication creden-
tials for new golfers.

<m:message xmlns="http://www.w3.org/1999/xhtml"
 xmlns:m="http://jboss.com/products/seam/mail"
 importance="normal">
 <m:header name="X-Composed-By" value="JBoss Seam"/>
 <m:from name="Open 18" address="members@open18.org"/>
 <m:replyTo address="noreply@open18.org"/>

Listing 13.6 A plain-text email message template

B

C
D

534 CHAPTER 13 File, rich rendering, and email support
 <m:to name="#{newGolfer.name}">#{newGolfer.emailAddress}</m:to>
 <m:subject>Open 18 - Registration Information</m:subject>
 <m:body type="plain">#{newGolfer.name},

Welcome to the Open 18 community!

Thank you for registering. On behalf of the other members, I would
like to say that we look forward to your participation in the Open
18 community.

Below is your account information. Please keep it for your records.

Username: #{newGolfer.username}
Password: #{passwordBean.password}

Your password has been encrypted in our database...

Open 18
...a place for golfers
Member Services</m:body>
</m:message>

The <m:message> tag B indicates that this component tree fragment is responsible
for producing and sending an email message. The <m:message> tag supports the con-
figuration of a number of standard email headers using the attributes importance,
precedence, and requestReadReceipt. Additional headers can be added using the
<m:header> tag C. All email messages must specify a sender D, a recipient E, a sub-
ject F, and a body G. Any number of <m:cc> or <m:bcc> tags can be included to add
Cc and Bcc recipients to the message, respectively.

 The body of the message is assumed to be HTML unless specified as plain text
using the type attribute on <m:body>. You can send both an HTML and plain-text
body so that the email client has a choice of which one to render, shown here. The
HTML part is placed directly inside the <m:body> tag and the alternative part, assumed
to be plain text, is placed within a facet named alternative.

<m:body>
 <html>
 <body>
 <p>#{newGolfer.name},</p>
 <p>Welcome to the Open 18
community!</p>
 ...
 </body>
 </html>
 <f:facet name="alternative">#{newGolfer.name},
Welcome to the Open 18 community!
 ...
 </f:facet>
</m:body>

The rendered HTML version of the welcome email is shown in figure 13.6. You’ll see
later on how the inline image gets inserted.

 The email template appears simple enough, but we haven’t addressed when the
template is activated and how it gains access to the context variables newGolfer and
passwordBean. This is where Seam’s email support shows its uniqueness.

E
F

G

535Composing email the Seam way
GETTING THE EMAIL TO GO THROUGH

If you’ve worked with JSP in the past, you may shudder at the idea of embedding email
logic in a view template, as we are doing here. It’s not that drafting an email using a tem-
plate is inherently bad; it’s that without some back-breaking effort, it’s not possible to
have the application code render a JSP template on demand. It is possible to do this with
a Facelets template, though. That’s exactly how you “send” an email: you render it.

 The rendering is handled by Seam’s Renderer component, named renderer,
which is typically invoked from within an action method. The template can access any
context variables that are in scope at the time the renderer is invoked. The Registra-
tionMailer component, shown here, can be injected into the RegisterAction com-
ponent and invoked from the register() method. The newGolfer and passwordBean
components are still in scope, so they can be accessed from the email template. The
render() method doesn’t return anything because the rendered content is swept
away to the email transport.

package org.open18.action.mail;
import ...;
import org.jboss.seam.faces.Renderer;

@Name("registrationMailer")
public class RegistrationMailer() {
 @In private Renderer renderer;

 public void sendWelcomeEmail() {
 renderer.render("/email/welcome.xhtml");
 }
}

You may worry that if the mail server is on a coffee break when the user submits the reg-
istration form, the user’s browser will hang until the mail server comes back. To avoid
this scenario, you can have the email sent asynchronously. Creating an asynchronous

Figure 13.6 An HTML email created by
Seam’s mail component that includes an
inline image

536 CHAPTER 13 File, rich rendering, and email support
method in Seam is so trivial you almost feel like you’re cheating. Asynchronous tasks
aren’t covered in this book, but I want to give you a glimpse of how they’re initiated. You
just add the @Asynchronous annotation to the method:

@Asynchronous void sendWelcomeEmail() { ... }

That’s it! There’s nothing else to set up. By default, Seam uses the Java 5 concurrent
library to execute the method in a background thread. The only caveat is that, in
Seam 2.0, you cannot use JSF component tags (other than the mail tags) in the tem-
plate since the rendering occurs in a mock JSF environment. This feature will be avail-
able in Seam 2.1.

 If the mail server can’t be contacted, or otherwise fails to send the message, the
render() method throws a javax.mail.MessagingException wrapped in a javax.
faces.FacesException. Notice, however, that there’s absolutely no reference to the
JavaMail API (or email helper library) in the code that sends the message. This makes
email very noninvasive and easy to test.
TESTING EMAIL MESSAGES

Because the life cycle leading up to the email being rendered is the same as with a nor-
mal JSF page, you can test an email using SeamTest. In fact, SeamTest even includes the
convenience method getRenderedMailMessage(), which parses the email template
passed in as a parameter and returns the resulting MimeMessage object. You can use this
object to verify the headers and structure of the message. Keep in mind that in Seam 2.0,
SeamTest has the same limitation as sending email asynchronously: the JSF components
aren’t rendered. Thus, you can’t fully test the rendered output of the email.

 To avoid spending a lot of time sending messages to yourself to verify the contents,
I recommend that you make the body of the message a separate Facelets composition
template. Then include it in a normal JSF page and inspect the result in the browser.
You can even use a tool like Selenium2 to validate the output. When you’re happy with
what it produces, just include it inside the <m:body> tag in the email template. You may
still have to do manual testing, but at least this trick gets you most of the way there.

 What’s great about using Seam’s email integration is that you don’t even have to
think about the mechanics of sending the email. Seam is your administrative assistant.
You just say, “Go send that email” and it’s done. With all the extra time on your hands,
you may want to get more mileage out of your messages by adding attachments, using
inline images, and leverage all of the Facelets composition techniques you’ve learned
to appreciate.

13.4.2 Adding an entourage to the message

Nothing puts the unnecessary complexities of technology in perspective like having a
requirements meeting with a non-tech-savvy client. You’ve been there. A client asks for
something that is, logically, a very simple task. Yet, for one reason or another, imple-
menting it costs you a solid day’s work or more. Knowing that, your response is “No

2 Selenium is a browser-based testing tool. It can be downloaded from http://selenium.openqa.org.

http://selenium.openqa.org

537Composing email the Seam way
way” or “That’s going to be expensive.” One such scenario is email attachments. In
theory, it should be so simple. Here’s the file, here’s the email address. Put them
together. But there are so many subtle complexities that it never is quite that simple.
STATIC ATTACHMENTS

You saw an example of how Seam erases complexity in the “Accepting file uploads” sec-
tion. Seam does it again with email attachments. Attaching a static file to an email using
Seam’s email support is as simple as mashing two components together. Let’s assume
that marketing wants to attach a flyer to the welcome email that gives an overview of
Open 18. It can be added by placing the <m:attachment> tag just above the <m:body> tag:

<m:attachment value="/open18-flyer.pdf" contentType="application/pdf"
 fileName="About Open 18.pdf"/>
<m:body>Dear #{newGolfer.name}, ...

The structure of the <m:attachment> tag is almost identical to the <s:graphicImage>
tag, covered earlier. In fact, the value attribute accepts all of the Java types shown in
table 13.1. The only catch with <m:attachment> is that you must specify the content
type and append the file extension to the alternate filename.
DYNAMIC ATTACHMENTS AND EMBEDDED IMAGES

Let’s send the golfer’s profile image to demonstrate creating an attachment from raw
file data (i.e., byte[]). First, add a convenience method to Golfer to get the image
extension:

@Transient
public String getImageExtension() {
 return Image.Type.getTypeByMimeType(imageContentType).getExtension();
}

Next, reference the image data in the value of the attachment and specify the content
type:

<m:attachment value="#{newGolfer.image}"
 contentType="#{newGolfer.imageContentType}"
 fileName="#{newGolfer.username}#{newGolfer.imageExtension}"
 rendered="#{newGolfer.image != null}"/>

How about instead of sending the golfer his or her own profile image, we send the profile
images of other recently registered golfers? You can call on the newGolfers context vari-
able prepared in chapter 6 and iterate over it using the Facelets iteration component:

<ui:repeat var="_golfer" value="#{newGolfers}">
 <m:attachment value="#{_golfer.image}"
 contentType="#{_golfer.imageContentType}"
 fileName="#{_golfer.username}#{_golfer.imageExtension}"
 rendered="#{_golfer.image != null and _golfer != newGolfer}"/>
</ui:repeat>

Adding an image as an attachment is not enough for most email readers to render it
automatically. Even if it’s rendered, it is grouped at the bottom of the email with all of
the other attachments. It would better to have the image displayed within the body of
the message. To do this, you start by setting the disposition of the attachment to inline
and designating a status variable that holds information about the inline attachment:

538 CHAPTER 13 File, rich rendering, and email support
<m:attachment value="#{newGolfer.image}"
 contentType="#{newGolfer.imageContentType}"
 fileName="#{newGolfer.username}#{newGolfer.imageExtension}"
 disposition="inline" status="profileImageAttachment"/>

You then embed an tag in the body of the message that references the inline
attachment using a special URL scheme. The URL consists of the scheme cid: followed
by the attachment’s content id, which is read from the status variable of the attachment:

<p></p>

You can even use the <m:attachment> in the body of the message so that you can ren-
der images in a loop. The only requirement is that you declare the attachment before
trying to access its status variable:

<ui:repeat var="_golfer" value="#{newGolfers}">
 <m:attachment value="#{_golfer.image}"
 contentType="#{_golfer.imageContentType}"
 fileName="#{_golfer.username}#{_golfer.imageExtension}"
 rendered="#{_golfer.image ne null and _golfer ne newGolfer}"
 disposition="inline" status="profileImageAttachment"/>
 <p></p>
</ui:repeat>

If all of this inline disposition stuff seems like too much trouble, or you are concerned
it will make the size of the email message too large, you have the option of serving
images (and other assets such as style sheets) as linked resources just like in a web
page. Let’s say you want to include the logo for Open 18 in the message. First, add it
somewhere in the body:

<h:graphicImage value="/img/logo.png"/>

At this point, the email client isn’t going to know how to find the image based on this
relative path, so you have to give it some context. You set the absolute base URL for
linked resources using the urlBase attribute on the email message component tag:

<m:message ... urlBase="http://open18.org">...</m:message>

The value of urlBase is used before the application’s context path (e.g., /open18). In
this example, the URL of the logo image is http://open18.org/open18/img/
logo.png. You can use EL notation to calculate a base URL instead of hardcoding it, as
I do here.
ATTACHMENTS USING COMPOSITIONS

But wait! There’s more to attachments. You can supply a body to the <m:attachment>
tag. Within that body you can put plain text, HTML, or even a PDF document. And
since these are Facelets templates, that means you can easily insert the contents of
another template into this spot. Let’s give the user the ability to send a course’s score-
card to a friend. The scorecard is rendered within the attachment tag and then
attached to the email:

<m:message xmlns="http://www.w3.org/1999/xhtml"
 xmlns:m="http://jboss.com/products/seam/mail"
 xmlns:ui="http://java.sun.com/jsf/facelets">

539Composing email the Seam way
 <m:from name="Open 18 Notifications" address="notification@open18.org"/>
 <m:replyTo address="#{currentGolfer.emailAddress}"/>
 <m:to>#{recipient.emailAddress}</m:to>
 <m:subject>#{currentGolfer.name} sent you a scorecard</m:subject>
 <m:attachment fileName="scorecard.pdf" contentType="application/pdf">
 <ui:include src="/exportScorecard.xhtml"/>
 </m:attachment>
 <m:body type="plain">While browsing the Open 18 course directory,
I came across a golf course that I thought might interest you.

#{course.name}

The scorecard for this course is attached to this message.

Cheers,

#{currentGolfer.name}</m:body>
</m:message>

This Facelets template provides a glimpse at using Facelets compositions to construct
a message. The component named recipient is used to capture the target email
address from a JSF form. The sendScorecard() method of the Notifications compo-
nent preloads the scorecard data and then renders the email template. When that
happens, the scorecard PDF is rendered and attached to the message. As a courtesy,
the user is informed that the email went through. This method can’t be asynchronous
in Seam 2.0 because the email template uses nonemail JSF component tags.

@Name("notifications")
public class Notifications {
 @In private Recipient recipient;
 @In private Renderer renderer;
 @In private FacesMessages facesMessages;
 @In(create = true) private Scorecard scorecard;

 public void sendScorecard() {
 scorecard.load();
 renderer.render("/email/scorecard-notification.xhtml");
 facesMessages.add(
 "The scorecard has been sent to #{recipient.firstName}.");
 }
}

The chain reaction of one Facelets template invoking the next is a powerful con-
cept. Table 13.4 provides a list of other common email tasks and how they can be
accomplished.

Table 13.3 Solutions to common email composition tasks

Goal How to achieve...

Conditional logic Use the rendered attribute on a component tag to toggle a single
component or a grouping of components.

Email templates Design a composition template that uses <ui:insert> placeholders
within an <m:message> region; call on this template from a content
template and fill in the placeholders using <ui:define> and
<ui:param>.

540 CHAPTER 13 File, rich rendering, and email support
I’d like to be able to say that you don’t have to lift another finger to send emails with
Seam. Sadly, the task of configuring an email transport is a necessary evil. I can assure
you that Seam makes this task just about as simple as it can be.

13.4.3 Setting up JavaMail in Seam

Setting up email for a project tends to be one of those black magic tasks that you do
on the first day of employment and dare not touch again. Even then, someone is usu-
ally dictating the email settings over your shoulder, so it’s not much of a learning
experience. In this section, I give you a clear understanding of what you need to do to
configure a mail session.

 To start, you need Seam’s mail module, jboss-seam-mail.jar, and the JavaMail API
and implementation on the classpath of your application. The latter requirement is
satisfied by the mail.jar and activation.jar libraries, both present in the lib directory of
a seam-gen project. But guess what? You don’t need them if you’re deploying to a Java
EE–compliant application server because they’re already provided. If you’re deploying
to a servlet container, on the other hand, you need to bundle these libraries in your
application or place them in the servlet container’s classpath. Let’s see how to use Java-
Mail in Seam.
HOOKING UP JAVAMAIL TO A TRANSPORT

Seam provides a built-in component named mailSession that initializes and provides
access to a JavaMail session (javax.mail.Session). But setting up the mail session is
only half the story. The mail session is just a mediator between the application and the
Mail Transport Agent (MTA). While the mail session negotiates with the MTA to send
an email over the SMTP protocol, in the end it’s the MTA that actually sends the mes-
sage. Thus, to configure a mail session, you must have access to an SMTP server.

 Typically, the SMTP server is provided by your internet service provider (ISP) or
your company. In Seam, you have two options for connecting a JavaMail session to an
SMTP server. You can configure the connection information directly in the Seam com-
ponent descriptor, or you can point Seam at a JavaMail session bound to JNDI. Seam
also ships with an embedded mail server called Meldware that you deploy to JBoss AS,
which is especially useful for development. Meldware can be controlled within the
application using another set of built-in Seam components. You’ll find3a step-by-step

Send multiple messages Nest the <m:message> tag in an iteration component (i.e.,
<ui:repeat>).

Send to multiple recipients Nest the <m:to>, <m:cc>, or <m:cc> tag in an iteration component.

Customize the language or
theme of a message

Use the resource bundle map messages or theme to insert the value of
a message key for the current locale or theme in the message; set charset
using the charset attribute on the <m:message> tag.

Table 13.3 Solutions to common email composition tasks (continued)

Goal How to achieve...

541Composing email the Seam way
tutorial for configuring Meldware in the Seam reference documentation. The focus
here is on using an externally hosted SMTP server because configuring Seam to use it
is straightforward and it gets your emails out the door with the least amount of effort.
CONFIGURING A SEAM-MANAGED JAVAMAIL SESSION

Although you never interact with the mail session component directly, it must be con-
figured in order for the messages rendered by the message templates covered earlier
to be sent. The mail session component is configured in the component descriptor
just like many of the other Seam integrations, such as persistence. To start, add the
component namespace http://jboss.com/products/seam/mail, typically prefixed
as mail, to the component descriptor. Next, supply the connection information to the
mailSession component. Here’s an example configuration that uses Gmail’s SMTP/
TLS server.

<mail:mail-session host="smtp.gmail.com" port="587"
 username="example@gmail.com" password="secret"/>

Of course, you need to fill in the correct username and password values for your
account. The messages originate from the account’s email address. If the messages
aren’t being sent, enable the debug property to diagnose the problem. Note that
Gmail requires the tls property to be true, which is the default value. Placing connec-
tion information directly in the component descriptor isn’t very secure, nor can the
values be customized for different environments. I recommend using replacement
tokens, which were covered in chapter 5. An even more elegant approach, though, is
to use an externally configured JavaMail session.
CONFIGURING SEAM TO USE A JAVAMAIL SESSION FROM JNDI
The mail session component can consume a JavaMail session stored in JNDI. In this
section, I demonstrate how to configure the mail service in JBoss AS to bind a JavaMail
session to JNDI, and show you how to configure the mail session component to use it.
If you’re using an alternate application server, you can configure a JavaMail session
using the server’s admin console. For GlassFish, see the note about SMTP authentica-
tion in the accompanying sidebar.

3 See configuration instructions for Gmail: http://mail.google.com/support/bin/answer.py?answer=78799.

Save time by using an externally hosted SMTP server
To avoid time messing around with an email transport, your best bet is to take advan-
tage of the wide array of free SMTP mail servers available on the web. One such ex-
ample is Gmail, the example that is used in this section. Google allows messages to
be sent over SMTP/TLS after proper authentication.3 First, you must enable either
POP or IMAP access on the Gmail account to use the Gmail SMTP server, and then
configure Seam to use it.

http://mail.google.com/support/bin/answer.py?answer=78799

542 CHAPTER 13 File, rich rendering, and email support
To register a JavaMail session in JBoss AS, open the mail-service.xml descriptor in the
server’s hot deploy directory and replace the contents with listing 13.7.

<?xml version="1.0" encoding="UTF-8"?>
<server>
 <mbean code="org.jboss.mail.MailService" name="jboss:service=Mail">
 <attribute name="JNDIName">java:/Mail</attribute>
 <attribute name="User">example@gmail.com</attribute>
 <attribute name="Password">secret</attribute>
 <attribute name="Configuration">
 <configuration>
 <property name="mail.transport.protocol" value="smtp"/>
 <property name="mail.smtp.host" value="smtp.gmail.com"/>
 <property name="mail.smtp.port" value="587"/>
 <property name="mail.smtp.auth" value="true"/>
 <property name="mail.smtp.starttls.enable" value="true"/>
 </configuration>
 </attribute>
 <depends>jboss:service=Naming</depends>
 </mbean>
</server>

Next, supply the Seam mail component with the JNDI name assigned in this service:

<mail:mail-session session-jndi-name="java:/Mail"/>

Restart your application and you should be able to send mail using Gmail. If you need
to use a different SMTP server, simply fill in the appropriate values in the mail service
configuration.

 The JNDI name in this example uses the proprietary java:/ namespace for JBoss
AS. The standard JNDI subcontext for JavaMail sessions is java:comp/env/mail. If you
configured a JavaMail session named mail/Session in a Java EE–compliant server like
GlassFish, you feed the value java:comp/env/mail/Session to the Seam mail compo-
nent. You also have to declare a JNDI resource reference of type javax.mail.Session
in web.xml.

 You now have the full range of multipart email capabilities at your fingertips, sent
into the great wide open using your ISP’s SMTP server. Just remember to use this
power wisely, for fools are called spammers!

Listing 13.7 Mail service configuration for JBoss AS

SMTP authentication and GlassFish JavaMail sessions
SMTP authentication is an automated login that occurs prior to sending an email mes-
sage. If your ISP uses SMTP authentication, the JavaMail session fed to the Seam
mail component must be configured to use an SMTP authenticator with the proper
credentials already set. Unfortunately, it’s not possible to set the SMTP authentica-
tion credentials for a JavaMail session configured through GlassFish. JBoss AS, on
the other hand, accommodates this configuration.

543Composing email the Seam way
 While email may not go away anytime soon, the email is mostly dead. Instead, people
opt to keep up with the latest news using a newsfeed reader. That way, when you want
the news to stop, all you have to do is unsubscribe (and it actually works!). At the risk
of sounding mundane, creating newsfeeds in Seam is yet another Facelets template.

13.4.4 Publishing newsfeeds

What better way to produce XML than with XML. Don’t worry, I’m not talking about
that scary XSLT pseudolanguage. I’m talking about Facelets. Seam does it again by
making it extremely simple to publish newsfeeds, such as RSS or Atom, using a Face-
lets template. I’ll prove to you how simple it is by making this second extremely short.

 Newsfeeds are delivered using XML, each type having its own schema. In this sec-
tion, we work with an Atom feed. The only trick in serving XML through a Facelets
template is setting the content type header appropriately. By default, Facelets assumes
you’re generating HTML (text/html). But in order for the feed readers to digest the
feed, the header must be an XML type. For an Atom feed, that type is application/
xml+atom. You set the content type on the <f:view> tag, which can be placed any-
where in the document. As for the remainder of the document, you simply use the
XML tags specific to the feed type. Facelets doesn’t care what markup it’s producing.

 Let’s publish the latest golf rounds that have been entered by the golfers, a list
provided by the context variable latestRounds. From that list, we create the feed tem-
plate named latestRounds.xhtml, shown in listing 13.8.

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://purl.org/atom/ns#" version="0.3" xml:lang="en"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:s="http://jboss.com/products/seam/taglib">
 <f:view contentType="application/atom+xml">
 <title>Open 18: Latest Rounds</title>
 <link rel="alternate" type="text/html"
 href="http://localhost:8080/open18"/>
 <tagline>A place for golfers</tagline>
 <updated><h:outputText value="#{latestRounds[0].date}">
 <s:convertDatetime pattern="yyyy-MM-dd'T'HH:mm:ss'Z'"/>
 </h:outputText></updated>
 <ui:repeat var="_round" value="#{latestRounds}">
 <entry>
 <title>#{_round.golfer.name} @ #{_round.teeSet.course.name}</title>
 <link rel="alternate" type="text/html"
 href="http://localhost:8080/open18/Round.seam?roundId=#{_round.id}"/>
 <id>http://localhost:8080/open18/Round.seam?roundId=#{_round.id}</id>
 <summary type="text/plain">#{_round.totalScore}</summary>
 <published><h:outputText value="#{_round.date}">
 <s:convertDatetime pattern="yyyy-MM-dd'T'HH:mm:ss'Z'"/>
 </h:outputText></published>
 <updated><h:outputText value="#{_round.date}">

Listing 13.8 An atom feed reporting scores from the latest rounds

544 CHAPTER 13 File, rich rendering, and email support
 <s:convertDatetime pattern="yyyy-MM-dd'T'HH:mm:ss'Z'"/>
 </h:outputText></updated>
 </entry>
 </ui:repeat>
 </f:view>
</feed>

Despite all the fancy Java-based newsfeed creators, nothing beats writing the newsfeed
in its native tongue, with some enhancements provided by JSF UI components to iter-
ate over and format the data. The user simply requests the path /latestRounds.seam
in the browser or feed reader to monitor the latest scores entered.

 Throughout this chapter, you’ve added a lot of wealth to the application. But the
richest applications are those that allow users to customize the UI to suit their needs.
Seam provides a means of empowering your users to control internationalization,
time zone, and theme settings for their sessions, with intelligent defaults to start.

13.5 Customizing the UI with resource bundles
Seam follows a consistent approach for providing customization of the UI by using
resource bundles. As you learned in section 5.5.2 in chapter 5, Seam aggregates the i18n
message bundles under a unified map named messages. When the application logic
needs a message to be rendered, it supplies a message key rather than embedding the
message string directly in the code. Seam then retrieves the actual message at runtime
from the resource bundle, taking note of the user’s preference, whether it be a locale,
time zone, or theme. Seam assembles a separate map named theme to support the active
theme, prepared using a similar configuration (which is covered later in this section).

 While chapter 5 examines the details of how to prepare a message bundle and use
it in your components and pages, what you haven’t learned yet is how Seam decides
which locale, time zone, and theme to use and how to give the user control over these
selections. This section covers the three selector components that Seam provides,
which are controlled by the UI, and also goes into detail about what themes are and
how they fit into the resource bundle picture. Let’s begin by telling Seam how to
speak the right language.

13.5.1 Getting Seam to speak the right language

In Java, a regional language is known as a locale. Locale selection has long been a
standard part of the communication between the browser and the Java Servlet API,
and is equally well supported in JSF. The negotiation works as follows. The browser
sends a header named Accept-Language as part of the request, itemizing the lan-
guages understood by the user, weighted by preference. The server then sets the pre-
ferred locale accordingly, falling back to the server’s default locale if the Accept-
Language header is empty or absent.

 Granted, the user’s preferred locale setting doesn’t do much good if the applica-
tion doesn’t support it. Thus, JSF goes a step further by comparing the user’s pre-
ferred languages against a list of locales the application claims to support and

545Customizing the UI with resource bundles
selecting the best possible match. If there are no matches, the server’s default locale is
chosen. While Seam aggregates the i18n resource bundles in your application, it relies
on JSF to handle the negotiation of the user’s locale.

 You declare the supported locales and override the server’s default locale using the
<locale-config> element in the JSF configuration file, /WEB-INF/faces-config.xml:

<faces-config>
 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>fr</supported-locale>
 </locale-config>
 </application>
</faces-config>

Of course, if you indicate that you support a locale, make sure you have a localized
resource bundle to support it. Otherwise, the user is going to see the message key. To
prevent the message key from being displayed, you can set fallback messages in the base
bundle file (the bundle name followed immediately by the .properties extension).

 That covers the standard language negotiation. Seam also provides built-in sup-
port for allowing the user to choose the effective locale from within the application
(as opposed to changing the browser setting). This feature is particularly useful for
internet terminals where the user can’t modify the browser’s setting. In that case, the
Accept-Language header may not reflect the user’s true language preference.
LETTING THE USER SELECT THE LOCALE

Seam makes it simple to throw together a UI selector that controls the locale associ-
ated with the user’s session. The user’s locale is stored in a built-in component named
localeSelector, which Seam consults whenever it needs to look up a message key.
This component also has action methods that can be called to change the locale.

 The typical way to use the localeSelector component is to bind its localeString
property to a UISelectOne component and supply a list of locale keys in the options.
The user can select an option to change the value of this property and in turn the
effective locale. To apply the change, you bind the action of the form to the compo-
nent’s select() method:

<h:form id="settings">
 Language:
 <h:selectOneMenu value="#{localeSelector.localeString}">
 <f:selectItem itemValue="en" itemLabel="English"/>
 <f:selectItem itemValue="fr" itemLabel="Francais"/>
 </h:selectOneMenu>
 <h:commandLink action="#{localeSelector.select}" value="[Select]"/>
</h:form>

You can do away with the UI command link by having JavaScript submit the form when
a new option is selected. The selection is applied on the server using a value change
listener:

546 CHAPTER 13 File, rich rendering, and email support
<h:form id="settings">
 Language:
 <h:selectOneMenu value="#{localeSelector.localeString}"
 valueChangeListener="#{localeSelector.select}" onchange="submit()">
 <f:selectItem itemValue="en" itemLabel="English"/>
 <f:selectItem itemValue="fr" itemLabel="Francais"/>
 </h:selectOneMenu>
</h:form>

As you can see, I’m having to manually input the language choices in the select
menu. But we’ve already supplied the supported locales once in the JSF configura-
tion. Thankfully, Seam can consult the JSF context and prepare a ready-made list of
SelectItem objects holding the locale strings and labels for use in the options of a
UISelectOne component:

<f:selectItems value="#{localeSelector.supportedLocales}"/>

Instead of using a select menu, you can iterate over this list to create links that select a
locale, passing the locale string to a parameterized action method:

<ui:repeat var="_locale" value="#{localeSelector.supportedLocales}">
 <s:link action="#{localeSelector.selectLanguage(_locale.value)}"/>
</ui:repeat>

Seam’s default behavior is to store the selected locale for the duration of the user’s ses-
sion. To make the selection more long term, it can be persisted as a cookie.
GETTING THE LOCALE SELECTION TO STICK

You can configure Seam to persist the locale setting in a browser cookie. First, add the
component namespace http://jboss.com/products/seam/international, prefixed
as i18n, to the component descriptor. Next, configure the localeSelector component
to store the locale using a cookie:

<i18n:locale-selector cookie-enabled="true"/>

The default lifetime of the cookie is one year, which you can change in the cookie-max-
age attribute. You can also use this component to set the default locale, as with the JSF
configuration file, but you can’t use it to specify the supported locales.

 If you want to make the locale setting permanent, you can persist it to the database
in a user preferences table. You then use the localeSelector in the authentication
routine to transfer that setting to the user’s session:

@In LocaleSelector localeSelector;

localeSelector.setLocaleString(userPreferences.getLocale());
localeSelector.select();

When the user changes the locale, Seam raises the org.jboss.seam.localeSelected
event. You can observe this event to persist the selection back to the database:

@Observer("org.jboss.seam.localeSelected")
@Transactional
public void localeChanged(String localeString) { ... }

Often forgotten about, but just as important as the language, is the time zone.

547Customizing the UI with resource bundles
MANAGING THE TIME ZONE

Seam offers parallel support for selecting a time zone using the timeZoneSelector.
Here’s a UI component for switching time zones that mirrors the structure of the
locale switcher:

Time zone:
<h:selectOneMenu value="#{timeZoneSelector.timeZoneId}"
 valueChangeListener="#{timeZoneSelector.select}" onchange="submit()">
 <f:selectItem itemValue="GMT-08:00" itemLabel="Pacific Time"/>
 <f:selectItem itemValue="GMT-07:00" itemLabel="Mountain Time"/>
 <f:selectItem itemValue="GMT-06:00" itemLabel="Central Time"/>
 <f:selectItem itemValue="GMT-05:00" itemLabel="Eastern Time"/>
</h:selectOneMenu>

You can access the list of time zones known to the Java runtime from the timeZone
context variable, which can be used to build the options for the time zone switcher:

<s:selectItems var="_timeZoneId" value="#{timeZone.availableIDs}"
 label="#{timeZone.getTimeZone(_timeZoneId).displayName}"/>

Unfortunately, the result isn’t even close to being normalized. Your best bet is to
retrieve the available time zones from a database. This list may be available in Seam in
the future.

 The time zone selector also has support for persisting the time zone selection in a
cookie, having the same two property names as the localeSelector component:

<i18n:time-zone-selector cookie-enabled="true"/>

When the time zone is changed, Seam raises the org.jboss.seam.timeZoneSelected
event, passing the time zone id as an argument. Thus, the advice I gave earlier about
storing the user’s locale preference in the database applies for the time zone as well.
TIME ZONE REPAIRS

Seam adds a bandage to another wound in JSF with regard to how time zones are used,
or not used, for that matter. The JSF specification says that when using the <f:convert-
DateTime> converter, the date and time values should be assumed to be UTC (coordi-
nated universal time) unless a time zone is explicitly specified in the tag. I can name at
least two QA people who would strongly disagree that this is acceptable behavior. One
way to override the default in Seam is to reference the timeZone context variable:

<f:convertDateTime timeZone="#{timeZone}"/>

But rather than having to specify this override every time you use the converter, you
can save a couple of keystrokes by using the <s:convertDateTime> converter from the
Seam UI palette, which automatically applies the user’s time zone preference.

 There’s another glitch in the way JSF handles time zones that Seam fixes. JSF
doesn’t support setting a default time zone, using the time zone of the server instead.
The default value can be customized using the timeZoneSelector as follows:

<i18n:time-zone-selector time-zone-id="America/New_York"/>

Time zones are one of those things you need to synchronize from your database to
your front end, so I advise that you spend some time thinking about and testing them.

548 CHAPTER 13 File, rich rendering, and email support
 While Seam certainly improves on the accessibility of locale and time zones, both
for the developer and for the user, you’ve probably used these features before. Where
Seam open new doors with resource bundles is in the area of themes—often referred
to as skins.

13.5.2 Themes

Themes add another dimension to message bun-
dles, as shown in figure 13.7. Just as locales allow
you to switch between locale-specific variants of the
same bundle name, themes allow you to switch
between different bundle names that have the same
set of key-value pairs. In the end, the idea of using
a message key as a replacement token is still the
same. The coolest part is that each theme can sup-
port multiple languages, providing i18n branding.

 For each theme that you want to support, you
must create a resource bundle whose name is that
of the theme. For instance, to create a blue theme,
you’d create the file blue.properties and place it on
the application classpath (adjacent to your message bundle files). You’d then tell Seam
about the themes by configuring the built-in Seam component named themeSelector
in the component descriptor:

<theme:theme-selector cookie-enabled="true" theme="blue">
 <theme:available-themes>
 <value>red</value>
 <value>green</value>
 <value>blue</value>
 </theme:available-themes>
</theme:theme-selector>

Here, three themes have been defined, with blue being the default. You can allow the
user to switch themes using the same approach that was used for locale and time zone
selection:

Theme:
<h:selectOneMenu value="#{themeSelector.theme}"
 valueChangeListener="#{themeSelector.select}"
 onchange="submit()">
 <f:selectItems value="#{themeSelector.themes}"/>
</h:selectOneMenu>

Without additional configuration, the bundle name of each theme is shown in the
label of the options in the select menu. If you want to give the themes fancy names,
you must add message keys in your Seam message bundle (e.g., messages.properties)
that use the prefix org.jboss.seam.theme. followed by the theme name:

org.jboss.seam.theme.blue=Sky
org.jboss.seam.theme.green=Eco
org.jboss.seam.theme.red=Ruby

Themes

Lo
ca

le
s

blue_en

red_fr

green_de

red_en

Figure 13.7 Themes add an extra
dimension to resource bundle selection.

549Summary
Now that you have a theme, how do you use it? Well, just like any other message bun-
dle. Only, rather than using a map named messages, you use a map named theme. You
can tie a style sheet, logo, and master template to the theme using the following three
message keys:

stylesheet=#{request.contextPath}/stylesheet/sunnyday.css
logo=noclouds.png
template=layout/outside.xhtml

You can reference the first two keys in the master Facelets template:

<link href="#{theme['stylesheet']}" rel="stylesheet" type="text/css"/>
<h:graphicImage value="#{theme['logo']}" alt="Logo"/>

and then select the master template for the specific page using the last key:

<ui:composition xmlns="http://www.w3.org/1999/xhtml" ...
 template="#{theme['template']}">
 ...
</ui:composition>

If you want to tie the colors used in PDF documents and charts into your theme, you
first define <p:color> tags that each have a semantic name and bind to a theme’s key:

<p:color name="series1" value="#{theme['series1Color']}"/>

You then associate the semantic name with a color by assigning a value to the theme’s
key:

series1Color=#FF0000

If you want to skip creating the theme message keys, you can just reference the theme
name directly in a value expression:

<h:graphicImage value="#{themeSelector.theme}.png" alt="Logo"/>

Themes can be used to control just about anything that accepts an EL value expression.
Check out the sample code to see how you can tie the theme to a RichFaces skin. I have
no doubt you’ll think of other creative ways to use these special resource bundles.

13.6 Summary
I hope the promise I made that you’d have fun in this chapter held true. Looking
back on what you’ve learned, you can now handle file uploads, render dynamic
images, generate PDFs, create charts, compose emails with attachments, publish news
feeds, and customize the UI with resource bundles. These features can take your appli-
cation from good to great.

 The constant theme throughout this chapter has been ease and accessibility. Soft-
ware development is rarely easy. But it doesn’t have to be unnecessarily difficult either.
Many of the areas of functionality covered in this chapter have been huge pain points
for Java developers in the past, particularly file uploads and multipart email messages.
Seam’s UI component tags make these problems just melt away.

550 CHAPTER 13 File, rich rendering, and email support
 Seam is able to accomplish this feat in two ways. First, Seam extends the EL value
binding concept to transport binary data in addition to strings. Going the other way,
Seam renders raw file data as a dynamic graphic in a web page, in a PDF document, or
as a file attachment in an email. The other key is the Facelets template. Facelets is
powerful because it is a stand-alone rendering technology, but with access to all the
power of JSF components. One way to leverage this tool is to render a Facelets tem-
plate within an action method to send an email. Another is to serve a Facelets tem-
plate that generates a PDF to the browser, allowing the user to download the result. Yet
another is to publish a newsfeed. If the Facelets template is being served directly to
the browser, you can even take advantage of Seam’s page-oriented controls. The focus
is to give you the same XHTML-based approach backed by the EL and Seam compo-
nents no matter what format is being produced.

 That brings this book to a close, but not your journey with Seam. There are addi-
tional chapters online to broaden your Seam knowledge. Chapter 14 takes you into the
world of business processes and shows how they follow the same declarative approach
as conversations. Chapter 15 details how to integrate Seam and Spring using Seam’s
Inversion of Control (IoC) bridge. For those of you who won’t pick up another frame-
work if it means letting go of Spring, that chapter should definitely be of interest.

 Before you close the book, I want to say that I hope both Seam and this book
change your life as they have for me. Thanks for reading and good luck with your next
application!

appendix A:
Seam starter set

This appendix explores the set of libraries and tools you need to develop with
Seam. Seam consists of just a handful of JAR files, listed in section A.2.1. Once these
libraries are added to your application’s classpath, they open the door to a wealth
of integrations and a consistent programming model. To get started with Seam, you
can create a new project using seam-gen (see chapter 2), adopt an example applica-
tion from the Seam distribution, or add the Seam libraries to an existing project by
mining the JAR files from the Seam distribution or registering the Seam modules as
Maven 2 or Ivy dependencies.

 Given that Seam is often described as an “integration framework,” you’d expect
it to rely on a wide variety of external libraries. While that’s true, it’s nothing to get
worried about. Both the Seam distribution and the Maven 2 configuration pro-
vided by Seam include compatible libraries that are verified to work with a given
Seam version. Thus, Seam truly lives up to its title as an integration framework,
both at the API and distribution levels.

 Before swinging away, you need to check the prerequisites for using Seam and
the seam-gen tool, which extend beyond just extracting the Seam distribution on
your hard drive.

A.1 Stepping through the prerequisites
Chapter 2 makes the recommendation of using seam-gen as your first step into
Seam. Thus, the prerequisites presented in this section are geared toward using
seam-gen to create and deploy the database-oriented application that accompanies
this book. Let’s have a look at what software is needed to follow along with the tuto-
rial in chapter 2:

■ Java SE (JDK) (5.0 or greater) from Sun, IBM, BEA, Apple, or RedHat (IcedTea)
■ JBoss Application Server (4.2 or greater)
■ JBoss Seam (2.0 or greater)
551

552 APPENDIX A Seam starter set
■ A database and JDBC driver (the book source code uses the H2 database)
■ Seam in Action source code (needed for the database schema and seed data)

While you can get by using the seam-gen tool with the software listed here, you may
find the following optional dependencies valuable as well:

■ Apache Ant (1.7.0 or greater)
■ Alternate application server (GlassFish Application Server V2 or greater)

I’ll step through each of these prerequisites in turn. Any time you see a reference to
/home/twoputt, replace it with the location of your software development directory.
The folders under this directory referenced in this appendix are consistent with the
book’s source code and are described further in the introduction. Don’t get too
worked up over the JBoss AS requirement. It just happens to be the application server
supported by seam-gen out of the box. Any Java EE application server can stand in its
place. Java 5 is required, which hopefully will not turn you off Seam if you’re still using
Java 1.4 or lower. I begin with the reasoning behind the Java 5 requirement.

A.1.1 Java 5 compliance

A Java 5–compliant JDK (Java SE Development Kit) is required to develop Seam
applications, and the applications must be run under a Java 5–compliant JVM (Java
virtual machine). It’s also strongly recommended that applications be deployed to a
Java EE 5–compliant application server. This recommendation becomes a require-
ment if you want to take advantage of Seam’s EJB 3 integration.

 The dependency on Java SE 5 and Java EE 5 accounts for a large part of Seam’s success
and works to your advantage. Instead of having to tiptoe around the enhancements that
came with the release of Java 5, as some other frameworks do, Seam embraces annota-
tions and generics to eliminate unnecessary XML configuration and ugly casting. Seam
is sending the message to the industry that it’s time to move on. The productivity gains
afforded by using a Java 5–compliant language are too valuable to put off any longer.
Although it may be possible to use a tool like Retrotranslator1 to port a Seam application
to a J2SE 1.4 JVM, it still doesn’t eliminate the requirement of using a Java 5–compliant
JDK for development, nor does it get you any closer to using EJB 3.

 If you haven’t yet moved to JDK 5 (or better), you’ll need to download it from the
vendor of your choice. I recommend using Sun’s JDK 6 since, in my gut-feeling tests,
it’s the fastest JVM for development. Once you’ve downloaded the Java distribution,
you need to add the java binary to your PATH environment variable. It’s also good
practice to set the JAVA_HOME environment variable to point to the extracted Java dis-
tribution, as some tools rely on it. Here are the shell commands (for Linux and Mac
OS X) for setting these variables:

export JAVA_HOME=/home/twoputt/opt/jdk1.6.0_03
export PATH=$JAVA_HOME/bin:$PATH

1 Retrotranslator (http://retrotranslator.sourceforge.net/) is a Java bytecode transformer that translates Java
classes compiled with JDK 5.0 into classes that can be run on JVM 1.4.

http://retrotranslator.sourceforge.net/

553Stepping through the prerequisites
If you’re using Debian/Ubuntu Linux, it’s even easier. You simply type sudo apt-get
install sun-java6-jdk and the Sun Java distribution is downloaded from the multi-
verse apt repository and configured for you. This channel is available since Java has
finally been released under a distributable license.2 Other Linux distributions offer
similar packages. Mac OS X 10.5 (Leopard) is distributed with Java 5 and it’s already
available in the default PATH. If you’re on Windows, I strongly recommend using Cyg-
win or a VMWare image of Linux.

 Your next stop is the JBoss labs, where you’ll pick up the JBoss Application Server
(JBoss AS). Following that, I discuss two alternate servers: GlassFish and Tomcat.

A.1.2 Java EE 5 application servers

Seam is designed to make the standard Java EE 5 services more accessible, not to rein-
vent them. Throughout this book, I emphasize why deploying to a Java EE 5 applica-
tion server is a “Good Thing.” You may be inclined to assume that Tomcat, JBoss AS
without EJB 3, and integration tests are left out in the cold. This is not the case. Seam
applications just fit more naturally in a Java EE 5 environment. Rest assured that the
Embedded JBoss runtime can be added to the classpath of a non–Java EE environment
to “enlighten” it with Java EE 5 capabilities. It’s also possible to configure a Seam appli-
cation to run in a Java SE environment, independent of any Java EE 5 features. For
instance, you can use resource-local transactions and an application-managed persis-
tence manager as alternatives. But to get going quickly, you’ll find that using JBoss AS
is the most convenient option.
JBOSS APPLICATION SERVER

You can download the JBoss Application Server (AS) from its project page in the JBoss
labs: http://labs.jboss.org/jbossas. You’ll be directed to the SourceForge.net site, where
you can download the zip file. The recommended version of JBoss AS to use with Seam
2.0.x is 4.2.2.GA.3 After the download completes, extract the archive into the opt folder
in your home directory. The location of the extracted archive is referenced as the place-
holder ${jboss.home} in chapter 2. Chapter 2 also provides instructions on how to start
JBoss AS. Recall that you must run the application server using a Java 5–compliant JVM.
If you plan on accessing the server from another computer, you need to add the -b
0.0.0.0 argument to the run command. This tells the server to accept connections
from all IP addresses. The default is to only allow local connections.

 The 4.2.x series of JBoss AS is a partial implementation of Java EE 5, with support
for EJB 3, allowing you to take advantage of all of Seam’s features. I encourage you to
move to JBoss AS 5 when it’s finalized to get all the Java EE 5 features. The benefit of
using a Java EE 5 environment is discussed in the remainder of this section.

2 For information on the announcement regarding the release of the full Java stack on Debian/Ubuntu, see
http://www.linuxplanet.com/linuxplanet/newss/6380/1/.

3 The versions used by JBoss may seem confusing at first glance, many ending in “GA.” This abbreviation stands
for General Availability, a fancy way of saying that it is the final release. A product is labeled as GA when all
the outstanding bugs have been resolved in the candidate release version that preceded it.

http://labs.jboss.org/jbossas
http://www.linuxplanet.com/linuxplanet/newss/6380/1/

554 APPENDIX A Seam starter set
ALTERNATE APPLICATION SERVERS

If you’re developing an off-the-shelf application, it’s important to test it on alternate
application servers to ensure portability. Covering the interoperability of Seam appli-
cations among different application servers here would duplicate the focused effort
done by the Seam development team and logged in the Seam reference documenta-
tion. Although theoretically Seam can run on any Java EE application server, the offi-
cially tested platforms are JBoss AS 4.2, IBM WebSphere 6.1, WebLogic 10, GlassFish
version 2, Oracle OC4J 11g, and Tomcat 5 and 6. I want to contrast two of the options,
GlassFish and Tomcat, to help you put the choice of where to deploy a Seam applica-
tion in perspective.
GLASSFISH

One of the application servers to which I am partial is GlassFish,4 the open source Java
EE 5–compliant server sponsored by Sun Microsystems. It’s the reference implementa-
tion for Java EE–compliant servers and passes the Java EE 5 Technology Compatibility
Kit (TCK) 100 percent, unlike JBoss 4.2. It also sports an attractive and intuitive admin-
istration console, making it user-friendly and easy to adopt.

 I put strong emphasis on the word compliant in the last paragraph. What’s so great
about compliance? It’s about the rule of least surprise. If every application server had
its own set of guidelines, then moving your application from one server to another
would require a lot of reconfiguring in the best-case scenario. If the services provided
by a server behave differently or don’t line up, the changes might even be more dras-
tic, perhaps requiring you to modify your code. Any work spent making such changes
provides zero value to your application and is pure overhead from a monetary stand-
point, definitely something you want to avoid. That brings us to Tomcat, which is
many miles from being compliant.
TOMCAT

Once upon a time, the industry flocked to Tomcat while fleeing a bad relationship
with J2EE application servers. Developers wrote them off because they were expensive,
slow, and heavyweight, and led to vendor lock-in. Tomcat represented the grassroots

4 You can download GlassFish from the GlassFish Community site: https://glassfish.dev.java.net/. Look for the
direct download links on the right side of the page. The recommended version of GlassFish is V2 or greater.

No love for JBoss?
I expect that some of you will grumble about the required JBoss AS download. Per-
haps you fear vendor lock-in or find the hefty 100 MB-plus download painful. You can
unfold your arms and put your hands back on the keyboard. JBoss AS is not required
to use Seam. However, having it around makes getting started a heck of a lot easier
since JBoss AS is the target application server for projects created by seam-gen. Re-
member, sticking with the defaults cuts down on work—and hassle.

555Stepping through the prerequisites
movement and let developers feel more free. Today, Tomcat is the most widely used
“application server.”5

 The main problem with Tomcat is that it isn’t a Java EE–compliant application
server—it’s a servlet container. Although it made sense to cut corners at the time
when J2EE servers had grown fat and expensive, times have changed. The Java EE 5
application servers have escaped their legacy and are now fast and cheap (GlassFish,
for instance, is open source and starts in under a second). Furthermore, application
servers adhere to a stack of successful and progressive specifications and offer all the
services that you need to support transactional applications right out of the box. In my
opinion, Java EE application servers offer a much better development experience than
a servlet container like Tomcat.

 You can even argue that Tomcat is now the culprit of vendor lock-in. It requires you
to bend your application over backward to get it to work in this nonstandard environ-
ment, whereas all other application servers can theoretically share applications with
little effort. That’s why the preferred solution for deploying an application that uses
EJB 3 or JTA to Tomcat is to make Tomcat act like a Java EE 5 application server rather
than forcing the application to fit Tomcat’s expectations. In this scenario, Seam 2.0
relies on Embedded JBoss to be configured directly in the Tomcat container (a change
from packaging the Embedded EJB 3 runtime in the application, the strategy used in
Seam 1.2). You can find instructions for setting up Embedded JBoss on Tomcat in the
Seam reference documentation.

 It’s certainly possible to deploy Seam applications to a vanilla Tomcat installation.
However, you have to either change the application so that it doesn’t rely on con-
tainer-provided services such as JCA and JTA, or you need to register these services
using Tomcat’s proprietary configuration descriptors. Either way, EJB 3 gets tossed out
the window. Are you starting to see why I claim that servlet containers are more pro-
prietary, and more of a hassle, than a Java EE–complaint application server? My advice
is to rethink why you are considering Tomcat.

A.1.3 Absent (JavaServer) Faces

As you know, Seam uses JavaServer Faces (JSF) as the preferred user interface (UI)
framework. Thus, you may be wondering why JSF isn’t listed as a dependency. Once
again, Seam applications are intended to be deployed to a Java EE 5–compliant appli-
cation server and since JSF 1.2 is a part of Java EE 5, it’s already available. If you aren’t
using a standard Java EE 5 environment, you need to download JSF and package it with
your application. You should grab a JSF 1.2–compliant implementation, which is
required by Seam’s JSF support.

 Seam developers recommend the Sun implementation of JSF (Mojarra) over
Apache MyFaces. The reason for this preference is that Sun’s implementation has suc-
ceeded in keeping up with the latest JSF specification and because it too is an open

5 http://www.infoq.com/news/2007/12/tomcat-favorite-container

http://www.infoq.com/news/2007/12/tomcat-favorite-container

556 APPENDIX A Seam starter set
source project. Both JBoss AS and GlassFish now bundle the Sun implementation in
their respective application servers. Despite this move, I’m sure this is not the last we’ll
hear of this debate.

 With your deployment environment ready, it’s finally time to grab Seam and the
example source code so that you are ready to go through the tutorial in chapter 2.

A.2 Downloading the Seam distribution
You can download the latest version of the Seam 2.0 distribution from the Seam proj-
ect page in the JBoss labs: http://labs.jboss.org/jbossseam. Feel free to upgrade as new
versions become available, but know that this book’s source code is developed for
Seam 2.0.3.GA. Extract the Seam distribution archive into the opt folder in your home
directory. The location of the extracted archive is referred to as the Seam distribution
directory throughout this book.

A.2.1 Seam’s modules6

Seam 2.0 consists of seven JAR files, each representing one Seam module. Table A.1 lists
the artifact ID of each module and its purpose. The JAR files, whose names are derived
by appending .jar to the artifact ID, are found in the lib folder of the Seam distribution.

6 http://repository.jboss.org/maven2

Table A.1 A listing of Seam’s modules and their purposes

Artifact ID Purpose

jboss-seam Provides the Seam container, Seam annotations, bijection, extended JSF
life cycle, CRUD framework, security, jBPM integration, Drools integra-
tion, web services, page flows, asynchronous support, conversations,
extended EL, managed transactions and persistence, and the integration
test framework

jboss-seam-remoting Supports invoking Seam components using Ajax requests and allows
JavaScript to listen for messages on JMS queues and topics

jboss-seam-ui Includes the Seam JSF components, file upload capability, graphics gen-
eration, Facelet integration, and conversation controls

Why is the Seam distribution so large?
You may consider the Seam distribution to be unnecessarily large (greater than 100
MB) and for this reason conclude that Seam is bloated. The reality is that the Seam
JAR files amount to less than 2 MB. The distribution is large for the benefit of the
developer. It contains all of the source code, seam-gen, the reference documenta-
tion, dependent JAR files, and 30-plus examples. You can always get the essential
artifacts from the JBoss Maven 2 repository.6

http://labs.jboss.org/jbossseam
http://repository.jboss.org/maven2

557Downloading the Seam distribution
Take note that the presence of the Seam debug module on the classpath activates hot
deployment of components and the Seam development pages. I recommend that you
remove this module from the classpath when deploying to production.

A.2.2 A wealth of documentation and examples

Second to this book (sorry, I’m biased), the best resource you have for using Seam is
the Seam reference documentation, which weighs in at 500-plus pages. We always
want documentation to be better, but my feeling is that the Seam developers have
done a great job of documenting Seam, especially in the area of application server
interoperability. In fact, there are several places in this book where I point you to the
reference documentation because, for certain topics, it will always provide the most
updated information.

 The reference documentation can be found in both HTML and PDF format on the
Seam project page. To ensure that you always have the resources you need, keep the
PDF of the Seam documentation and the eBook of Seam in Action on your hard drive
at all times. If you’ve exhausted these resources and are still looking for more informa-
tion, consult the Seam in Action link feed, http://del.icio.us/seaminaction.

 The Seam distribution includes a plethora of example applications. Although this
book has its own example application, the examples in the Seam distribution give you
additional exposure to how Seam is used. They also exercise many different deploy-
ment environments. To deploy an example, you must specify the location of the target
application server in the build.properties file at the root of the Seam distribution
using either the jboss.home or tomcat.home property. I encourage you to explore the
example applications early on because they’ll give you context when you read about
the features of Seam in this book.

A.2.3 Finding seam-gen amid the noise

The seam-gen tool is easily lost within the busy root folder of the Seam distribution. The
tool consists of two parts: the seam-gen script and the template folder. Unless you’re
planning to customize seam-gen, you’re likely only interested in the seam-gen script. On
Unix (or Cygwin), the script is named seam, and on Windows it’s named seam.bat.

jboss-seam-debug Activates the hot deployment classloader and provides a Seam debug
page and developer-oriented error page

jboss-seam-ioc Provides integration with Spring and other IoC containers

jboss-seam-pdf Has support for generating PDF files using Facelet templates and a docu-
ment storage mechanism for pushing binary files

jboss-seam-mail Provides email integration and supports creating emails from Facelet
templates

Table A.1 A listing of Seam’s modules and their purposes (continued)

Artifact ID Purpose

http://del.icio.us/seaminaction

558 APPENDIX A Seam starter set
 To use seam-gen, you must navigate to the root of the Seam distribution directory.
Before you can run the seam-gen script on Unix, you have to make it executable. To
do that, execute chmod 755 seam (or chmod +x seam). When you run the seam script in
Unix, you always prefix the shell command with a dot followed by a forward slash,
./seam, to let the shell know that the script is in the current directory. To run the
script on Windows, you simply type seam. Following the script name, you enter the
seam-gen command to execute.

 You are now ready to begin using seam-gen. The next section covers a couple more
resources that are useful for running the example application in this book.

A.3 seam-gen and the Open 18 example application
The example application used in this book is titled Open 18. It’s a golf directory and
community site. It begins its life as a seam-gen CRUD application and is customized
throughout the book. Several additional applications are also provided.

A.3.1 The source code

This book’s source code can be downloaded or checked out from the SVN repository
of the Google Code project: http://code.google.com/p/seaminaction. The source
code is organized in stages so that you can pick up with the application anywhere in
the book by using the result from the previous chapter. However, you should also be
able to get there without using the source code. You can find more information on
the project page about how the source code is organized and how to build the staged
projects. You can also find instructions on how to modify a seam-gen project so that it
can be deployed to GlassFish.

 Chapter 2 walks you through creating the initial application by reverse-engineer-
ing an H2 database, which you’ll need to set up to follow along with the tutorial.
Instructions for building the database are provided in the download. Note that all of
the example applications for the book use the H2 database for persistent storage.

A.3.2 H2 database

The seam-gen tool specializes in setting up database-oriented applications. Thus, in
chapter 2, you feed it an H2 database to get started. H2 is a SQL database written
entirely in Java. It’s much faster than other low-end databases for reasons cited on the
H2 project website. H2 is the successor of the HSQL Database Engine (HSQLDB), both
developed by Thomas Mueller.

 The example application leverages H2’s embedded mode, which allows the data-
base to be bootstrapped directly from the file system. One major limitation of using
embedded mode is that the database files can only be accessed by one JVM at a time.
To avoid locking errors, you may want to consider using client-server mode, which
allows several processes to connect to it over TCP/IP (or SSL/TLS over TCP/IP for
improved security). Another option to circumvent locking problems is to add the flag
FILE_LOCK=no to the JDBC URL, which disables H2’s file locking. Beware that if you dis-
able locking, you risk corruption of the database if writes occur from more than one

http://code.google.com/p/seaminaction

559Managing libraries in a seam-gen project
client. For more information about client-server mode and the H2 database in gen-
eral, visit the H2 project website: http://h2database.com.

 The H2 JAR file is bundled with the source code. You can also download it from the
H2 project website. The tutorial in chapter 2 assumes that it resides in the lib folder
in your home directory. seam-gen takes it from there and installs it into the JBoss
AS domain.

A.3.3 Apache Ant, turning the wheels of seam-gen

As chapter 2 explains, the workhorse behind seam-gen is Apache Ant. While you don’t
need Ant to run seam-gen, you need Ant to execute the build in a project that seam-
gen creates.

 You can download Ant from the Apache Ant project site: http://ant.apache.org.
The recommended version is 1.7.0. Extract the Ant distribution into the opt folder in
your home directory. You’ll also need to add the ant binary to your PATH environ-
ment variable:

export PATH=/home/twoputt/opt/apache-ant-1.7.0/bin:$PATH

Once again, if you’re using Debian/Ubuntu Linux, you can simply type sudo apt-get
install ant to have Ant installed and configured for you automatically. Mac OS X 10.5
(Leopard) is distributed with Ant 1.7 and it’s already available in the default PATH.

A.3.4 RichFaces or ICEfaces—take your pick

The seam-gen tool offers a choice of using either RichFaces or ICEfaces to build the user
interface. Both libraries, covered in depth in chapter 12, are extensions to JSF that pro-
vide Ajax-based interactivity, an elegant look and feel, and rich UI components. By using
either one, you eliminate a lot of custom CSS, graphics, and JavaScript that would oth-
erwise have to be developed and maintained as part of your application. This abstraction
and shift of responsibility is the whole value proposition of JSF components.

 So how do you configure one or the other? That’s the good news. If you use seam-
gen to create your project, you just need to answer “y” or “n” in response to the ques-
tion “Do you want to use ICEfaces instead of RichFaces?” when you run seam setup.
The appropriate JAR files and configurations are then used. If you’re using ICEfaces,
you can optionally provide a local directory as an override.

A.4 Managing libraries in a seam-gen project
Both the structure and build of a seam-gen project are rather eclectic. On the one
hand, this is justifiable because it’s optimized for the most efficient turnaround dur-
ing development. On the other hand, it’s atypical build requires some explanation of
how libraries are managed.

 In a seam-gen project, libraries are stored in the lib folder at the root of the proj-
ect. All libraries in this folder are included on the compile classpath. Which libraries
are selected to be packaged with the deployment archive is controlled by the
deployed-jars.list file at the root of WAR projects (split up as deployed-jars-war.list and

http://h2database.com
http://ant.apache.org

560 APPENDIX A Seam starter set
deployed-jars-ear.list files in EAR projects). Each entry in this file, one per line, corre-
sponds to the name of a JAR file in the lib folder to be packaged. You can use an aster-
isk character (*) for wildcard matching.

 To add a new JAR file to the project, you first add it to the lib folder. To have it
packaged, you append it to the deployed JARs file. That still leaves the IDEs in the
dark. You need to point the IDE at the JAR file and tell it to add the JAR to the class-
path. In Eclipse, right-click on the JAR file in the Project Navigator and select Build
Path > Add to Build Path. In NetBeans, select Project Properties and add the library to
each classpath in the Java Source Classpath panel (NetBeans differentiates between
src/model, src/action, and src/test).

 If this configuration isn’t appealing, you can add Seam to a standard Maven 2 project.

A.5 Adding Seam as a Maven 2 dependency
If you’re only interested in the bare minimum of what you need to use Seam, or you
want to add Seam to an existing build, pulling the artifacts from the JBoss Maven 2
repository is your best bet. But using the Maven 2 artifacts doesn’t mean you have to
use Maven 2 as the build tool. Other tools, such as Ant, can also take advantage of the
artifacts in the Maven 2 repository. You can point Ant at the Maven 2 repository using
either the Maven 2 Ant tasks or Ivy. This section introduces the Seam artifacts in the
JBoss Maven 2 repository by showing you how to add them to a Maven 2 build.

 A Maven 2 dependency follows the convention groupId:artifactId:version. The Seam
artifacts are classified under the org.jboss.seam group ID. The artifact IDs were listed
in table A.1. If you always want to use the recommended library versions with Seam,
declare the Seam root artifact as the parent in your project’s pom.xml as follows:

<parent>
 <groupId>org.jboss.seam</groupId>
 <artifactId>root</artifactId>
 <version>2.0.3.GA</version>
</parent>

Using the Seam root Maven 2 POM precludes the need to declare the JBoss repository
or any versions of Seam artifacts and their respective transitive dependencies in your
pom.xml. The only version that must be specified is the one in the <parent> stanza to
indicate which version of Seam you want to use (adjust the version as needed). Once
the parent POM is configured, you can add a Seam module inside the <dependencies>
node as follows:

<dependency>
 <groupId>org.jboss.seam</groupId>
 <artifactId>jboss-seam</artifactId>
</dependency>

You can also add other artifacts declared in the parent dependency management with-
out specifying versions. For instance, if you want to add the Drools libraries (which are
marked as optional dependencies), use these declarations:

561Adding Seam as a Maven 2 dependency
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>
</dependency>
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
</dependency>

Since Seam is designed to work with a Java EE 5 environment, any artifact that’s pro-
vided by a Java EE 5–compliant application server is marked as provided. Provided
artifacts include the Servlet API, JSF, and the unified EL. If you need these to be
included in the archive, you can declare them as compile-time dependencies. Here,
JSF is included:

<dependency>
 <groupId>javax.faces</groupId>
 <artifactId>jsf-api</artifactId>
 <scope>compile</scope>
</dependency>
<dependency>
 <groupId>javax.faces</groupId>
 <artifactId>jsf-impl</artifactId>
 <scope>compile</scope>
</dependency>

As is typical with Maven 2 builds, you’ll likely need to spend time getting all the
dependencies configured just right (though the root POM helps out a lot). Consult
the resources regarding the use of Maven 2 with Seam listed in the Seam in Action
link feed mentioned earlier. If you’re interested in exactly which libraries are
required for each Seam module or integration, consult the last chapter of the Seam
reference documentation.

resources
 Allen, Dan. 2007. “Seamless JSF, part 1: an application framework tailor-made for JSF.”

http://www-128.ibm.com/developerworks/java/library/j-seam1/.
2007. “Seamless JSF, part 2: conversations with Seam.”
http://www-128.ibm.com/developerworks/java/library/j-seam2/.
2007. “Seamless JSF, part 3: Ajax for JSF.”
http://www-128.ibm.com/developerworks/java/library/j-seam3/.

 Bauer, Christian, and Gavin King. 2006. Java Persistence with Hibernate. Greenwich, CT: Manning
Publications.

 Bergsten, Hans. 2003. JavaServer Faces, 3rd ed. Sebastopol, CA: O’Reilly.
 DeMichiel, Linda, and Michael Keith. 2006. JSR 220: Enterprise JavaBeans, Version 3.0.

http://jcp.org/en/jsr/detail?id=220.
 Evans, Eric. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston: Addison-

Wesley Professional.
 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design Patterns: Elements of

Reusable Object-Oriented Software. Boston: Addison-Wesley Professional.
 Hightower, Richard. 2005. “JSF for nonbelievers: the JSF application lifecycle.”

http://www.ibm.com/developerworks/library/j-jsf2/.
 Hoeller, Juergen. 2005. “Implementing transaction suspension in Spring.” http://www.oracle.com/

technology/pub/articles/dev2arch/2005/07/spring_transactions.html.
 ICEsoft Technologies Inc. 2008. ICEfaces Developer’s Guide.

http://www.icefaces.org/docs/v1_7_1/htmlguide/devguide/DevelopersGuideTOC.html.
 Jacobi, Janos, and John R. Fallows. 2006. Pro JSF and Ajax: Building Rich Internet Components. New York:

Apress.
 JBoss.org. 2008. “Drools documentation.” http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/

html_single/index.html.
2008. “jBPM jPDL User Guide.” http://docs.jboss.com/jbpm/v3.2/userguide/html_single/.
2008. “Seam—contextual components: a framework for Enterprise Java.”
http://docs.jboss.com/seam/latest/reference/en-US/html_single/.

 Katz, Max. 2007. “Happy birthday, Ajax4jsf! A progress report.” Java Developer’s Journal 12:9.
http://java.sys-con.com/read/430975.htm.

 Lubke, Ryan. 2006. “Web tier to go with Java EE 5: a look at resource injection.”
http://java.sun.com/developer/technicalArticles/J2EE/injection/.

 Richards, Norman. 2006. “Seam: the next step in the evolution of web applications.” Java Developer’s
Journal 11(2): 24–30. http://java.sys-con.com/read/issue/730.htm.
562

http://www-128.ibm.com/developerworks/java/library/j-seam1/
http://www-128.ibm.com/developerworks/java/library/j-seam2/
http://www-128.ibm.com/developerworks/java/library/j-seam3/
http://jcp.org/en/jsr/detail?id=220
http://www.ibm.com/developerworks/library/j-jsf2/
http://www.oracle.com/technology/pub/articles/dev2arch/2005/07/spring_transactions.html
http://www.oracle.com/technology/pub/articles/dev2arch/2005/07/spring_transactions.html
http://www.icefaces.org/docs/v1_7_1/htmlguide/devguide/DevelopersGuideTOC.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://docs.jboss.com/jbpm/v3.2/userguide/html_single/
http://docs.jboss.com/seam/latest/reference/en-US/html_single/
http://java.sys-con.com/read/430975.htm
http://java.sun.com/developer/technicalArticles/J2EE/injection/
http://java.sys-con.com/read/issue/730.htm

RESOURCES 563
 Srivastava, Rahul. “XML schema: understanding namespaces.”
http://www.oracle.com/technology/pub/articles/srivastava_namespaces.html.

 Walls, Craig, with Ryan Breidenbach. 2007. Spring in Action, 2nd ed. Greenwich, CT: Manning
Publications.

http://www.oracle.com/technology/pub/articles/srivastava_namespaces.html

index
Symbols

${jboss.home} 553

Numerics

404 error page 407

A

<a:outputPanel> 479
<a:region> 480
<a:support> 89, 478–479, 485
<a4j:support>. See <a:support>
abstract parent class 387
accept 513
Accept-Language 544
Access Control List (ACL) 462
Acegi. See Spring Security
<action> 116
action 479
action listener 479
action method

business method 108
EL signature 101, 103, 106
execution during JavaServer

Faces (JSF) life cycle 101
invoking 102
non-null string return

value 101
null return value 101
problems 108
specifing the view ID 108

ActionEvent 301
ActionForm (Struts) 96

actionListener 479
actionMethod 242
active domain model 389
Active Record 386

vs EJB 2 387
addRoles() 438
Ajax 292, 310, 475–476

as low-level 477
concurrent requests 483
for validaiton 36
handled by JSF UI

components 25
JSF navigation rules 481
partial page updates 97
request 280, 477, 482, 492
server-centric 477
triggering bijection 482

Ajax Push 488
render group 490

Ajax Remoting 92
Ajax remoting. See JavaScript

remoting
Ajax4jsf 36, 97, 310,

476–477, 482
<a:support> 89
Ajax engine 479
automatic re-rendering 479
Component Development Kit

(CDK) 517
configuration 483
declarative re-rendering 479
definition 478
features 482
form changes 487
limitations 480
live validation 484

partial submit 485
process 478
queue events 483
release date 477
vs RichFaces 478

Ajax4jsfFilter 94
ajaxRendered 479
ajaxSingle 485
alias 395

of result set 427
anemic domain model 386
annotation 139

as class metadata 13
compared to XML

configuration 12
defining Seam component 14
EL in attribute values 14
Hibernate Validator 90, 486
Java EE life cycle 257
meta-annotation 258
name property 90
over container interfaces 3
scope 227
syntax 139
vs XML 142

anonymous user 435
Ant 64

building a seam-gen
project 64

Maven 2 Ant tasks 560
powering seam command 64
providing IDE portability 70
setting up 559

Ant target test 146
anti-pattern 386
Apache 348
565

566
Apache Ant. See Ant
Apache MyFaces 555
Appfuse 382
APPLICATION 133
application

porting between servers 554
restricting users 118

application stack vs web
framework 5

application transaction 376–379
Hibernate 378
in JPA specification 377
optimistic locking, and 376
sidestep transactional

methods 379
use cases for 378
vs database transaction 353

application.xml 48
application/xml+atom 543
@ApplicationException

127, 375
application-scoped

singleton 157
applyTransform() 517
architecture

collapse layers 9
no forced requirements 17
overarchitected designs 10

@AroundInvoke 167, 256–257
Aspect-Oriented Programming

(AOP) 136–137, 219, 255
AsyncCallback 508
@Asynchronous 536
asynchronous

API 497
dispatcher 187
presentation update 488

Atom 543
atomic conversation.

See application transaction
Atomicity, Consistency, Isolation

and Durability (ACID)
criteria 340

attribute
action 115–116, 318, 479
actionListener 479
ajaxRendered 479
ajaxSingle 485
auto-create 169
beforeRedirect 300
bypassUpdates 486
class 183, 185, 197, 212
conversation-required 119
create 252

debug 154
depends 157
evaluate 109
eventsQueue 483
flushMode 287
HttpServletRequest 233
if 292
if-outcome 109
include 495
installed 154
join 291
login-required 119
login-view-id 119
map 276
name 183, 192, 197, 212, 315
no-conversation-view-id

119, 297
pageflow 287, 316
partialSubmit 482
prefix 192
propagation 290, 301
redirect 317
reRender 479
scope 183, 193, 213, 233
timeout 135, 300
to 316
type 257, 290, 342
value 152, 154, 225–226, 231,

242, 252
value types 139
view 109
view-id 111, 290

authentication 434
capturing and restoring

URL 450
comparing password

hash 439
database-backed 439
deferring 449
delegate 437
disabling a message 442
displaying success

message 442
events 441
failure 441
handoff 435, 437
in Java 441
initiating 448
invoking 440
minimizing

disruption 450–453
native JSF form 440
navigation 440
observing events 450

POJO-based 9
quiet login 452
requiring 448, 450
requiring on all pages 449
Seam vs JAAS 449
steps to implement 436–440
stub 397
vs authorization 455

authentication method
requirements 437

AuthenticationFilter 94
specifying authentication

type 444
URL pattern 445

authorization 455
as binary 449, 455
POJO-based 9
role-based vs rule-based 462
vs authentication 455

authorization check
combining 457
context variable 470

authorization, rule-based 455
AuthorizationException 459
autocommit mode 371, 377
@AutoCreate 138, 169
autocreate 169
auto-increment column 377
auto-login, danger of 453
AWT Color object 524

B

barcode 521
Base64 encoding 445
bash completion 40
batch fetching 417
BEA Kodo 348
bean

EJB 140
Groovy 140
managed 135
message-driven 162
property 334
Spring 140
wiring 220

Bean Validation (JSR 303) 6
bean-managed persistence

(BMP) 387
bean-managed transaction

(BMT) 373
beforeRedirect 298, 300
@Begin 286–287, 289, 291, 296

flushMode attribute 377
begin() 285, 289

567
<begin-conversation> 286, 289,
303, 403, 405

flush-mode attribute 377
beginNested() 285
bijection 159, 247

annotation 222
assigning context variable

properties 221
bypassing 244–249
configuring 224
definition 221
disinjecting 221, 228, 247
dynamic

dependency 224–231
dynamic lookup 228
EntityManager 229
HTTP request parameter 229
injection 221, 224–231,

238, 247
interceptor 221–223
long-term scope 233–234
method invocation 222
modifing state 221
outjection 221, 231–244,

261, 482
preparing data 233–234
required flag 227, 233
role 233
scope 228–229, 232, 234
target method 222
triggering 244, 253, 261
view 233–234
wiring of dependencies 220

binary data 37
bookmark friendly 36
bookmarkable link 109
bootstrap 84–85
bot 472
browser

POST requests 102
push resources to 91–92

buffer 512
build.properties 557
built-in component

captcha 473
credentials 438
currentDate 397, 410
currentDatetime 410
currentTime 410
documentStore 525, 527
facesMessages 411
facesSecurityEvents 452
identity 437–438

invoking authorization
methods from EL 456

localeSelector 545
mailSession 540
manager

concurrent request
timeout 483

restoring a
conversation 508

multipartFilter 514
pages 455
persistenceProvider 359
redirect 450
remoting 499
rulesBase 463
session 455
themeSelector 548

business method 209
return value as navigation

outcome 108
business process definition

file 133
BUSINESS_PROCESS 133
button 109
@BypassInterceptors 248
bypassUpdates 486

C

CAPTCHA 92, 472
customizing 473

@CaptchaResponse 473
captureCurrentView() 451
cascading delete 56
Cascading Style Sheets

(CSS) 91, 524
classes 89
delivering 449

Cgywin 557
chaining model 93
CharacterEncodingFilter 94
chart 528

3-D 528
as Facelets template 528
bar 529–530
color support 529
configuration elements 528
data sets 529
legend 530
line 530–532

showing trends 531
pie 532
series and data 529
setting a size 529
standard settings 530
with Ajax 532

charting support
relationship to PDF

module 528
required libraries 528
supported chart types 528

check exception and
transaction rollback 375

checkRestriction() 460
chmod 558
class

converter 113
FacesContext 154
FacesMessages 194
FacesRequest 146
Groovy 184
Java 184
making it a component 135
validator 113

classloader scan
optimization 151

clickable list 19, 235, 238, 269
client-side validation 484
close() 342
code generation

adjusting to 61
skepticism 35
with seam-gen 35–36

collapse layers 383
collateral resources 91–92
color support 524–525
@Column 329
compensating transaction 376
compliance, importance of 554
<component> 182–184, 186,

189, 197–198
as role 183
reserved attribute names 198

component 135–138
@Create 158
@Destroy 158
@Install 154
@PostConstuct 157
@PreDestroy 157
<s:button> 109, 242, 290
<s:link> 109, 242, 290
<s:validateAll> 90–91
access from context 171
access methods 168
accessible to JavaScript 493
accessing 168–177
action bean 98, 141, 145, 486
alternate

implementations 153
application-scoped startup 85
as object prototype 195–196

568
component (continued)
asking for an instance 168
asynchronous dispatcher 153
autocreate 169
backing bean 98
bean property 334
binding 477
binding with JavaScript 491
collaborator 246
collection 235
command 109, 242
configuring 195, 204–211,

214–217
vs defining 212

conflicts 212
contents 136
conversation 284–286
conversationEntries 310
conversation-scoped 295
creating instances 136
creation 157
currentDate 205
currentDatetime 204
currentTime 205
debug mode 154
declaring with XML 182
defining

in XML 180–185, 385
properties 196
using annotations 138–140
vs configuring 196

dependency injection 210
descriptor 260
destruction 157
disinjecting value 221
double dispatch pattern 246
enabling 214–217
enforce scope 296
Enterprise Java Bean

(EJB) 334
entity component,

creating 141–145
Events 250
external property settings 196
FacesMessages 134, 174, 251,

265, 282
facesMessages 216
factory 259–266
factory alias 264
fully-qualified names 193
Home 111
initial property value 196
initial state 195
installing 153

precedence 154

instance 84, 131
instantiate 85, 222
integration testing 146–148
interceptor 136, 255
internal method call 245
invoking 228
JavaBean properties 202
JavaServer Faces (JSF)

link 294
jBPM session factory 153
JMS topic publisher 153
life cycle callbacks 157–159
loading definitions 151–152
lookup 246

create mode 169
lookup using Seam

API 170–173
managed beans 87, 98
manager 266–267, 294, 300
managing 137–138
messages 216
method 252
model, compromising 476
modifing state 221
name 135

qualified 192
vs context variable 171

namespace 265
deciding to create

XSD 199, 463
framework 385
implied mapping 191, 546
mail 541
navigation 455
pdf 525
security 437
transaction 372
ui 358
vs Java package 189
web 444, 455
XML Schema

validation 199
namespace element 212
narrow-scoped 228
native types 139
non-JTA transaction

manager 153
org.jboss.seam.core.init 154,

166
page-scoped 293
POJO cache 153
precedence, default 155
property value type 202–209
Query 111, 235, 479

raising an event 250–252
reentrant call 246
requesting an

instance 169–170
resolving name 192–193
resolving scope 192–193
role 233
scanner 85, 151–156, 181, 184
Seam managed persistence

context 153
server-side 98
session bean 162–164
session-scoped 134
Spring context loader 153
static injection 209–210
storing reference to 235
switcher 308
tags 86
termination 161
UI 86, 89, 109–110, 290,

292–293
tree 477

UICommand 290
UIData 235, 238, 241
UISelectOne 308
unproxied instance 246
validation method 486
visitor pattern 246
vs component instance 136
weighted precedence

value 153
wider-scoped 228
wiring 159–160, 209–211, 408

Component (class) 136
component configuration 196

advantage of external prop-
erty settings 202

Boolean conversion 203
collection property 206–208
component class vs

component name 202
converting flat collection

values 206
creating example object 423
evaluating EL 412
field vs setter precedence 195
handling of EL 204
inflexibility of servlet context

parameter 202
interpretation of EL

notation 205
map property 206–208
message keys in property

values 217

569
Component (class) (continued)
property key to component

property 201
replacement token 208
using value expressions 205
vs Spring 204

component definition 212–213
mapping between XML and

annotations 183
component descriptor

181–185, 196
activate a built-in feature 214
configure runtine

settings 214
configuring component

properties 197–200
converting to property

name 200
customize template class 214
external property

settings 200–202
generic vs namespaced

elements 186
partition strategy 181
recommended location 182
registering a component

namespace 188
root element 185

component hierarchy 97
component instance

create sequence 137
vs component 136

component tree 97–98
component XML

namespace 186
Component.getInstance()

137, 170, 235
Component.newInstance() 137
.component.xml 181, 184
<components> 182, 186
components.properties 208
components.xml 181
concurrency challenges 10
Concurrent Mark Sweep (CMS)

garbage collector 51
configuration by exception

3, 13, 15
configuration file,

fine-grained 104
container initialization 369
container-managed

transactions 372–373
containers, various 136

transaction management 140
contains() 397

content type header 543
context 105, 131

application 133
business process 133, 278
choosing 131
conversation 132
conversation-scoped

variable 282
event 132, 134
extended persistence 341
in-memory cache 347
life span 132
maintain 336
page 132
persistence 280, 327, 336–337
server-side 276
session 132, 134
stateful 133–134
stateless 132
storing objects 294
unspecified 132–133
variable 278
vs scope 131

context model 131–132
context variable 15, 131,

136, 259
assigning properties 221
creating lazily 259
importing a prefix 193–195
in query 423
initializing on demand 263
name 227, 232
null value 221
outjecting 221
prefix 194

importing 527
propogating 134
scope 232
vs component name 171

context variable making naviga-
tional rules conditional 106

ContextFilter 94
<context-param> 201
contextual

component model 131
container 84
data 411
navigation 83
query 422

contextual component
model 11–12

contextual naming
container 131–135

compartments 131

continuous development cycle.
See incremental hot deploy-
ment

Controller 383
getFacesMessages() 411

controller layer 103
CONVERSATION 132
conversation

@Conversational 296
#{conversation.id} 293
<begin-conversation> 286
<end-conversation> 299
abandoning 300–301
activating manual

flushing 378
active 294
ad hoc 321–323
adding object 295
as workspace in

session 278–281
assigning a

description 307–308
beforeRedirect 298
begin directive 283
begin() 285
beginNested() 285
beginning 286–292
benefits 321
boundaries 281–300
breaking 376, 379
built-in switcher 308–314
caching 280
concurrency 279–281
configuration data 281
context 278–281
conversation

component 284–286
conversation component

method 284
conversation component

property 284
conversationEntries 310
conversationId 293
conversationIdParameter 294
ConversationInterceptor 287
declarative boundary

condition 275
description (property) 285
destroy 282
disable propagation 301
during authentication 451
end 275
end before redirect 406–407
end() 285
endAndRedirect() 285

570
conversation (continued)
endBeforeRedirect() 285
ending 283, 298–300
enlisting objects 294–298
establishing continuity 7
extended persistence

context 24, 353
FacesMessages

component 282
flush mode setting 405
GET request 286, 293–294
HTTP session 295, 298

storage requirements 279
id 279, 282–285, 292, 295
initialize 282
invoke action method 295
JavaServer Faces (JSF)

message 282
postback 293

join directive 283
joining 291–292
leave() 285
life cycle 278–279, 283
longRunning 285
long-running 126, 243, 282,

296, 403, 481
maintaining state 284
managed entity data 281
methods on an entry 311
natural business key 306
nest directive 283
nested 282, 285, 301–305
none directive 301
nonpersistent data 281
on debug page 27
outjected context

variable 294
page flow 303, 314–321
page-oriented 289–290
parentId 285
persistence context 281
pop() 285
populated 295
process token 314
propagation

directive 282–284
propagation value 290
properties on an entry 310
purpose 274–278
reallyBegin() 285
redirect() 285
redirect-after-post pattern 282
redirectToParent() 285
redirectToRoot() 286
resource session 281

restoring 292–294
root 303
root() 286
rootId 285
scope 274

prevent redundant
queries 427

serving PDF document 525
stack 303
state 282–286
storing 278
switcher component 308
switching 308
temporary 126, 134, 282
timeout 279, 285, 298,

300–301
token 292–295, 301, 404
transient entity data 281
transitioning between

states 282
trigger 279
unregistering

variables 297–298
URL parameter 293
viewId 285
workspace 305–308

conversation switcher 418
#{conversation.begin} 289
#{conversation.id} 293
@Conversational 296
conversationEntries

component 310
ConversationEntry 310
conversationId 293
conversationIdParameter 294
ConversationInterceptor 287
conversationList 310
conversationPropagation 290
conversationStack 313
@Converter 229
cookie 275

authentication 452
problems 278

<core:init> 154
<core:manager> 483
Crank 382
@Create 158, 195, 288–289, 362
create method 157–158
credentials 437–438
criteria object vs example

object 425
cross-site request forgery

(XSRF) 453
cross-site scripting (XSS) 453

CRUD 26, 45, 273, 381
account management 444
application 381, 558
as Hello World 30
navigation 407
operation, restricting 470
operations 141, 384
steps to create with

seam-gen 40
support 29
use case 31

currentDate 205
currentDatetime 204
currentTime 205
custom SQL builder vs Query

component 422
Cygwin 553

D

DAO framework 382
vs EJB 2 386

data access layer 382
data access object (DAO)

17, 269
frameworks 382
purpose of 382
vs persistence manager 382

data access operation 382
data model 235, 243
Data Modification Language

(DML) 376
data source descriptor 62
data transfer object (DTO)

342, 386
database

commit change 339
connection configuration 332
integrity 340
load minimizing 429
lock, long-term 376
resource adapter 332
tier 280

database administrator
(DBA) 31, 33

@DataModel 19, 168, 236, 238,
240, 244, 261

@DataModelSelection 20, 168,
238, 240, 242, 244

dataModelSelection
parameter 242

@DataModelSelectionIndex
168, 238, 240, 242

date range 425
Debian/Ubuntu Linux 553, 559

571
debug
page 37, 95
property 66–67
Seam debug page 27

/debug.seam 95
<decision> 319
declarative service for

JavaBeans 7
<default-locale> 545
deleting multiple records 420
dependency injection (DI)

159, 196, 209, 220
injecting a stateful

component 224
object assembly 220
static injection 220
static injection as

configuration 210
static vs dynamic 209, 211

dependent component 157
deploying to JBoss AS 46
deriving Java package from XML

element 191
<description> 307
design, interface 350
@Destroy 158, 362
destroy method 157
destroy() 312
detached entities 354
development process

bottom-up 31
meet-in-the-middle 32
top-down 31

DigestAuthentication 445
Direct Web Remoting

(DWR) 94, 491
Direct-to-DOM (D2D) 480
dirty checking 403
dirty entity 376
disable filter 93
display.xhtml 91
displaySize 269
distribution, Seam 9, 556
docId parameter 525
Document Object Model

(DOM) 480, 483
Document Type Definition

(DTD) 186
DocumentStorePhaseListener 5

25, 527
DocumentStoreServlet 526–527
Dojo 490
domain driven design 329
domain object 386–387

Don’t Repeat Yourself
(DRY) 523

drilling down 238
Drools 187, 462, 465

handling authorization
check 464

origin of name 463
rules manager 214
setting up in Seam 462–464
stateful vs stateless

sessions 465
Drools rule engine 456
Drools Rule Language

(DRL) 465
dynamic graphics 26
dynamic HTML (DHTML) 477
dynamic image 92
dynamic injection 249
dynamic query 414
dynamic reloading. See incre-

mental hot deployment

E

eager fetching 402, 417, 518
EAR 161
EasyMock 147
Eclipse 36, 70–74, 79

adding library 560
Ant integration 72
auto-build 73
hooking auto-build to explode

Ant target 71–74
importing a seam-gen project.

See seam-gen project,
importing into Eclipse

plugins 37
problems with auto-build

73, 76
vs NetBeans 78

EclipseLink 348
@EJB 167
EJB

component 383
interceptor 164
JavaScript remoting 493

EJB 3 3, 137, 153, 158, 180
component

adapter layer 10
hooking into JSF 10

container 162
integration prerequisites 552
interface 162
isolated from JSF 9
partial adoption 11

recommendation about use 7
role in Java EE 6

EJB 3 session bean
accessing from JavaServer

Faces (JSF) 83
concurrency hazards 10
serialized access 10

EJB session bean 161–168
ejb-jar.xml 373
<ejb-name> 166
ejbql 414
EL

binding 259
inline 86
resolver 259

EL4J 382
element

<begin-conversation> 303
<component> 182–184, 186,

189, 192, 197–198, 212–213
<components> 182, 186
<context-param> 201
<description> 307
<end-conversation> 299, 318
<event> 185–186
<exclude-unlisted-

classes/> 334
<factory> 182, 185–186
<import> 182, 186, 194
<key> 208
<list> 208
<message-bundle> 216
<page> 104, 184
<property> 186, 197,

199–200, 208
<restrict> 119
<set> 208
<value> 197, 207–208

@Email 484
email 26

accessing context
variables 535

adding attachments 537–540
as Facelets template 533
attachment body 538
body, plain text vs HTML 534
cid scheme 538
component tag as utility

tag 533
conditional logic 539
configuring 541
debug mode 541
dynamic attachment 537
embedding in view 535
Facelets requirement 533

572
email (continued)
in Java EE application

server 540
in servlet container 540
inline attachments 537
integration 188
internationalization

(i18n) 540
linked resources 538
plain text 533
recipients 534
recommendation for

testing 536
required libraries 540
sending asynchronously 535
sending multiple

messages 540
solutions to common

tasks 539
static attachment 537
status variable 537
testing 536
theme 540
using Facelets

compositions 539
using JSF components 536
using Session from JNDI 541

@Embedded 329
Embedded JBoss 146–147,

553, 555
enctype and file uploads 513
@End 287, 299
end() 285
endAndRedirect() 285, 304
endBeforeRedirect() 285
<end-conversation>

299, 318, 407
Enterprise JavaBean (EJB) 338

component 258, 334, 342
container 258
EJB 3 specification 341

Enterprise JavaBean 2
(EJB2) 386

Enterprise JavaBean 3
(EJB3) 555

interceptor 255–256
Timer schedule 250

entities as select options 357
@Entity 15, 141, 330
entity 390
entity class 384

as JSF backing bean 15
giving behavior to 391
identifier value 388

joined-inheritence
strategy 143

limits 387
role of 14
securing 470–472
Serializable interface 392
vs EJB 2 entity bean 387

entity component as
prototype 142

entity converter 357–359,
405, 426

changes in Seam 2.1 358
custom 358
customizing 358–359
long-running

conversation 405
entity inheritance 141
entity instance

and Seam Application
Framework 381

create from
prototype 396–397

CRUD operation 393
in working memory 470
restoring from id 358

entity life cycle 389
annotations 470

entity loader 358
entity restriction 470
entity state 109

transient 390
EntityConverter 358
EntityHome 387
EntityManager 230, 342

container injection 229–230
extended 342, 345–346
Hibernate extensions 350
proxy 231

entityManager 394
EntityManagerFactory 157, 334
EntityQuery 414
enum constant 427
environment profile 49–50
environment variable

JAVA_HOME 552
PATH 552, 559

equals() 249, 347
error page, friendly 37
EVENT 132
<event> 185–186
event

asynchronous scheduling 250
authentication 254
built-in 254
defining 252

EL method expression 252
Events API 250
exception 254
notification 476
org.jboss.seam.afterTransac-

tionCompletion 413
org.jboss.seam.afterTransac-

tionSuccess 413
org.jboss.seam.noConversa-

tion 296–297
page transition 253
raising 250–254
scope 254
synchronous scheduling 250
transaction 254
user preference 254

event-driven design 83
Events 250
eventsQueue 483
Exadel 509
example code 558
example object as query

criteria 423
Excel component tags 525
<exception> 450, 459
exception

application, and transaction
rollback 375

event 254
handler 127, 223, 408

registering 126
LazyInitializationException

327, 343
NoConversationException

296
NullPointerException

227–228, 247
persistence operation 408
RequiredException 227, 233

ExceptionFilter 93
<exclude-unlisted-classes> 334
<execute> 115
exploded archive 46, 48
expression

#{conversation.begin} 289
#{conversation.id} 293
#{switcher.selectItems} 309
EL 252, 259, 499
evaluating during page

rendering 112
method 499
method-binding 115, 174
registering observer 252
value 499
value-binding 110

573
Expression Language (EL) 3
accessing Seam contexts 176
as technology bridge 14
binding component to JSF

view 22
calculated values 204
component wiring 204
custom resolvers 14
duck-typed 385
dynamically-typed 385
EL 252, 259, 499
enhancements 175
function mapper 456
functions 456
in message key 217
in Query restrictions 423
magic methods 176
method-binding

expression 19, 148
not web specific 14
notation 174
original goal 13
parameterized method-bind-

ing expression 19
parameterized methods 456
parameterized

syntax 175–176
pluggable design 14
projections 176–177
resolver 174
role in Java EE 13
to resolve navigation

outcome 16
universal 206
using in query 357
value 204–206
value expression 107
value expressions 154
value-binding expression

18, 174
extended persistence context

benefits 403
dirty entity 406
management of 355–356
propagation 355–356, 376

extensible templating system 86

F

<f:verbatim> 86
Facelet view, created by seam-

gen 36
Facelets 17, 36, 86

.xhtml 87
<ui:composition> 90

agnostic to markup 543
Ajax4jsf/RichFaces 87
alternative output 26
as alternative view handler for

JSF 18
benefit over JSP 18
composition definition 88
composition tag 88
composition template

26, 421, 536
compositions 86, 88–91
debug mode and

exceptions 450
development mode 66
dynamic markup in page 88
generate chart 528
generate PDF document 517
generating email 533
Hibernate Validator 90
HTML processing 86
insertions 90
iteration component 521,

523, 537
JavaServer Faces (JSF) 1.2

features 86
locate template 87
master composition

template 91
minimize repetition 89
parent JavaServer Faces (JSF)

tree 90
publishing news feed 543
register view handler 87
reusable page fragments 86
tag libraries 90
template parameters 422
variables 90
view templates 87

Facelets template
creating PDF from 517
sending email 533

FaceletViewHandler 87
faces-config.xml descriptor

87, 148, 216
loading 95

FacesContext 100, 154, 267
FacesMessage 441
facesMessages 216

retaining messages across
redirect 134, 282

facesMessages component 134,
174, 194, 251, 265, 282

features 411
FacesRequest 146
FacesServlet 134

@Factory 19, 260, 263, 288, 317
as alias 396

<factory> 182, 185–186
as alias 396

feed reader 543
fetch strategy 393

mapping vs query 417
file

extension appended to file
name 516

separator in Windows 41
upload 26, 512–514

transparency in Seam 513
file download 526
file upload element, binding to

Seam component 512
@Filter 444
filter 92–95, 120, 122

built-in 93–94
disabling 93

find() 396
findComponent() 488
fine-grained component

descriptor
advantage of 192
mapping to class 184

FireBug 494, 506
firstResult 417
flag

beforeRedirect 298
globalOnly 195

Flamingo 509
Flex 6, 509
flush mode setting 355

AUTO 377
COMMIT 377
MANUAL 377

flush() 346, 376–377, 405
flushing persistence

context 376, 391
flushMode 287
forcing an application to

reload 48
form

Cascading Style Sheets (CSS)
classes 89

errors 88–90
fields 88–91
flag 89
HTML 88
intelligent processing 485
live validation 484
markup 89
partial submit 484, 486
POST 109–110

574
form (continued)
primary page content 91
seam-gen 91
search paradox 112
submit 476
submitting 102–103
synchronize values 405
template 89–90
validation 88–90, 484

form-based authentication and
navigation 446

forName() 203
framework choice 4–5

compared to writing
applications 5

considering Seam 8
criteria 8
perpetual cycle 4
promise of simplicity 8
Ruby on Rails movement

8, 27
<framework:entity-home> 394
<framework:entity-query> 415
<framework:hibernate-

entity-home> 394
<framework:restrictions>

423, 428
FreeMarker

as used by seam-gen 36
templates for reverse

engineering 61
friendly URL, semantic

value 526

G

@GeneratedValue 15
generic type parameter 384, 393
GET request 404
getConversationId() 504
getInstance() 117, 170

function 396
getName() 158
getPersistenceContextName()

394
getRenderedMailMessage() 536
getSimpleName() 412
ghost click 241
GlassFish 332, 554

SMTP authentication 542
global timeout setting 279
global transaction 124

commit of transactional
method, and 375

disabling 370
lazy-loading, and 371

globalOnly 195
Gmail 541
Google Web Toolkit (GWT)

6, 92, 506
accessing a Seam

component 507–509
conversations 508
RemotingService

interface 507–509
GPL 528
Grails 69
GraniteDS 509
grant() 467
Groovy 36, 67

bean 140
class 140, 184
class as component 151
classloader 67
component 420
writing components in

386, 394
GWT. See Google Web Toolkit

(GWT)
GWT.isScript() 509

H

<h:commandButton> 109
<h:commandLink> 109, 243
<h:dataTable> 235, 238
<h:messages/> 127
<h:messages> 195, 410, 442
<h:outputLink> 301
<h:outputText> 86
<h:panelGroup> 517
<h:selectBooleanCheckbox>

420
<h:selectManyListbox> 426
<h:selectOneMenu> 308
H2. See Hypersonic 2 (H2)
hashCode() 249, 347
hasRole() 457
Hibernate 214, 325, 328–330,

332, 338
accessing from JPA 361
API 328
as JPA provider 37
configuration descriptor 334
file naming conventions 363
hibernate.cfg.xml 332
lazy loading 345
manual flushing 330, 349,

377, 486

post-query filters 349, 359
relation to Java Persistence

API (JPA) 348
security listener 472
seeding database with

import.sql 37
Session 224, 281
Session class 335
session factory name as JNDI

name 368
SessionFactory 157, 267, 334
Validator 482, 484

Hibernate extensions 359–361
Hibernate Query Language

(HQL) 414
managing 384
qualifying column name 421

Hibernate Search 349, 360
as alternative to Query

restrictions 424
Hibernate Validator 350

annotations 57, 90, 142, 486
CAPTCHA validator 473
constraint 486
property 90
UI validations 91
validator bridge 91

hibernate.default_batch_
fetch_size 417

hibernate.hbm2ddl.auto 141
See also Hibernate, schema

generation
HibernateEntityHome 387
HibernateEntityQuery 414
hibernateSession 394
Hibernator Validator

interface 485
hierarchical context search 227
Home 384, 387, 391–403

assembling message key 412
avoid database write 390
binding to form 394
change state of entity

instance 389
clearInstance() 389
createInstance() 389, 396
defining in XML 394,

408–410
fallback message 412
find() 388
flushing the persistence

context 405
functionality 385
getDefinedInstance() 399
getInstance() 388
identifier value 388

575
Home (continued)
inherited CRUD logic 393
isIdDefined() 396, 399
isManaged() 389, 398
JPA vs Hibernate 393
loadInstance() 402
lookup entity instance 388
object-oriented design 389
purpose 387
raiseAfterTransactionSuccess-

Event() 413
raising exception 407
relationship to entity

class 387
remove() 407
scoping to conversation 403
selected persistence

manager 393
setId() 388
setInstance() 389
subclass 394
transaction events 413
using Seam resource

bundle 412
vs CRUD interface 413
wiring a related

entity 398–400
hot deploy

classloader 26, 67
of Java EE applications 47
XML component

definitions 184
HTML form layout 88
HTTP 274

request 342
request parameter 229, 276

HTTP authentication 445–446
as alternative to form-based

authentication 436
as insecure 445
Basic authentication 444
Digest authentication 444
limitations of 446
vs form-based

authentication 446
HTTP session 84–85, 298,

342, 435
and identity 435
identifier 277
max inactive interval 451
memory consumption 451
partitoning 275
replication 159
scope 275, 278

storing a conversation 295
storing data 277–278

@HttpError 127, 230, 407
HTTPS protocol 453
HttpServletRequest 96, 233
HttpServletResponse 96
Hypersonic 2 (H2) 33–34,

558–559
JDBC driver 43

I

<i18n:locale-selector> 546
<i18n:time-zone-selector> 547
ICEfaces 36, 476–477,

480–481, 490
about 43
adding push feature 489
Ajax bridge 480
Ajax Push 482, 489
benefits 559
Comet 489
component styling 482
concurrent requests 483
configuration 483
conversation id 481
Direct-to-DOM (D2D)

rendering 480
features 482
form changes 487
live validation 484
multi-user application 490
partial submit 481, 485
release 477
required fields 485
vs RichFaces 43

@Id 15, 347, 358, 388
id generation strategy 377
identifier value, comparing 426
identity 435
#{identity.loggedIn} 441
#{identity.login} 440
#{identity.logout} 441
#{identity.password} 440
#{identity.username} 440
image 516

dynamically generated 472
transformation 516–517

ImageTransform 517
IMAP 541
implicit component name

entityManager 394
hibernateSession 394
securityRules 463
session 394

@Import 265, 527
<import> 182, 186, 194
IN 426
@In 17, 159, 168, 170, 210,

222–228, 336
vs @PersistenceContext 356

incremental hot deployment
36, 42, 65

Facelets templates 66
Groovy scripts 26
Java classes 26, 67–69
JSP pages 26, 66
limitations 69
on par with PHP and Ruby 69
page descriptors 26, 67
prerequisites 67
synchronizing static

resources 66
variation of

implementation 65
incremental page update 479
@Inheritence 329
injecting logger 160
input template 485
insertion 90
@Install 138, 152–154, 212
instance() 173
instant change See incremental

hot deployment
inteface 383
integration test 146

EL in assertions 21
integration testing 27
IntelliJ IDEA 36

Eclipse project importer 78
interceptor 287
@Interceptor(s) 165, 167,

256–259
interim redirect 134
internationalization

(i18n) 215–217, 411
authentication messages 442
status messages 412

Internet Service Provider
(ISP) 540

interoperability 554
inversion of control (IoC) 159,

219, 222, 259
container 228

InvocationContext 256–257
isManaged() 117
isPostback() 125
IsSerializable() interface 507

576
isUserInRole() 119, 435, 438
iText 26, 517

alternate output formats 520
Ivy 551, 560

J

j_password 440
j_security_check 440
j_username 440
Java 552

1.4 vs 5 552
class 184
distributable license 553
transaction API 338

Java 2D 516
Java 5

annotations 15
enum

converting 150
ScopeType 132

features
annotations 552
generics 552

generics 383–384
type parameters 386

productivity gains 552
Seam’s support for 552

Java Authentication and
Authorization Service
(JAAS) 4, 119, 434–435

transferring roles 438
Java Community Process

(JCP) 349
Java Connector API (JCA) 555
Java Database Connectivity

(JDBC)
vs ORM 382

Java Development Kit (JDK) 551
Java EE

application
create with seam-gen 31
packaged vs

exploded 46–48
container

embedded JBoss 27
GlassFish 7
OC4J (Oracle) 7
testing outside of 20
WebLogic (BEA) 7

package format 46–47
resource reference persis-

tence unit 366

Java EE 3
current problems solved by

Seam 4
life cycle annotation 257

Java EE 5
annotations 7
API 157
application server 552–553
compared to Java EE 1.4 3
component architecture 6
gap between EJB 3 and JSF 6
improved by Seam 3
JavaServer Faces (JSF) 555
revitalized by Seam 9
specification 6
techniques to simplify 3
Technology Compatibility Kit

(TCK) 554
Java FX 509
Java Messaging Service

(JMS) 250
connection 267

Java Naming and Directory
Interface (JNDI) 332–333

writing to 368
Java object 136
Java persistence 352–353
Java Persistence API (JPA) 4,

224, 325, 328, 330–332, 341,
359, 377

batch fetching 344
delegate 361
entity 141
entity class 140, 248, 494
entity manager 37
EntityManager 335
EntityManagerFactory

157, 334
locking 347
manual flushing 349
META-INF/

persistence.xml 332, 334
persistence unit

descriptor 333, 338
persistent unit 37
portability 350
role in Java EE 6
security listener 471
specification 377
vendor-specific

properties 363
Java Persistence Query

Language 231, 518

Java Persistence Query
Language (JPQL) 68, 414

externalizing query 357
inline EL 357
managing 384
qualifying column name 421
using EL in queries 14

Java scriptlets 86
Java SE 335, 338, 551
Java Servlet API 131, 134
Java Transaction API (JTA) 333,

338, 555
application-managed 372
container-managed 372

Java Virtual Machine (JVM) 552
memory management 51

java.lang.Class 203
java.lang.Enum 203
JavaBean 140

component 255, 335
JavaScript remoting 493
naming convention 225
property 159, 195, 209
setter method 195, 210
transactional 6
used with JPA 11

JavaBean setter method 110
JavaDoc 201
JavaMail

API 533, 536, 540
configuring 533, 540–542

JavaScript 91, 476–477
built-in function 481
complexities 476
delivering 449
remoting settings 188
validation 484
window.prompt 498

JavaScript event, invoke JSF life
cycle 479

JavaScript remoting 25, 491–506
abstraction over

XMLHttpRequest 476
accessing a component 493
binding to component 491
building a stub 493
callback function 497–499,

506
calling a server-side

component 496–500
catching an exception 502
classes 491
component instance 496
context 494, 497, 505
conversation id 504

577
JavaScript remoting (continued)
conversational call 503–506
debug mode 499
declaring a method 493
disable 493
EJB component 493
EL 499–500, 504, 506
ending a conversation 504
executable stub 496–497,

499, 506
executing a method 497
for creating single-page

applications 25
foundation for rich-client

integrations 509
framework 492–493, 495
hot deployable class 494
importing a component

stub 495
interface generator 496
JavaBean 493
joining a conversation 504
library 491
loading message 498
local stub 500–503

component stub 496, 500
type stub 496, 501

method 493
module 491
onload handler 504
persisting an object 501
proxy object 491
queuing requests 506
request 493
retrieving a stub 496
starting a conversation 504
stub 491–492, 495–496
update conversation id 505
uses 491

JavaServer Faces (JSF) 3
1.2 features 86
2.0 490
action binding 16
action method 96
adding JSF messages 107
Ajax 25
Ajax impedance

mismatch 477
Apply Request Values

phase 100, 370
built-in component 225
challenge of using Ajax 476
client id 488
client vs server-side state

saving 99

collection 235
command button 96
component 235
component library 290
component model 83, 476
component tag 90
component tree 10, 292
components 148–150
converter 113, 229
creating components 91
creating localized

messages 217
data conversion 15
data model 235
data model selection 229
DataModel 19, 236, 238
dependency injection 10
DRY (Don’t Repeat

Yourself) 88
dynamic markup in page 88
efficient events 480
EL method-binding

expression 96
EL value-binding

expression 107
equivalent Seam component

tags 90
event driven relationship 96
faces-config.xml 104
FacesContext 267
failed validation 254
flag available per field 89
for creating UIs 25
form backing bean 225
form binding 15
form markup 88
form submit 476
form validation 484
front controller 101
ghost click 241
<h:commandButton> 109
<h:commandLink> 109
handling exceptions 126–129
Hibernate Validator 91
history related to Ajax 476
implementation 556
incoming request 87
initial request 98–100
initial request

assumptions 100
input component 98
Invoke Application Phase 413

page scope 133
transaction 125, 370, 413

Invoke Application
phase 100, 132

keeping page in sync 477
leaky abstraction 96
life cycle 85, 91, 260, 282, 295,

448, 476, 482
life cycle short-circuit 100
life cycle

shortcomings 101–103
life cycle with Seam 122–126
link component 294
managed bean 135, 205, 334

facility 209
managed bean container 10
map incoming request 87
message key 216
messages 174, 410
mixing Ajax component

sets 490
navigation event 282, 447
navigation routing 101
navigation rules 103
nested validation tags 91
output component 98
overview of life cycle 96–101
page controller 381
page scope 133, 275
parent tree 90
passing template 98
persistence 328
phase listener 84, 95
phase transition 254
phases 97
pitfall 88
POST 102–103, 109
postback 100–101, 132, 134,

276, 292, 477
with Seam 125

prior experience with 84
Process Validations

phase 485–486
register .xhtml extension 87
registering EL resolver 148
Render Response phase

98, 100, 102, 132, 295
conversation boundary

282, 295, 298
evaluating page

parameters 110
page-level security 448
transaction 370

Restore View phase
98, 100, 132
conversation boundary 282

578
JavaServer Faces (JSF)
(continued)
page-level security 448
transaction 370

role in Java EE 6
Seam enhancements 22
securing pages 119
security challenges 447
sending resources to the

browser 91
server-centric model 476
server-side model 476
servlet filters 92–95
short-circuit life cycle 98
skipping render response 100
specification 83, 153
specification and Ajax 476
state saving 277
status message 134, 299
strengths 22
template 150
UI component tree 86,

132–133, 276, 321
UI text components 86
Update Model Values

phase 100, 110,
172, 391, 405

updating the model 489
using EJBs 108
validator 113, 484
verbose XML 10
view 148–150, 221
view handler 86, 499
view root attribute 279
view securing 458
view template 88
views 87
weak annotation support 10

JavaServer Faces 2.0 (JSR 314)
specification request 6

JavaServer Pages (JSP)
problems 86
XML-based syntax 90

javax.faces.convert.Converter
113

javax.faces.DEFAULT_SUFFIX
87–88

javax.faces.FacesException 536
javax.faces.STATE_SAVING_

METHOD 99
javax.faces.validator.Validator

113
javax.mail.MessagingException

536

javax.persistence.Optimistic-
LockException 408

javax.persistence.Persistence-
Exception 408

Jave Persistence API (JPA) 281
JBoss 7

EL 243, 253
embedded container 333

JBoss Application Server
(AS) 46, 332, 552–553

default port 50
deployment directory 47
downloading 553
JavaMail SMTP

authentication 542
recommended JVM

options 51
recommended version 553
runtime configuration 51
start script 50

JBoss AS 4.2 367
JBoss Developer Studio

(JBDS) 37
JBoss EL 175, 456
JBoss Enterprise Middleware

Platform 37
JBoss Labs 7
jboss.entity.manager.factory.jndi.

name 367
jboss.home 557
jboss-seam.jar 95

as EJB JAR 373
jboss-seam-mail.jar 540
jboss-seam-pdf.jar 517
jboss-seam-ui.jar 514
JBossTools 37, 78, 314

Seam creation wizard 44
jBPM 221, 314

enabling 214
integration 187

jBPM Process Definition
Language (jPDL)

descriptor 314
library 316
page flow descriptor 307

JCA 332
JCA data source 37
JDBC 332

connection 335
transaction 338

JDK logging 160
JFreeChart 26, 528
JMS 214, 482

integration 188

JNDI 165
lookup 162, 165

persistence unit 367
naming convention 166
pattern 166
resource reference 542

JNDI namespace
java:/ 368, 542
java:comp/env 366–367

@JndiName 166
jndiPattern 166
join fetch 402, 417, 518
JPOX 348
JPQL, EL in queries 14
JPQL/HQL 235

dealing with empty
collection 426

function
concat() 424
lower() 424

query rewriting 426
jQuery 490
JSF component

Ajax-enabled 405, 478, 480
binding to a property 488
searching for in UI tree 488

JSF DataModel 415
JSF life cycle phase 21
JSF life cycle, short-

circuiting 486
JSF managed bean 10

delegation to EJB 3 10
navigation outcome 16

JSF UI component tree,
building 517

JSF UI component,
human-friendly 25

.jsp 87
JSR 299 259
JTA UserTransaction 371–372
<jta-data-source> 333
JVM classloader, seam.properties

marker file 151
JVM options 51

K

<key> 208
keyword

new 137
transient 420

King, Gavin 6, 35

579
L

language negotiation 544
Laszlo 509
lazy associations 125

crossing in view 393
lazy loading 518

avoiding 417
global transaction, and 371
in view 370, 402
transactions, and 371

LazyInitializationException
(LIE) 125, 327, 343

solution 25
lazy-load exception, symptom of

incorrect usage 353
leave() 285, 301
@Length 57
LGPL 517
library dependencies 551

transitive 560
life cycle

context 84
conversation 278
front controller 115
handling exceptions 126–129
initial request with Seam 123
JavaServer Faces (JSF)

85, 101–103
phases 97
with Seam 122–126

postback with Seam 125
request 84
Seam 85
servlet 84

Lightweight Directory Access
Protocol (LDAP) 435

link 109
<list> 208
ListDataModel 235
load() 230
@Lob 512
@Local 162, 493
locale 544–546
<locale-config> 545
Log 174
log messages 174
Log4j 160

configuration 147
@Logger 160, 163, 168, 225
LoggingFilter 94
logical request 134
login page 449
login required 55
login() 440

login-view-id 119
Lucene search engine 349

M

<m:attachment> 537
<m:bcc> 534
<m:body> 534
<m:cc> 534
<m:header> 534
<m:message> 533

charset 540
email headers 534
urlBase 538

Mac OS X 553, 559
Mail Transport Agent

(MTA) 540
<mail:mail-session> 541–542
mail-service.xml 542
mailSession 541
managed entity instance 276

reverting 406
managed persistence 386
manual flushing 405

effect of id generation 377
JPA specification 377
support in JPA 378

@ManyToMany 436
Maven 2 61, 509, 551

repository 556, 560
Seam project 560–561
Seam root artifact 560

maxResults 415, 417
Mediator pattern 389
Meldware 540
merge 390
merge() 346
merging, how to avoid 354
message bundle 545
message template 411
<message-bundle> 216
messages 540, 544
meta-container 130
META-INF/

components.xml 181
META-INF/ejb-jar.xml 164
META-INF/

persistence.xml 332, 334
method 252

accessor 500
begin() 289
callback 195
client-side interception

255, 257
close() 342

component 259
Component.getInstance()

235
custom interceptor 255–259
destroy() 312
disabling

interceptors 248–249
EJB 3 interceptor 256
endAndRedirect() 304
enforce scope 296
equals() 249, 347
event listener 488
findComponent() 488
flush() 346
forName() 203
getConversationId() 504
getInstance() 117, 170
getName() 158
getter 231, 259
hashCode() 249, 347
instance() 173
interceptor 221, 244
interceptor type 258
internal call 245
invoking 222, 228
isManaged() 117
isolate interceptor 258
isUserInRole() 119
JavaBean setter 110
leave() 301
load() 230
merge() 346
onFailure() 508
onSuccess() 508
parameterized

expression 243
property setter 224
putConverter() 203
recursive call 246
reentrant call 246–248
registering an

interceptor 222, 255
required flag 227, 233
scope 246
Seam interceptor 257–259
select() 312
setConversationId() 504
setTimeout() 300
stateful interceptor 257
stateless interceptor 255
stereotype 255, 258
target 244–245
throwing an exception 223
toString() 249
Transaction.instance() 173

580
method (continued)
transactional 342
value change listener 487
valueOf() 203
view() 239, 243

method interceptor 136
server-side 164

method-binding expression
authentication 437

MethodExpression 205
MimeMessage 533, 536
model validation 36
Mojarra 99, 555
MPL 517
multipart boundary 512
multipart data stream 513
multipart/form-data 513
MultipartFilter 93, 512
MultipartRequest 512
multiple component roles 155
Multipurpose Internet Mail

Extensions (MIME) 513
multiverse repository 553
MyFaces Tomahawk 276

component set 133

N

n + 1 select problem
402, 417, 518

detecting 402
@Name 12, 15, 138–140, 142,

212–213
avoiding conflicts with exist-

ing components 212, 214
component name 192
component

scanning 151–152
local component stubs

491, 500
versus managed bean 148

@Namespace 138, 189–193
NamingContainer 488
<navigation> 109, 253
navigation

breadcrumb 304, 313
model 314
redirect 113
rules 101, 103, 105, 109, 117

action method
outcome 103

defining 105, 107
originating view ID 103

navigation handler 105
bypassing 108

navigation rules 102
NetBeans 36, 74–79

adding library 560
Ant integration 75
build keybinding 76
importing seam-gen project.

See seam-gen project,
importing into NetBeans

vs Eclipse 78
network sniffing 445, 454
newInstance 397
news feed, native

tongue 543–544
NoConversationException 296
no-conversation-view-id 119, 297
node

<jta-data-source> 333
<non-jta-data-source> 333
<page> 253, 308
<rule> 253
<start-page> 316
<transition> 316

<non-jta-data-source> 333
NonUniqueObjectException

354
NonUniqueResultException

415
NotLoggedInException

449–450
handling 450

@NotNull 57
NullPointerException

227–228, 247

O

object
coupling 220
destructive serialization 275
identity 276
mixing 228
non-serialized 228
remote 491
serialized 228
stub 491
XMLHttpRequest 491

object-oriented principle 329
object-relational mapping

(ORM) 24, 280, 327,
386, 392

benefit of mapping 31
composite key 36
flexibility of mapping 31
limitations 32
many-to-one 36

mappings 35
one-to-many 36
vs JDBC/SQL 382

@Observer 252, 254
onFailure() 508
onSuccess() 508
Open 18 30–31

database schema 33
entity listings 53
golf course directory

module 30
member registration 131
show and tell 51
steps to create prototype 40

Open Session
in Conversation pattern 354
in View pattern 354

open source 517, 528
OpenJPA 332, 348
OpenXava 382
opinionated software. See config-

uration by exception
optimistic locking 376
optimistic transaction. See appli-

cation transaction
order 420
orderColumn 421
orderDirection 421
org.ajax4jsf.VIEW_HANDLERS

87
org.jboss.seam.caughtException

 126
org.jboss.seam.core.init

154, 166
org.jboss.seam.framework.Entity

NotFoundException 407
org.jboss.seam.handled-

Exception 127
org.jboss.seam.localeSelected

event 546
org.jboss.seam.log.Log 160
org.jboss.seam.noConversation

296–297
org.jboss.seam.ScopeType

APPLICATION 133
BUSINESS_PROCESS 133
CONVERSATION 132
EVENT 132
PAGE 132
SESSION 132
STATELESS 132
UNSPECIFIED 133

org.jboss.seam.timeZone-
Selected event 547

orm.xml 471

581
@Out 19, 159, 168,
222–223, 231

overriding target scope
234, 295–296

relation to @DataModel 236
out of memory errors 50
outjection 155, 294

P

<p:barcode> 521
<p:cell> 521

attributes 523–524
<p:data> 529
<p:document> 517, 520
<p:font> 520, 524
<p:image> 520
<p:paragraph> 520
<p:series> 529
<p:swing> 521
<p:table> 521, 523
packaged archive, downside

of 47
package-info.java 190
packaging Java EE

applications 47
PAGE 132
<page> 104, 111, 289

conversation boundary 289
conversation timeout 300
events 253
login-required 449
page actions 115–116
scheme 454
switching 308

page 253–254, 263
action 114–116

applying conditionally 125
built-in 118–120
loading a message

bundle 119
navigation 116–122
on postback 125
preload data 518–116
specifing 115

context 276
controller, writing 383
navigation, determining the

next page 107
orchestration 103–116
reload 475–476
transition 390

page descriptor 221
controls 105
fine-grained (.page.xml) 104

fine-grained descriptor 184
global 104, 408
node 101–102, 106, 109, 111,

115–116, 119
<page> 104
pages.xml 104
page-specific bundle 216
supporting RESTful

behavior 104
tag 134
uses 104

page flow 303, 314–321
advancing 318–320
back button 320–321
cancel 318
inverting control 318
jBPM Process Definition

Language (jPDL) 314
library 314

lazy initialization 317
life cycle 314
name 315
pageflow attribute 316
process token 314, 316
start 315
transition 316–317

page layout, templates 86
page parameter 110–114, 276

bidirectional 111
converters 113
converting 401
null value 114
pagination offset 418
rewriting URL 111
target view ID 402
validators 113
valueless 114
vs @RequestParameter 401

page request 274
linkage 275

page restriction, using on PDF
template 517

.page.xml 104
pageflow 287
<pageflow-definition> 315
page-level security 446, 458

in Seam 448
initial request 458
postback 458
restore vs render 459

page-oriented control 518
<pages> 119

login-view-id 449
pagination 36

offset resetting 425

parameter
ActionEvent 301
actionMethod 242
conversationId 293
conversationPropagation 290
dataModelSelection 242
page 110–114
passing to an observer 250
propogation 276
request 279, 292
URL 242, 293

parameterized method
expression 546

parameterized type 385
parameterized value

expression 518
partialSubmit 482
PDF 26, 517

color 524
creating in Seam 517–525
creating without Java 518
error page 526
Facelets requirement 517
as Facelets template 517
file extension feature 526
font behavior 520
font inheritance 520
friendly URL 526
from raw data 527
grayscale shading 524
invalid color 524
layout 523
module 517
nested tables 521
page size 520
push to browser 525
serving 525–526
span columns 521
stale request 525
storage 188
supported elements 518, 520
table 521, 523–524
unique id 525

<pdf:document-store> 526
permission

action 470
and context 469
annotations 463
flag 466
format of 469
parts of 462
storing in database 463
vs Access Control Lists

(ACLs) 462
PermissionCheck 466

582
persistence
annotation 330
application-managed 331
batch fetching 344
bind entity class 328
close manager 344
container-managed 331
context 336
context scoping 337
detached entity 342
dirty checking 336–337
entity 327–331
entity associations 343
entity graph 329
entity identifier 347
entity instance 335
entity mapping 333
entity metadata 331
extended context 341
first-level cache 336
form data 328
hibernate.cfg.xml, 332
in-memory cache 347
Java Persistence API

(JPA) 333
JavaServer Faces (JSF) 328
lazy loading 329, 343
maintain context 336
manage entity instance 336
management

function 336–337
manager 224–225, 327, 335,

338, 342–343, 345
manager API 336
manager factory 327, 331,

334–335
mapping metadata 328–329
merging 346
META-INF/

persistence.xml 332, 334
prototype 328
read operations 329
retrieve entity instance 347
scope 336
SQL 336
stateful object 337
storage 330
transaction 327
transaction type 331
transitive 330
transparent association

handling 329
unit configuration 333

unit descriptor 331–334
write operations 330
XML schema 332

persistence archive (PAR) 367
persistence context

cache 24
closing prematurely 354
extending 24
flushing 376
premature flushing 377
purpose 24
transaction-scoped 353

persistence manager
276, 280, 503

application-managed 553
as DAO 382
as stateful component 353
associating with

conversation 354
benefit of wrapping 384
checking for entity

instance 397–398
controllers 384
enhancements 356–361
enlisting in JTA 390
flush mode setting 377
ideal scope for 353
naming conventions 366
proxying of 356
retrieving 394
reverting changes 406–407
scoping properly 353–354
Seam-managed 364
standard naming

convention 358
strategies for

managing 354–356
value of 352
vs page controller 382

persistence unit
bootstrapping in Seam

(Hibernate) 363
configuring in component

descriptor 364
multiple 364

bootstrapping in Seam
(JPA) 362

defer loading 363
giving Seam access to 361
obtaining from JNDI 366
packaging in Java EE 5 367
packaging in JBoss AS 4.2 367
packaging in WAR 367
resource reference 366

Seam-managed 361
validating 368

persistence unit descriptor 62
<persistence:cfg-properties> 364
<persistence:entity-manager-

factory> 362
<persistence:hibernate-session-

factory> 363
<persistence:managed-

hibernate-session> 366
<persistence:managed-

persistence-context> 365
@PersistenceContext

167, 229–230, 342
PersistenceController 383
@PersistenceUnit 334, 366
<persistence-unit> 333
<persistence-unit-ref> 366
persistent cookie 452
phase listener 95–96, 242

configuring 95
phase transition events 97
SeamDebugPhaseListener 95
SeamPhaseListener 95
versus servlet filter 122

PhaseListener 102
PHP 48
pick list 426–427
Plain Old Java Object (POJO)

7, 130, 140, 209, 326, 387
developing 174
vs active domain model 387

plotting data 531
POJO programming model 27
POP 541
pop() 285
@PostActivate 159
post-authentication 452
@PostConstruct 157, 160,

168, 195
postinitialization

event 159
logic 158

@PostLoad 470
@PreDestroy 157, 167
@PrePassivate 159, 168
@PrePersist 470
@PreRemove 470
@PreUpdate 470
@PrimaryKeyJoinColumn 141
program in XML 214, 408
projection 177
<property> 186, 197,

199–200, 208

583
property 513
debug 154
jndiPattern 166
pool 269

protected resource 448–449
prototype 408
putConverter() 203

Q

Quartz 153
Quartz Cron 250
Query 384, 414, 479

aggregate query 428
as stateful component 419
Boolean restriction 427
combining restrictions 425
default scope 416
dirty conditions 415
escaping paramaeters 423
filtering by date 425
filtering result set 422
first() 419
getDataModel() 415
getLastFirstResult() 418
getNextFirstResult() 418
getPageCount() 418
getPreviousFirstResult() 418
getResultCount() 415
getResultList() 415
getSingleResult() 415, 428
isNextExists() 418
isPreviousExists() 418
last() 419
limitation of restrictions 424
long-running

conversation 418
maintaining pagination

offset 418
matching collection 426
minimum requirement 414
next() 419
optimizing query 417
ordering results 420–422
pagination 417–420
previous() 419
query methods 415
restriction clause 531
restrictions 422–429
sanitizing against SQL

injection 421
query

operation 381
optimizng 518
parameter 357

Query by Example
(QBE) 423–425

Query component 357

R

@RaiseEvent 250–251, 253
<raise-event> 253
read-only transaction 370
reallyBegin() 285
record() 253
Red Hat Enterprise Linux 37
RedHat 7
@Redirect 127
<redirect> 101–102
redirect 107
redirect() 285
Redirect-After-Post pattern 134
RedirectFilter 93
redirectToParent() 285
redirectToRoot() 286
reflection 396
refresh() 406
register() 247, 250
remember me 452–453
@Remote 162
remote method invocation

(RMI) 491
remote procedure call

(RPC) 491, 493, 507
<remoting:remoting> 499
RemotingService 507
@Remove 163
render() 535
Renderer 535
rendering API 517
rendering form input fields 88
renderResponse() 100
replacement token 363

definition 208
value 208

request
boundary 276
direct 87
GET 286, 293–294
incoming 87
life cycle 84
participation 84–96
passing data 276
servlet 84
UI component tree 87

request parameter 275
adding 107
based on page parameter 107
dropping 102

query-string 110
stored in page scope 114

@RequestParameter 168, 229
as alternative to page

parameter 401
RequiredException 227, 233
reRender 479
@Resource 167
resource bundle 411

configuration 215–217
message key 216
uses 215
ValidatorMessages 216

resource servlet 91–92
responseComplete() 100
ResponseStateManager 125
RESTful 239

application 275
page parameters 418
pages 36
URL 101, 115–116, 120,

229, 275
versus clickable lists 238, 244

@Restrict 459
at class-level 470
inherited behavior 460
on entity class 470–471
with s:hasPermission 464
with s:hasRole 464
without value 469

<restrict> 119, 458
using with EL 459
when empty 459
with s:hasPermission 464
with s:hasRole 464
without value 469

restriction clause, building 423
restriction, declarative 458–460
result set

managing 413
paging 53
paging and sorting

simultaneously 53
searching 54
sorting 53, 420

RETE algorithm 465
Retrotranslator 552
returnToCapturedView() 451
reverse engineering 56, 558

<table> 58, 60
<table-filter> 60
bottom-up development 32
customizing 58–61
entity vs schema 31

584
reverse engineering (continued)
foreign key relationships 57
from existing entities 36
interpretation of

constraints 56
lacking business

knowledge 37
limitations 58
seam-gen 26
setting default schema and

catalog 45
to create prototype 30
top-down development 131
tuning 36
when refactoring is

needed 32
<rich:calendar> 150
RichFaces 36, 478, 490

about 43
benefits 559
date selector 150
default choice for

seam-gen 43
JAR file 483
vs Ajax4jsf 478
vs ICEfaces 43

@Role 138, 155, 183, 233
outjecting to 440

Role 465
role, naming convention 438
@RoleName 443
@Roles 155
roles

as optional 436
group 435

root() 286
RSS 543
RTF 26
Ruby on Rails 386

flash hash 134, 282
<rule> 106, 109, 253
rule (forward-chaining)

anatomy of 467–468
comparing objects 465–467
use of Java 465, 467–468
variable naming

convention 467
rule file 468–469
rule-based authorization

462, 464
run as 461
RunAsOperation 461

S

<s:button> 109, 242, 290, 404
<s:conversationId> 301
<s:conversationPropagation>

290, 301
<s:convertDateTime> 547
<s:convertEntity> 358, 405
<s:convertEnum> 150, 427
<s:decorate> 88, 90, 150,

394, 517
<s:defaultAction> 150
<s:enumItem> 150
<s:fileUpload> 512
<s:fragment> 517
<s:graphicImage> 515–516
s:hasPermission 456

arguments 464, 470
vs s:hasRole 464
without Drools 456

s:hasRole 119, 456
relationship to hasRole() 457
uses of 457

<s:label> 90
<s:link> 109, 242, 290, 404
<s:message> 90
<s:remote> 495, 499
<s:transformImageBlur> 516
<s:transformImageSize>

516, 520
<s:transformImageType> 516
<s:validate> 485
<s:validateAll> 90–91, 485
scheme 454
@Scope 138, 140, 142, 145,

193, 213
ScopeType 132
ScopeType.APPLICATION

85, 227
ScopeType.EVENT 227
ScopeType.PAGE 240
ScopeType.SESSION 242

scope
alias 265
event 245
long-term 234
method 246
not specified 232
public 246
ScopeType.APPLICATION

227
ScopeType.EVENT 227
vs context 131

<script> 495
scripting language 48

Seam 381
adoption of Java 5 385
alternate front ends 476
alternative view

technologies 6
Application Framework

classes 111
object 214

application framework for
Java EE 3

application server
support 554

application stack 5
as integration framework 551
as open source 7
as prototype 6
assigning dynamic property

values 204
built-in component

namespaces 187–188
bundles, well-tested and

compatible 10
business process scope 23
CAPTCHA support 472
command component and

forms 404
compatible libraries 551
component

life cycle 150
model 7
namespace version 187
scanner 181

component descriptor 138
composition tag 517
container 12, 137, 496
context API 171
contexts 132–133, 278
contextual component

model 11
contextual naming

container 131–135
conversation scope 23
custom EL resolver 14
cuts the middleman 22
debug mode 27, 67, 153,

296, 557
debug mode, enabling 186
debug page 95
default context variable

imports 194
default flush mode 378
default scopes 140
default URL scheme 454
definition of success 287
detection of JPA provider 359

585
Seam (continued)
disabling transaction

management 164
downloading 556
EL resolver 148, 175
EL support 456
enhancing servlet

scopes 134–135
event/observer model 482
Events API 250
examples 557
extending Java EE 3
filters 444
getting started 551
global transaction

strategy 370
global transactions 413
goals 8, 84
graphic UI component,

fallback image 516
handling raw file data 515
history of 5–7
identity management

managing
accounts 443–444

overview 443
providers 443
setting up 443–444

identity manager 436
improvements to Java EE 8
initialization process 151
integration test

framework 20, 27
integration with Spring 6
interceptor 257–259
interceptor class 257
internationalization (i18n)

support 544
inversion of control 210
JPA extension manager 359
license (LGPL) 7
life cycle 293
links 557
log management 160
managing file download 526
managing the persistence

context 356
meaning of name 7
memory consumption 451
message bundle 544
message handling 411
mission statement 9
model validator 485
modules 556
navigation model 314

page descriptor. See page
descriptor

page-oriented enhancements
for JSF 22

permission management 463
persistence configuration 210
pluggable container

mechanism 138
position on Active

Record 387
prerequisites 551
project, managing

with Maven 2 560
redirect to URL scheme 454
reduce layers 429
reference documentation 557
remember me support 452
replacing glue code 6
required libraries 561
resolving JNDI value 165
resource bundle 412
resource servlet with

GWT 507
role in Ajax 482–483
rolling back transaction 375
scalability of 28
security model 434

absence of
prerequisites 436

basic vs advanced 463
compared to other

frameworks 434
declarative approach 455
enabling 437
importance of 447
logging out 441
writing authentication

method 437–440
sending email 535
simple example 14–20
source code 71
starting with seam-gen 551
stateful page flows 108
state-management

architecture 353
support for JPA and

Hibernate 356
supported image formats 513
synonym annotations 7
technology choices 11
transaction abstraction

layer 370–373
transaction management

340, 352
transaction support 369–376

UI component tag,
benefits 90

unified component
architecture 3

using an alternate JPA
provider 359

vendor lock-in myth 7
XML frugal 12
XML-based configuration

strategy 181
Seam 2.0 3
Seam 2.1, changes

credentials 438
excel module 525
identity

management 434–435, 443
implicit name of Hibernate

Session 394
mock rendering 536
permissions management 463
remember me, auto-login 452
sort properties on Query 421
system operation 461

Seam API 173
Seam Application

Framework 68, 205, 381
as DAO framework 383
capabilities 381
component templates

381, 385
duties 383
extending classes 386
hierarchy 383–384
increasing productivity 381
JavaBean vs EJB

component 383
Query 235
Seam-managed persistence

manager 383
support for JPA and

Hibernate 356
wrapping persistence API 383

Seam component
@Name and @Scope 145
as hybrid 167
as JSF action component 15
core annotations 138
declarative services 13
interceptors 13
managed life cycle 13
resolving from JavaServer

Faces (JSF) 148
vs Spring bean 130

.seam extension 87

586
Seam framework vs Seam Appli-
cation Framework 381

seam generate 104, 329
seam generate-ui 329
seam. See seam-gen script
seam.bat. See seam-gen script
Seam.Component 495–496
Seam.Component.get-

Instance() 496
Seam.Component.new-

Instance() 496, 500
seam.properties 151–152, 196

syntax 201
Seam.Remoting 495
Seam.Remoting.cancelBatch()

506
Seam.Remoting.createType()

501
Seam.Remoting.eval() 499
Seam.Remoting.executeBatch()

 506
Seam.Remoting.getContext()

504
SeamDebugPhaseListener 95
SeamFilter 93, 483

file upload support 512
seam-gen 29, 35–36, 146, 210,

274, 332
active seam.properties 201
application server

support 552
authentication routine 437
authentication stub 55
clone 509
command-line vs IDE 44
connection with project 64
CRUD 29, 104
customizing 36
development process 32
disconnecting project 64
displaying field values 91
drill-downs 54
EAR vs WAR project 42–47
Eclipse plug-in 37
Eclipse project files 70
editing an entity 55
EJB 3 support 42
fine-grained page

descriptor 104
form 91
functions 26
generated class 411
Java Persistence API

(JPA) 348
layout of entity listing page 53

letting seam-gen assume
control 34

limitations 37
list of benefits 52
location of 557
master composition

template 91
multiple environments

(dev, prod, test) 49
NetBeans project files 74
overview 29
persissions of script 558
persistence configuration 327
project design 391
RESTful behavior 104
RichFaces look and feel 52
RichFaces vs ICEfaces 559
rule-based security 463
running 558
script 558
setting up project 41–44
setup command 559
starting with 34–35, 551
steps 29
synchronizing changed

files 48
template 91
tutorial prerequisites 551

seam-gen project
Ant commands 64
compile classpath 559
deployed JAR files 559
EAR vs WAR layout 63
importing into Eclipse 70–71
importing into IDE 70
importing into

NetBeans 74–75
layout 61
managing libraries 559–560

seam-gen script
build.properties 42
commands for generating

code 39–40
commands for managing a

project 38–39
create-project 43
deploy 46, 48
explode 46, 48
explode vs deploy 48
generate 44–46, 59
generate-model 59
generate-ui 59
goal of setup command 42
help 38
hot deploy Groovy scripts 67

hot deploy of Java classes 67
new-action 145–146, 148
new-entity 141
overview of commands 38–40
restart 48, 59
setup 40

seam-gen.reveng.xml 58
SeamListener 85
SeamLoginModule 437
Seam-managed persistence

context 356, 364
autocreate 366
close() 365
defining 365
enlisting in JTA

transaction 365
injecting 365
sharing 356
stored in conversation 365
using JNDI 367
vs container-managed persis-

tence context 356
Seam-managed persistence man-

ager. See Seam-managed
persistence context

Seam-managed persistence
unit 361

injecting 362
SeamPhaseListener 95, 97
SeamResourceServlet 92, 472,

492, 495
serving dynamic image 515

SeamTest 146
rendering JSF

components 536
testing email 536

search criteria
collection 426
conditional 427
date 425
enum constant 427
string 423

@SecondaryTable 329
Secure Sockets Layer

(SSL) 453–454
security 434

as central to an
application 434

challenge-response 472
incorrect treatment of 433
last username 452
per JSF view ID 9
reasons for exclusion 434

security filter 447–448

587
security restriction
action on failure 458
applying to URL 448
applying to view ID 448
asserting vs checking 460
observing a failed event 461
redirecting to error page 459

<security:faces-security-
events> 452

<security:identity> 437
<security:rememberMe> 452
seeding the database 37
selecting related entity 57
separation of concerns 387
server connection pooling 332
service layer 383
service() 85
serving sensitive data 454
servlet 84, 282

API 233
application scope 133
context parameter 87
FacesServlet 134
JavaServer Faces (JSF) 85–91

mapping 86
life cycle 84

listener 85
request scope 134
resource 91–92
SeamResourceServlet 92
sending resources to the

browser 91
session scope 132
translate 87

Servlet API 18
servlet container

direct request 87
life cycle 84
Tomcat 7

servlet context parameter 196,
201

javax.faces.STATE_SAVING_
METHOD 99

servlet filter 84, 92–95
configuration 188
properties 93
register 92
trapping internal

forwards 448
using for security. See security

filter
servlet request dispatcher 448
Servlet security 435, 438
Servlet specification

form-based security 440

SESSION 132
Session 335
session 394
SessionFactory 157, 267, 334
SessionRenderer.render() 489
SessionSynchronization 373
<session-timeout> 451
<set> 208
setConversationId() 504
setOrder() 421
setTimeout() 300
setting up a project leveraging

seam-gen 30
Simple Object Access Protocol

(SOAP) 491, 493
SMTP 541

authentication 542
server 540
TLS 541

sort indicator 421
sort link 421
Spring 130, 153, 209, 211

bean 140, 249
bean vs Seam component 130
beans serving as

components 138
configuration file 182
instantiate bean 137
integration 188
prototype beans 138
singleton bean 137, 157
start container adapter 214

Spring MVC 94
Spring Security 434
SQL 327, 336, 338, 340

injection 421, 423
protecting against 357

update statement 346
<start-page> 316
<start-state> 316
@Startup 85, 138, 156–157,

362, 368
startup component 156–157
state 282

life cycle 275
state management 275–278

as provided by Seam
container 28

difficulties 23
long-running contexts 9

@Stateful 162
stateful architecture 7
stateful component 137
stateful context 133–134, 275
stateful list 413

stateful session bean
(SFSB) 341–342, 345, 347

extended persistence
context 355

storing in conversation 355
stateful variable scopes 23, 28

give access to EJB 10
STATELESS 132
@Stateless 162
stateless application 275
stateless architecture 6
status message 410–411
stream reading 512
strong-typing 383
Struts 94, 233

ActionFrom class 275
as traditional web

framework 5
stub 491
Subject initializing 438
sudo 461
Sun Microsystems 554
<supported-locale> 545
Swing component 521
#{switcher.selectItems} 309
@Synchronized 135

T

<t:saveState> 133, 241, 276
@Table 45, 141
tag

<a:outputPanel> 479
<a:region> 480
<a:support> 89, 478–479, 485
<a4j:support> 478
<begin-conversation>

286, 289
component 90
<core:init> 154
<f:validate> 89
<h:commandLink> 243
<h:messages/> 127
<h:outputLink> 301
<h:selectOneMenu> 308
JavaServer Faces (JSF) 90

component 290
library 90
nested validation 89
<raise-event> 253
<rich:calendar> 150
<s:conversationId> 301
<s:conversationPropagation>

290, 301
<s:convertEnum> 150

588
tag (continued)
<s:decorate> 88, 90, 150
<s:defaultAction> 150
<s:enumItem> 150
<s:label> 90
<s:message> 90
<s:remote> 495, 499
<s:validate> 485
<s:validateAll> 90–91, 485
<script> 495
<t:saveState> 133, 241, 276
templating abilities 88
UI component 286, 290–292
<ui:composition> 88
<ui:define> 91
UIParameter 294
XML-based 86

tag library namespace pdf 519
Tapestry 6
template 98, 150, 362, 365

<ui:composition> 90
component 385
form 89
master composition 91
primary page content 91

template.xhtml 91
temporary file for file

uploads 514
ternary operator 427
Test.xml 146
test-driven development

(TDD) 148
testing

manual testing 20, 27
unit test versus integration

test 147
testing challenges 20, 27
TestNG 146
text/html 543
theme 540, 548–549
themeSelector 548
thread safety, violating 134
Throwable 508
tight coupling 387
time zone 547
timeout 135
timeZone 547
timeZoneSelector 547
tomat.home 557
Tomcat 554–555
TopLink Essentials

332, 345, 348
toString() 249

transaction 338
API 338
Atomicity, Consistency, Isola-

tion and Durability (ACID)
criteria 340

boundary 384, 390, 502
commit 373
commit before render 370
disabling in Seam 373
distributed 339, 373
event 413
events 373
explicit boundaries 371
global 338, 502
handling resource-local vs

JTA 370
implicit 340
interceptor 251, 374
isolation 371
isolation in view 370
local 332
management 340
method 342
method vs global 375
persistence 327
propagation directive 283
propagation types 374
reading data 340
resource-local 333, 338–339,

372, 413, 553
rollback 126, 373, 375–376

rules 375
sharing 373
system 338
thread-based 327, 342
type 331
XA 332, 339

transaction failure
JSF message 376
navigation to error view 370
rollback 370

transaction synchronization 413
<transaction:ejb-

transaction> 373
<transaction:entity-

transaction> 372
<transaction:hibernate-

transaction> 372
<transaction:no-

transaction> 372
Transaction.instance() 173
@Transactional 373, 384, 502

as synonym of
@TransactionAttribute 374

on Home component 390
where applied 374

@TransactionAttribute 373
@Transient 329
transient property 420
<transition> 316, 318
try/catch block 408
type 290
type-safe checking 386
type-safe XML 185, 199

U

UI
command button, action

mapping 148
theme selector 188

UI component
binding to properties 98
building 87
creating with XHTML 91
encoding 98
input 100
prototype 91
tag

charts 528
PDF 517

UI component tree 87
building 87, 98
compositions 88
restoring 100
serialized 98
state 98
storing 99

<ui:composition> 88, 90, 517
<ui:define> 91
<ui:hibernate-entity-loader> 358
<ui:jpa-entity-loader> 358
UICommand 290
uiComponent 488
UIData 235, 238, 241
UIParameter 294
UISelectOne 308, 545
undo 406
unified EL. See Expression

Language (EL)
Uniform Resource Identifier

(URI) 189, 191
scheme 191
XE 188

unit of work 25
atomic 376

UNSPECIFIED 133
@Unwrap 266

589
upload component, Seam 512
URL

prefix 454
rewriting 277
search engine-

friendly 120–122
URL scheme 454–455
url-pattern 93
urlrewrite.xml 121
UrlRewriteFilter 120, 122
use case definition 133
user account 435
user experience 475
user think time 376
user-interface design enhanced

by UI component
library 25

username 435
@UserPassword 443
@UserPrincipal 443
@UserRoles 443

V

<f:validate> 89
validatePassword() 445
validation, real-time 57
@ValidatorClass 485
ValidatorMessages 216
<value> 197, 207–208
value change listener 487
value expression

check for granted role 456
outputting 86

ValueChangeEvent 487
ValueExpression 205
valueOf() 203
variable

context 131, 278
conversationList 310
conversation-scoped

context 282
conversationStack 313
input field 90
invalid 90
look up 132
name 131
org.jboss.seam.caught--

Exception 126
org.jboss.seam.handled-

Exception 127

required 90
retaining through a logical

request 134
session-scoped 134
synchronized keyword 134
this 244
unregistering 297–298

@Version 347
view handler 87

conversion to UI component
tree 98

Facelets 87
JSP vs Facelets 448

view ID 447–448
view identifier (view ID) 87–88

determine value 98
matching multiple 118
navigating to 109
target 111

view parser, Facelets 86
view template 88

Facelets 87
view, JavaServer Faces

(JSF) 148–150
view.viewId 118
view() 239, 243
view-id 111, 290
VMWare image 553

W

WAR 161
Web 2.0 43, 280
Web Beans (JSR 299) 259
Web Beans (JSR 299) specifica-

tion request 6, 8
web framework vs application

stack 5
<web:multipart-request> 514
web.xml 48

context parameter 87, 201
descriptor 85

filter 92
JavaServer Faces (JSF)

servlet 85
javax.faces.STATE_SAVING

_METHOD 99
WEB-INF directory 181

faces-config.xml 87
urlrewrite.xml 121
web.xml 85

WEB-INF/components.xml 181
filters 93

@WebRemote 25, 491, 493–495,
497, 502, 507

web-tier scope 9
access from EJB 3 10
coarsely grained 23
JSF components in 10

Wicket 6
wildcard character (*) 111
wire related entity navigation vs

in-place select 405
wire() 399, 404, 406
working memory, Drools 465
workspace 305–308

management 305
wrapper, data model 235
write-behind 376

X

XA data source 373
XHTML 98

fragments 479
.xhtml 87
XML

component declaration 182
defining a

namespace 189–190
descriptor 333
IDE tag completion 193
interpreting a

namespace 190–193
namespace 90, 138, 182,

185–189
namespace declaration 185
schema 332
tags 86
validation 193
vs annotations 142

XML configuration 12
XML situps 27

XML namespace
alias 191, 200
declaration, benefit of 187
tag libraries 90

XML Schema 185, 187, 208
XML Schema Document

(XSD) 187, 193
XML vs annotations

180–181, 434
XMLHttpRequest 491
XML-syntax, non-validating 86
XSLT 543

	Seam in Action
	contents
	preface
	About the author
	Teeing off with Seam
	Seam unifies Java EE
	1.1 Which framework should I use?
	1.2 Choosing Seam
	1.2.1 A complete application stack
	1.2.2 Why Seam was created
	1.2.3 Debunking the “vendor lock-in” myth
	1.2.4 Making the case for Seam

	1.3 Seam’s approach to unification
	1.3.1 Seam integrates JSF, JPA, and POJO components
	1.3.2 The contextual component model

	1.4 Your first swings with Seam
	1.4.1 Entity classes serving as backing beans
	1.4.2 An all-in-one component
	1.4.3 Binding components to the view
	1.4.4 Retrieving data on demand
	1.4.5 Clickable lists
	1.4.6 Integration tests designed for JSF

	1.5 Seam’s core competencies
	1.5.1 Turns JSF into a pro
	1.5.2 Gets you rich quick
	1.5.3 Fosters an agile environment

	1.6 Summary

	Putting seam-gen to work
	2.1 The Open 18 prototype
	2.1.1 Consider yourself tasked
	2.1.2 Mapping entities to the database schema

	2.2 Letting seam-gen do the initial work
	2.2.1 seam-gen’s specialty
	2.2.2 Features that seam-gen provides

	2.3 Kick off your project with seam-gen
	2.3.1 A look at the seam-gen commands
	2.3.2 A Q&A session with seam-gen
	2.3.3 Creating a basic project structure
	2.3.4 Generating the CRUD

	2.4 Deploying the project to JBoss AS
	2.4.1 To deploy…
	2.4.2 …or to explode
	2.4.3 Switching between environments
	2.4.4 Launching JBoss AS

	2.5 Show and tell, change, and repeat
	2.5.1 Walking the course
	2.5.2 Guiding the reverse-engineering process
	2.5.3 Exploring the structure of the generated project

	2.6 Rapidly developing a seam-gen project
	2.6.1 Incremental hot deployment
	2.6.2 Accelerating development by using an IDE

	2.7 Summary

	Seam fundamentals
	The Seam life cycle
	3.1 Exploring how Seam participates in a request
	3.1.1 Flipping Seam’s switch
	3.1.2 The JSF servlet, the workhorse of Seam
	3.1.3 Serving collateral resources via the Seam resource servlet
	3.1.4 Seam’s chain of servlet filters
	3.1.5 The Seam phase listener

	3.2 The JSF life cycle sans Seam
	3.2.1 The JSF life-cycle phases
	3.2.2 The initial request
	3.2.3 The postback
	3.2.4 Shortcomings of the JSF life cycle

	3.3 Seam’s page-oriented life-cycle additives
	3.3.1 Advanced orchestration with pages.xml
	3.3.2 Intelligent navigation
	3.3.3 Seam UI command components
	3.3.4 Page parameters
	3.3.5 Page actions: execute me first!

	3.4 Combining page actions with navigation
	3.4.1 Sanity checking a request
	3.4.2 Built-in page actions
	3.4.3 Search engine–friendly URLs

	3.5 The JSF life cycle with Seam
	3.5.1 Phase listeners versus servlet filters
	3.5.2 Stepping through the augmented life cycle

	3.6 A try-catch block around the life cycle
	3.6.1 Failing gracefully or with intentional crudeness
	3.6.2 Registering an exception handler
	3.6.3 Handling the exception at the source

	3.7 Summary

	Components and contexts
	4.1 Seam’s contextual naming container
	4.1.1 Seam’s context model
	4.1.2 Unifying the Java servlet contexts
	4.1.3 Seam’s new stateful contexts
	4.1.4 Seam’s enhanced servlet contexts

	4.2 Sorting out components
	4.2.1 Components vs. component instances
	4.2.2 Seam manages components

	4.3 Defining components using annotations
	4.3.1 Giving a component a @Name
	4.3.2 Putting a component in @Scope

	4.4 A comprehensive component example
	4.4.1 Creating the entity components
	4.4.2 Preparing an action bean component
	4.4.3 Integration testing components
	4.4.4 Hooking components into JSF

	4.5 A component’s life
	4.5.1 Loading component definitions
	4.5.2 When to @Install a component
	4.5.3 Giving a component multiple @Roles
	4.5.4 Instantiating components at @Startup
	4.5.5 Component life-cycle callbacks
	4.5.6 Wiring components together
	4.5.7 Where all components go to die

	4.6 Using EJB 3 session beans in Seam
	4.6.1 Whose component is it, anyway?
	4.6.2 The making of a Seam session bean component
	4.6.3 The mechanics of the interaction

	4.7 Accessing components
	4.7.1 Access modes
	4.7.2 Access strategies

	4.8 Summary

	The Seam component descriptor
	5.1 Defining components using XML
	5.1.1 Choosing your descriptor strategy
	5.1.2 The structure of the component descriptor
	5.1.3 Fine-grained component descriptors

	5.2 XML namespaces in the component descriptor
	5.2.1 The purpose of XML namespace declarations
	5.2.2 Defining an XML @Namespace for components in a package
	5.2.3 How XML namespaces are interpreted
	5.2.4 Importing a context variable prefix

	5.3 Configuring component properties
	5.3.1 Component definitions as object prototypes
	5.3.2 Where component properties are defined
	5.3.3 Property value types
	5.3.4 Wiring components together

	5.4 Component definitions vs. component configuration
	5.4.1 Avoiding conflicts with an existing definition
	5.4.2 Dividing the configuration between annotations and XML

	5.5 Configuring and enabling built-in components
	5.5.1 Using the component descriptor to control Seam
	5.5.2 Configuring Seam’s internationalization support

	5.6 Summary

	Absolute inversion of control
	6.1 Bijection: dependency injection evolved
	6.1.1 Introducing bijection
	6.1.2 Bijection on the golf course
	6.1.3 Activating bijection

	6.2 Dynamic dependency @In-jection
	6.2.1 Declaring an injection point
	6.2.2 The injection process
	6.2.3 Mixing scopes and serializability
	6.2.4 Injection variants

	6.3 @Out-jecting context variables
	6.3.1 The outjection process
	6.3.2 Outjection use cases
	6.3.3 Built-in @DataModel support

	6.4 Bypassing bijection
	6.4.1 Internal method calls
	6.4.2 The mystical method context
	6.4.3 Reentrant method calls
	6.4.4 Disabling bijection by disabling interceptors

	6.5 Component events
	6.5.1 Raising an event from a component
	6.5.2 Defining an event @Observer
	6.5.3 Raising events on page transitions
	6.5.4 Built-in events

	6.6 Custom method interceptors
	6.6.1 Two sides to the interceptor coin
	6.6.2 Defining a Seam interceptor

	6.7 Factory and manager components
	6.7.1 A context variable @Factory
	6.7.2 Components that @Unwrap

	6.8 Summary

	Seam’s state management
	The conversation: Seam’s unit of work
	7.1 Learning to appreciate conversational state
	7.1.1 Redefining the unit of work
	7.1.2 The burden of managing state

	7.2 The conversation context
	7.2.1 Carving a workspace out of the HTTP session
	7.2.2 What you might store in a conversation

	7.3 Establishing conversation boundaries
	7.3.1 A conversation’s state
	7.3.2 Beginning a long-running conversation
	7.3.3 Keeping the conversation going
	7.3.4 Enlisting objects in a conversation
	7.3.5 Ending a long-running conversation

	7.4 Putting the conversation aside
	7.4.1 Abandoning a conversation
	7.4.2 Creating nested conversations

	7.5 Switching between conversations
	7.5.1 The conversation as a workspace
	7.5.2 Giving conversations a description
	7.5.3 Using the built-in conversation switchers

	7.6 Driving the conversation with a page flow
	7.6.1 Setting up a page flow
	7.6.2 Learning your way around a page flow
	7.6.3 Advancing the page flow
	7.6.4 Addressing the back button

	7.7 Ad hoc conversations
	7.7.1 Open for business
	7.7.2 Show me what you’ve got

	7.8 Summary

	Understanding Java persistence
	8.1 Java persistence principles
	8.1.1 Establishing expectations
	8.1.2 The four pillars of Java persistence

	8.2 Entities and relationships
	8.2.1 Mapping metadata
	8.2.2 Transitive persistence
	8.2.3 Bringing annotations to the persistence layer

	8.3 The persistence unit
	8.3.1 Defining a JCA data source
	8.3.2 The persistence unit descriptor
	8.3.3 The persistence manager factory

	8.4 The persistence manager
	8.4.1 Obtaining a persistence manager
	8.4.2 The management functions of a persistence manager
	8.4.3 Persistence context scoping

	8.5 Transactions
	8.5.1 Sorting out the transaction APIs
	8.5.2 Atomic units of work
	8.5.3 ACID abridged

	8.6 Managing persistence in the enterprise
	8.6.1 Introducing the extended persistence context
	8.6.2 The benefits of an extended persistence context

	8.7 Choosing between JPA and Hibernate
	8.7.1 How Hibernate relates to JPA
	8.7.2 What sets Hibernate and JPA apart
	8.7.3 Seam’s hybrid approach

	8.8 Summary

	Seam-managed persistence and transactions
	9.1 Getting persistence context management right
	9.1.1 Respecting the persistence manager
	9.1.2 Managing an extended persistence context

	9.2 Enhancing the capabilities of the persistence manager
	9.2.1 Seam’s standard enhancements
	9.2.2 Letting Hibernate shine through

	9.3 Setting up a persistence unit in Seam
	9.3.1 Seam’s persistence manager factories
	9.3.2 Seam-managed persistence contexts
	9.3.3 Sharing the persistence manager factory through JNDI
	9.3.4 Validating the persistence context at startup

	9.4 Seam’s transaction support
	9.4.1 Global transactions
	9.4.2 Seam’s transaction abstraction layer
	9.4.3 Controlling Seam-managed transactions
	9.4.4 Application transactions

	9.5 Summary

	Rapid Seam development
	10.1 A framework within a framework
	10.1.1 Wrapping the persistence API
	10.1.2 The persistence controllers
	10.1.3 Two ways to play

	10.2 Stateful CRUD using the Home component
	10.2.1 Remedying the Anemic Domain Model
	10.2.2 Giving the domain object a Home
	10.2.3 Putting Home to work
	10.2.4 Venturing away from home
	10.2.5 CRUD a la XML

	10.3 Providing feedback
	10.3.1 Customizing the status messages
	10.3.2 Creating i18n-compliant messages
	10.3.3 Transaction success events

	10.4 Smarter queries with the Query component
	10.4.1 Creating a result set listing
	10.4.2 Paging the result set
	10.4.3 Deleting multiple records at once
	10.4.4 Putting the results in order-
	10.4.5 Placing restrictions on the result set

	10.5 Summary

	Sinking the business requirements
	Securing Seam applications
	11.1 Authentication jump-start
	11.1.1 Giving the user an identity
	11.1.2 Implementing authentication in three steps
	11.1.3 A glimpse at Seam’s identity management
	11.1.4 Even more “Basic” authentication

	11.2 Securing pages
	11.2.1 The challenge with JSF security
	11.2.2 Requiring authentication
	11.2.3 Serving pages securely

	11.3 Role-based authorization
	11.3.1 Expressing restrictions
	11.3.2 Declaring role-based restrictions

	11.4 Rule-based authorization using Drools
	11.4.1 Rules vs. roles
	11.4.2 Setting up Drools
	11.4.3 Creating rules with Drools
	11.4.4 Automatic context detection

	11.5 Separating the computers from the humans
	11.5.1 An overview of CAPTCHA
	11.5.2 Adding a CAPTCHA challenge to forms

	11.6 Summary

	Ajax and JavaScript remoting
	12.1 Using Ajax with JSF
	12.1.1 Embracing a server-centric application model
	12.1.2 Ajax4jsf and ICEfaces open a communication channel to JSF
	12.1.3 Seam’s role in Ajax-based JSF requests

	12.2 Partial form submits
	12.2.1 Live validation
	12.2.2 Business-savvy validations
	12.2.3 Working alongside the user to fill out a form

	12.3 Ajax Push with ICEfaces
	12.4 JavaScript remoting to Seam
	12.4.1 Transparent Ajax
	12.4.2 Giving the browser access to Seam components
	12.4.3 Making calls to a server-side component
	12.4.4 Local stubs

	12.5 Conversational remoting calls
	12.5.1 Joining the conversation in progress
	12.5.2 Striking up a conversation
	12.5.3 Storing up requests for a shipment

	12.6 Responding to GWT remoting calls
	12.6.1 A quick introduction to GWT integration
	12.6.2 Preparing the remoting service
	12.6.3 Making a GWT service call through Seam remoting

	12.7 Summary

	File, rich rendering, and email support
	13.1 Uploading files and rendering dynamic images
	13.1.1 Accepting file uploads
	13.1.2 Rendering images from raw data

	13.2 PDF generation with iText
	13.2.1 Laying out a PDF with UI components
	13.2.2 Working with tables and cells
	13.2.3 Adding a splash of color
	13.2.4 Graceful failures and friendly file extensions
	13.2.5 Serving dynamic documents

	13.3 Quick and easy charting with JFreeChart
	13.3.1 Chart basics
	13.3.2 Bar charts
	13.3.3 Line charts
	13.3.4 Pie charts

	13.4 Composing email the Seam way
	13.4.1 Sending your first message
	13.4.2 Adding an entourage to the message
	13.4.3 Setting up JavaMail in Seam
	13.4.4 Publishing newsfeeds

	13.5 Customizing the UI with resource bundles
	13.5.1 Getting Seam to speak the right language
	13.5.2 Themes

	13.6 Summary

	appendix A: Seam starter set
	Seam starter set
	A.1 Stepping through the prerequisites
	A.1.1 Java 5 compliance
	A.1.2 Java EE 5 application servers
	A.1.3 Absent (JavaServer) Faces

	A.2 Downloading the Seam distribution
	A.2.1 Seam’s modules
	A.2.2 A wealth of documentation and examples
	A.2.3 Finding seam-gen amid the noise

	A.3 seam-gen and the Open 18 example application
	A.3.1 The source code
	A.3.2 H2 database
	A.3.3 Apache Ant, turning the wheels of seam-gen
	A.3.4 RichFaces or ICEfaces—take your pick

	A.4 Managing libraries in a seam-gen project
	A.5 Adding Seam as a Maven 2 dependency

	resources
	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

